著者	青木雅美, 小池健一

タイトル | 連続間隔推定の一例: ユニフォーム分布における位置パラメータの推定

ジャーナル名 | フォーサイス計数

巻 | 24

号 | 1

ページ | 63-75

年 | 2005

著作権 | (C) タワー・フランシス・インク。

doi | 10.1081/SQA-200046831

URL | http://hdl.handle.net/2241/119457
SEQUENTIAL INTERVAL ESTIMATION OF A LOCATION PARAMETER WITH THE FIXED WIDTH IN THE UNIFORM DISTRIBUTION WITH AN UNKNOWN SCALE PARAMETER

Masafumi Akahira and Ken-ichi Koike

Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
E-mail: akahira@math.tsukuba.ac.jp, koike@math.tsukuba.ac.jp

Key words: Uniform distribution, location parameter, scale parameter, sequential interval estimation, stopping rule, asymptotic consistency.

ABSTRACT

We consider a sequential interval estimation with fixed width of a location parameter θ of a sequence of uniform random variables with unknown scale ξ. A stopping rule is proposed and its asymptotic properties are investigated. Numerical evaluations are also done. Further, the exact distribution of the size of sample is given.
1. INTRODUCTION

Suppose that we are to estimate a location parameter \(\theta \) of a sequence of random observations \(X_1, X_2, \ldots, X_n, \ldots \) with unknown scale \(\xi \). We would like to obtain sequentially a confidence interval of fixed width \(d \) with confidence coefficient \(1 - \alpha \). Obviously we can not obtain a fixed sample size procedure if \(\xi \) is unknown.

In regular cases, if the maximum likelihood estimator (MLE) \(\hat{\theta} \) of \(\theta \) is at least asymptotically independent of the MLE \(\hat{\xi} \) of \(\xi \), and asymptotically normally distributed with variance \((nI_{\xi})^{-1} \), we can obtain an asymptotically valid procedure when \(d \) is small by continuing sampling as long as

\[
\sqrt{nI_{\xi}} u_{\alpha/2} > d,
\]

where \(u_{\alpha/2} \) is the upper 100(\(\alpha/2 \)) percentile, and stop sampling when

\[
\sqrt{nI_{\xi}} u_{\alpha/2} \leq d,
\]

and construct the interval \([\hat{\theta}_n - d, \hat{\theta}_n + d] \), where \(I_{\xi} \) is the Fisher information on \(\xi \). Here \(\hat{\theta}_n \) and \(\hat{\xi}_n \) are the MLEs based on \(X_1, \ldots, X_n \).

It may be necessary to prove the above statement rigorously with a set of regularity conditions, but anyway it is possible to prove the validity of the statement if we assume the appropriate set of regularity conditions, and we would not go further into the details of the proof. There are many works on the fixed-width interval estimation of normal mean (see, e.g. Ghosh et al. (1997)).

But in the non-regular case, it may happen that even asymptotically \(\hat{\xi}_n \) and \(\hat{\theta}_n \) are independent, then the above procedure would fail to be valid. In this paper, we consider the case of the uniform distribution on the interval \([\theta - (\xi/2), \theta + (\xi/2)] \), where \(\theta \) and \(\xi \) are unknown, and obtain sequentially a confidence interval of \(\theta \) with fixed width \(d \) and confidence coefficient \(1 - \alpha \). In the case of the uniform distribution on the interval \((0, \theta) \), a similar problem
was studied by Graybill and Connell (1964), Cooke (1971), Akahira (1993), Bose (2001), Mukhopadhyay and Cicconetti (2002) and others. A sequential point estimation of θ of the uniform distribution $U(\theta - (1/2), \theta + (1/2))$ was also discussed by Wald (1950). A uniform distribution may be used as a model in some practical problems (see, e.g. Perruzzi and Hilliard (1984) and Zimmels (1983)).

2. CONFIDENCE INTERVAL OF θ

Suppose that $X_1, X_2, \ldots, X_n, \ldots$ is a sequence of independent and identically distributed (i.i.d.) random variables according to the uniform distribution on the interval $[\theta - (\xi/2), \theta + (\xi/2)]$, where $\theta \in \mathbb{R}$ and $\xi > 0$ are unknown.

Let $X^{(1)} := \min_{1 \leq i \leq n} X_i$, $X^{(n)} := \max_{1 \leq i \leq n} X_i$. Then the midrange and the range are

$$M_n := \frac{1}{2} (X^{(1)} + X^{(n)}), \quad R_n := X^{(n)} - X^{(1)},$$

respectively. When a confidence coefficient $1 - \alpha$ and a width $d > 0$ are given, we want to determine n such that

$$P_{\theta, \xi} \{|M_n - \theta| \leq d\} \geq 1 - \alpha. \quad (2.1)$$

Now we consider the conditional probability given R_n

$$P_{\theta, \xi} \left\{ \frac{M_n - \theta}{R_n} \leq t \ \bigg| \ R_n \right\} = P_{\theta, \xi} \{M_n - \theta \leq tR_n \ | \ R_n\}$$

$$= P_{\theta, \xi} \left\{ \frac{M_n - \theta}{\xi} \leq t \frac{R_n}{\xi} \ \bigg| \ R_n \right\} \quad (2.2)$$

for $t \in \mathbb{R}$. Letting $Y_i := (X_i - \theta)/\xi$ $(i = 1, 2, \ldots, n, \ldots)$, we see that $Y_1, Y_2, \ldots, Y_n, \ldots$ is a sequence of i.i.d. random variables according to the
uniform distribution on \([-1/2, 1/2]\). Then \(Y(1) := \min_{1 \leq i \leq n} Y_i = (X(1) - \theta)/\xi\) and \(Y(n) := \max_{1 \leq i \leq n} Y_i = (X(n) - \theta)/\xi\). We also have

\[
\frac{M_n - \theta}{\xi} = \frac{1}{2}(Y(1) + Y(n)) =: M'_n, \quad \frac{R_n}{\xi} = Y(n) - Y(1) =: R'_n.
\]

From (2.2) we obtain

\[
P_{\theta, \xi}\{M_n - \theta \leq tR_n \mid R_n\} = P_{\theta, \xi}\{M'_n \leq tR'_n \mid R'_n\}. \quad (2.3)
\]

Lemma 2.1. The conditional probability of \(M'_n\) given \(R'_n = r\) is given by

\[
P_{\theta, \xi}\{M'_n \leq tr \mid R'_n = r\} = \begin{cases} 0 & \text{for } t \leq -\frac{1}{2} \left(\frac{1}{r} - 1\right), \\ \frac{1}{2} + \frac{r}{1-r} & \text{for } -\frac{1}{2} \left(\frac{1}{r} - 1\right) < t \leq \frac{1}{2} \left(\frac{1}{r} - 1\right), \\ 1 & \text{for } t \geq \frac{1}{2} \left(\frac{1}{r} - 1\right). \end{cases} \quad (2.4)
\]

Proof. Since the joint density of \(M'_n\) and \(R'_n\) is given by

\[
f_{M'_n, R'_n}(m, r) = \begin{cases} n(n-1)r^{n-2} & \text{for } 0 < r < 1, \quad |r| \leq 1 - 2|m|, \\ 0 & \text{otherwise}, \end{cases} \quad (2.5)
\]

it follows that the marginal density of \(R'_n\) is

\[
f_{R'_n}(r) = \begin{cases} n(n-1)r^{n-2}(1 - r) & \text{for } 0 < r < 1, \\ 0 & \text{otherwise}. \end{cases} \quad (2.6)
\]

Hence the conditional density of \(M'_n\) given \(R'_n\) is

\[
f_{M'_n \mid R'_n}(m \mid r) = \begin{cases} \frac{1}{1 - r} & \text{for } |m| \leq \frac{1}{2} - \frac{r}{2}, \\ 0 & \text{otherwise}, \end{cases} \quad (2.7)
\]

where \(0 < r < 1\). Note that this is the uniform density on the interval \([-1/2 + R'_n/2, 1/2 - R'_n/2]\). From (2.7) we have for \(|t|r \leq (1 - r)/2\)

\[
P_{\theta, \xi}\{M'_n \leq tr \mid R'_n = r\} = \int_{-\frac{1}{2} + \frac{r}{2}}^{tr} \frac{1}{1 - r} dm = \frac{1}{2} + \frac{tr}{1-r},
\]
and (2.4) for other cases. This completes the proof. \(\square\)

From (2.3) and Lemma 2.1 we have the following.

Theorem 2.1. For \(t > 0\), the conditional probability given \(R_n\) is given by

\[
P_{\theta, \xi} \{ |M_n - \theta| \leq tR_n \mid R_n \} = \begin{cases} \frac{t}{\sqrt{2(\frac{1}{n} - 1)}} & \text{for } 0 < t \leq \frac{1}{2} \left(\frac{\xi}{R_n} - 1 \right), \\ 1 & \text{for } t > \frac{1}{2} \left(\frac{\xi}{R_n} - 1 \right). \end{cases}
\]

Proof. From (2.2) and Lemma 2.1 we have for \(t > 0\)

\[
P_{\theta, \xi} \{ |M_n - \theta| \leq tR_n \mid R_n \} = P_{\theta, \xi} \{ |M'_n| \leq tR'_n \mid R'_n \}
\]

\[
= \begin{cases} \frac{t}{\sqrt{2(\frac{1}{n} - 1)}} & \text{for } 0 < t \leq \frac{1}{2} \left(\frac{1}{R_n} - 1 \right), \\ 1 & \text{for } t > \frac{1}{2} \left(\frac{1}{R_n} - 1 \right) \end{cases}
\]

\[
= \begin{cases} \frac{t}{\sqrt{2(\frac{1}{n} - 1)}} & \text{for } 0 < t \leq \frac{1}{2} \left(\frac{\xi}{R_n} - 1 \right), \\ 1 & \text{for } t > \frac{1}{2} \left(\frac{\xi}{R_n} - 1 \right) \end{cases}
\]

This completes the proof. \(\square\)

Letting \(d = tR_n\) and

\[
\frac{d}{R_n} \geq 1 - \alpha, \tag{2.8}
\]

we have from (2.2) and Theorem 2.1

\[
P_{\theta, \xi} \{ |M_n - \theta| \leq d \mid R_n \} \geq 1 - \alpha
\]

hence

\[
E_{\theta, \xi} \left[P_{\theta, \xi} \{ |M_n - \theta| \leq d \mid R_n \} \right] \geq 1 - \alpha. \tag{2.9}
\]

From (2.1), (2.8) and (2.9) we stop when

\[
\xi - R_n \leq \frac{2d}{1 - \alpha}, \tag{2.10}
\]
but it is not useful because ξ is unknown. Since

$$E_{\theta, \xi}[\xi - R_n] = \frac{2\xi}{n+1},$$

it follows that

$$E_{\theta, \xi}[\xi - R_n] = E \left[\frac{2}{n-1} R_n \right].$$

So, instead of $\xi - R_n$ in (2.10), we use $2R_n/(n-1)$. Hence, we stop when

$$R_n \leq \frac{(n-1)d}{1-\alpha},$$

and construct the confidence interval of θ

$$[M_n - d, M_n + d],$$

that is, we consider the sequential estimation procedure $(\tau_0, [M_{\tau_0} - d, M_{\tau_0} + d])$, where τ is given by

$$\tau_0 = \tau \left(\frac{d}{1-\alpha} \right) := \inf \left\{ n > 1 \mid \frac{R_n}{n-1} \leq \frac{d}{1-\alpha} \right\}.$$

Note that this stopping rule is bounded with probability 1 since $0 \leq R_n \leq \xi$ with probability 1 and (2.11), that is, $P_{\theta, \xi} \left(\tau_0 \leq \left[\frac{\xi(1-\alpha)}{d} \right] + 1 \right) = 1$ where $[x]$ means the least integer greater than or equal to x.

However, this sequential interval estimation procedure is not asymptotically consistent. So, instead of τ_0, we consider another stopping rule:

$$\tau_1 = \tau \left(-\frac{2d}{\log \alpha} \right) := \inf \left\{ n \geq 2 \mid \frac{R_n}{n-1} \leq -\frac{2d}{\log \alpha} \right\}. \quad (2.12)$$

Consider the interval estimation of θ when ξ is known. Since the density function of M_n' is

$$f_{M_n'}(m) = \begin{cases} n(1 - 2|m|) & \text{for } |m| \leq 1/2, \\ 0 & \text{otherwise} \end{cases}$$
from (2.5). Then the coverage probability is

\[P \{ |M_n - \theta| \leq d \} = P \{ |M_n - \theta| / \xi \leq d / \xi \} \]

\[= P \{ |M_n'| \leq d / \xi \} \]

\[= \int_{-d/\xi}^{d/\xi} n(1 - 2|m|)^{n-1} dm \]

\[= 1 - \left(1 - \frac{2d}{\xi} \right)^n \] (2.13)

for \(0 \leq d \leq \xi / 2 \). In order to satisfy (2.13) \(\geq 1 - \alpha \), we have to take

\[n \geq \frac{\log \alpha}{\log (1 - (2d/\xi))} =: n^* \ (\text{say}). \]

Here, we substitute the modified stopping rule (2.12) for the optimal fixed sample size \(n^* \) since \(n^* \approx -\xi \log \alpha / (2d) \) for small \(d \). Then we have the following theorem.

Theorem 2.2. For the sequential estimation procedure \((\tau_1, [M_{\tau_1} - d, M_{\tau_1} + d])\), we have the following.

(i) \(\lim_{d \to 0^+} P \{ |M_{\tau_1} - \theta| \leq d \} = 1 - \alpha \) (i.e. asymptotic consistency).

(ii) \(\tau_1 / n^* \xrightarrow{a.s.} 1 \ (d \to 0+) \).

(iii) \(E(\tau_1) / n^* \to 1 \ (d \to 0+) \).

Proof. (i) From Lemma 1 of Chow and Robbins (1965), the stopping rule \(\tau_1 \) given by (2.12) satisfies

\[\lim_{d \to 0^+} -\frac{2d\tau_1}{\xi \log \alpha} = 1 \ a.s. \] (2.14)

Since \(n(M_n - \theta) \) converges in distribution to a two-sided exponential distribution with density \(\exp(-2|x|) \) as \(n \to \infty \), it follows from Theorem 1
of Anscombe (1952) that \(\tau_1(M_{\tau_1} - \theta) \) converges in distribution to the same distribution as \(d \to 0^+ \). Hence, since

\[
\frac{d\tau_1}{\xi} \overset{a.s.}{\to} -\frac{\log \alpha}{2} \quad \text{as} \quad d \to 0^+
\]

from (2.14), it follows that

\[
\lim_{d \to 0^+} P\{|M_{\tau_1} - \theta| \leq d\} = \lim_{d \to 0^+} P\{\tau_1|M_{\tau_1} - \theta|/\xi \leq d\tau_1/\xi\} = \int_{-(\log \alpha)/2}^{(\log \alpha)/2} \exp(-2|x|)dx = 1 - \alpha.
\]

(ii) From (2.14) and L’Hospital’s theorem, we have

\[
\frac{\tau_1}{n^*} = \frac{\tau_1 \log\{1 - (2d/\xi)\}}{\log \alpha} \overset{a.s.}{\to} 1 \quad \text{as} \quad d \to 0^+.
\]

(iii) Since, from Lemma 2 of Chow and Robbins (1965),

\[
\lim_{d \to 0^+} \frac{2dE(\tau_1 - 1)}{-\xi \log \alpha} = \lim_{d \to 0^+} \frac{2dE(\tau_1)}{-\xi \log \alpha} = 1
\]

and

\[
dn^* = \frac{d \log \alpha}{\log\{1 - (2d/\xi)\}} \to \frac{\log \alpha}{-2/\xi} \quad \text{as} \quad d \to 0^+,
\]

we have

\[
\lim_{d \to 0^+} \frac{E(\tau_1)}{n^*} = \lim_{d \to 0^+} \frac{dE(\tau_1)}{dn^*} = \frac{-(\xi \log \alpha)/2}{(\log \alpha)/(-2/\xi)} = 1.
\]

Thus we complete the proof. \(\square \)

3. NUMERICAL EVALUATION

In this section we examine the coverage probability of the procedure \([M_{\tau_1} - d, M_{\tau_1} + d]\) by simulation based on 100000 repetitions. Since \(M_{\tau_1} \) is location
equivariant, we may assume $\theta = 0$ without loss of generality. When $\alpha = 0.10$, $d = 0.01(0.01)0.05$, $\xi = 1(1)5$, Tables 1, 2 and 3 show the values of coverage probabilities, the average sample numbers (ASNs) and the standard deviations (SDs) of the sequential estimation procedure $(\tau_1, [M_{\tau_1} - d, M_{\tau_1} + d])$ for $\alpha = 0.10$, respectively. The result shows that we might need to improve the stopping rule, but provides us with a tentative information on θ. Consider another stopping rule with the initial sample size as 10 instead of (2.12), that is,

$$\tau'_1 = \inf \left\{ n \geq 10 \; \middle| \; \frac{R_n}{n - 1} \leq -\frac{2d}{\log \alpha} \right\}.$$

Tables 4, 5 and 6 show the values of coverage probabilities, the ASNs and the SDs of the sequential estimation procedure $(\tau'_1, [M_{\tau'_1} - d, M_{\tau'_1} + d])$ for $\alpha = 0.10$, respectively. The result suggests that the estimation procedure is consistent for this case.

Table 1. Coverage probabilities of $[M_{\tau_1} - d, M_{\tau_1} + d]$ for $\alpha = 0.10$

<table>
<thead>
<tr>
<th>$\xi \setminus d$</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7607</td>
<td>0.77045</td>
<td>0.77837</td>
<td>0.78468</td>
<td>0.79554</td>
</tr>
<tr>
<td>2</td>
<td>0.75503</td>
<td>0.76211</td>
<td>0.76583</td>
<td>0.76831</td>
<td>0.77439</td>
</tr>
<tr>
<td>3</td>
<td>0.75466</td>
<td>0.75862</td>
<td>0.76084</td>
<td>0.76462</td>
<td>0.76704</td>
</tr>
<tr>
<td>4</td>
<td>0.75086</td>
<td>0.75763</td>
<td>0.76043</td>
<td>0.76246</td>
<td>0.76471</td>
</tr>
<tr>
<td>5</td>
<td>0.75343</td>
<td>0.75475</td>
<td>0.75519</td>
<td>0.75825</td>
<td>0.75884</td>
</tr>
</tbody>
</table>

Table 2. ASNs of τ_1 for $\alpha = 0.10$

<table>
<thead>
<tr>
<th>$\xi \setminus d$</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75.3458</td>
<td>37.9159</td>
<td>26.3105</td>
<td>19.5954</td>
<td>15.5133</td>
</tr>
<tr>
<td>2</td>
<td>150.742</td>
<td>75.505</td>
<td>51.2336</td>
<td>37.9784</td>
<td>30.5142</td>
</tr>
<tr>
<td>3</td>
<td>225.222</td>
<td>112.968</td>
<td>75.4855</td>
<td>56.9635</td>
<td>45.3646</td>
</tr>
<tr>
<td>4</td>
<td>300.76</td>
<td>150.42</td>
<td>101.419</td>
<td>75.4829</td>
<td>60.4096</td>
</tr>
<tr>
<td>5</td>
<td>375.119</td>
<td>187.819</td>
<td>126.251</td>
<td>94.736</td>
<td>75.7516</td>
</tr>
</tbody>
</table>
Table 3. SDs of τ_1' for $\alpha = 0.10$

<table>
<thead>
<tr>
<th>$\xi \setminus d$</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43.4924</td>
<td>21.8577</td>
<td>14.7446</td>
<td>11.0086</td>
<td>9.17156</td>
</tr>
<tr>
<td>2</td>
<td>86.1962</td>
<td>43.4728</td>
<td>28.9139</td>
<td>21.8323</td>
<td>17.7156</td>
</tr>
<tr>
<td>3</td>
<td>129.429</td>
<td>64.72</td>
<td>43.4497</td>
<td>32.6691</td>
<td>26.3042</td>
</tr>
<tr>
<td>4</td>
<td>171.983</td>
<td>86.2782</td>
<td>57.6551</td>
<td>43.4353</td>
<td>34.8847</td>
</tr>
<tr>
<td>5</td>
<td>214.641</td>
<td>107.455</td>
<td>71.7378</td>
<td>53.9417</td>
<td>43.4604</td>
</tr>
</tbody>
</table>

Table 4. Coverage probabilities of $[M_{\tau_1'} - d, M_{\tau_1'} + d]$ for $\alpha = 0.10$

<table>
<thead>
<tr>
<th>$\xi \setminus d$</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9093</td>
<td>0.9128</td>
<td>0.9217</td>
<td>0.9237</td>
<td>0.9265</td>
</tr>
<tr>
<td>2</td>
<td>0.9051</td>
<td>0.9142</td>
<td>0.9108</td>
<td>0.9186</td>
<td>0.9235</td>
</tr>
<tr>
<td>3</td>
<td>0.904</td>
<td>0.9022</td>
<td>0.907</td>
<td>0.9124</td>
<td>0.9066</td>
</tr>
<tr>
<td>4</td>
<td>0.9006</td>
<td>0.9011</td>
<td>0.9133</td>
<td>0.9042</td>
<td>0.9119</td>
</tr>
<tr>
<td>5</td>
<td>0.9059</td>
<td>0.9025</td>
<td>0.9002</td>
<td>0.9083</td>
<td>0.9084</td>
</tr>
</tbody>
</table>

Table 5. ASNs of τ_1' for $\alpha = 0.10$

<table>
<thead>
<tr>
<th>$\xi \setminus d$</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.997</td>
<td>58.995</td>
<td>39.990</td>
<td>29.975</td>
<td>24.940</td>
</tr>
<tr>
<td>2</td>
<td>231.997</td>
<td>116.997</td>
<td>77.997</td>
<td>58.995</td>
<td>47.993</td>
</tr>
<tr>
<td>3</td>
<td>346.998</td>
<td>173.998</td>
<td>116.998</td>
<td>87.997</td>
<td>70.997</td>
</tr>
<tr>
<td>4</td>
<td>461.997</td>
<td>231.997</td>
<td>154.998</td>
<td>116.997</td>
<td>93.997</td>
</tr>
<tr>
<td>5</td>
<td>576.997</td>
<td>288.997</td>
<td>192.998</td>
<td>144.999</td>
<td>116.997</td>
</tr>
</tbody>
</table>

Table 6. SDs of τ_1' for $\alpha = 0.10$

<table>
<thead>
<tr>
<th>$\xi \setminus d$</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.566183</td>
<td>0.518538</td>
<td>0.559546</td>
<td>0.689228</td>
<td>0.943005</td>
</tr>
<tr>
<td>2</td>
<td>0.859796</td>
<td>0.586055</td>
<td>0.41362</td>
<td>0.482571</td>
<td>0.567398</td>
</tr>
<tr>
<td>3</td>
<td>1.21506</td>
<td>0.655995</td>
<td>0.545588</td>
<td>0.461446</td>
<td>0.49555</td>
</tr>
<tr>
<td>4</td>
<td>1.0107</td>
<td>0.702022</td>
<td>0.480908</td>
<td>0.513148</td>
<td>0.496942</td>
</tr>
<tr>
<td>5</td>
<td>1.700999</td>
<td>1.18369</td>
<td>0.708751</td>
<td>0.539996</td>
<td>0.534994</td>
</tr>
</tbody>
</table>
4. SOME PROPERTIES OF THE ESTIMATION PROCEDURE

Suppose that \(X_1, X_2, \ldots, X_n, \ldots \) is a sequence of i.i.d. random variables according to the uniform distribution \([\theta-(\xi/2), \theta+(\xi/2)]\) (\(\theta \in \mathbb{R}, \xi > 0 \)). Let \(X_{(1:n)} \leq X_{(2:n)} \leq \cdots \leq X_{(n:n)} \) be the order statistics of \(X_1, X_2, \ldots, X_n \) \((n \geq 1)\). Consider a stopping rule such that \(\tau(A) := \min\{n \geq 2 \mid R_n/(n-1) \leq A\} \) for a positive constant \(A \), and a sequential interval estimation procedure \([M_{\tau(A)} - d, M_{\tau(A)} + d]\) of \(\theta \) for a constant \(d > 0 \). In this section we consider some properties of \((\tau(A), M_{\tau(A)})\). Hereafter we represent \(P_{\theta,\xi}\{\cdot\} \) as \(P\{\cdot\} \) for simplicity.

Theorem 4.1. The probability \(P\{\tau(A) = n\} \) is given by

\[
P\{\tau(A) = n\} = p_{n-1} - p_n \quad (n \geq 2)
\]

recursively, where

\[
p_1 := P\{\tau(A) > 1\} = 1,
\]

\[
p_2 := P\{\tau(A) > 2\} = \begin{cases} \left(\frac{\xi-A}{\xi}\right)^2 & \text{for } 0 \leq A \leq \xi, \\ 0 & \text{otherwise}, \end{cases}
\]

\[
p_n := P\{\tau(A) > n\} = \begin{cases} \frac{(n-1)(n-2)}{\xi^{n-1}} \left[1 - \frac{2}{\xi}(n-1)A\right] (I_{n-1,n-3} - I_{n,n-3}) \\ + \frac{1}{\xi} (I_{n-1,n-2} - I_{n,n-2}) + I_{n,n-3} \right]^{-1} p_{n-1} & \text{for } 0 \leq (n-1)A \leq \xi, \\ 0 & \text{otherwise}, \end{cases}
\]

for \(n \geq 3 \), with

\[
I_{l,m} := \frac{1}{(m+1)(m+2)} \left\{(\xi^{m+2} + (m+1)((l-1)A)^{m+2} - \xi (m+2)((l-1)A)^{m+1}\right\}.
\]
for $l \geq 1$ and $m \geq 0$.

Proof. First we have

$$
P\{\tau(A) = n\} = P\{R_n \leq (n - 1)A, R_i > (i - 1)A \ (i = 2, \ldots, n - 1)\}
$$

$$
= P\{R_i > (i - 1)A \ (i = 2, \ldots, n - 1)\}
$$

$$
- P\{R_i > (i - 1)A \ (i = 2, \ldots, n)\}
$$

$$
= p_{n-1} - p_n,
$$

where $p_n = P\{R_i > (i - 1)A \ (i = 2, \ldots, n)\} \ (n \geq 1)$. Since $p_2 = P\{R_2 > A\} = P\{R'_2 > A/\xi\}$ and (2.6), it follows that $p_2 = \{(\xi - A)/\xi\}^2$ for $0 < A < \xi$ and $p_2 = 0$ for $A \geq \xi$. We also have

$$
p_n = P\{R_n > (n - 1)A \ | \ R_i > (i - 1)A \ (i = 2, \ldots, n - 1)\} p_{n-1}
$$

$$
= P\{R_n > (n - 1)A \ | \ R_{n-1} > (n - 2)A\} p_{n-1}
$$

$$
= P\{R_n > (n - 1)A, R_{n-1} > (n - 2)A\} p_{n-1}. \quad (4.1)
$$

The denominator of (4.1) is

$$
P\{R_{n-1} > (n - 2)A\} = 1 - \left(\frac{n - 2}{\xi} A\right)^{n-2} \left(n - 1 - \frac{(n - 2)^2}{\xi} A\right)
$$

for $0 < (n - 2)A/\xi < 1$, since $P\{R_{n-1} > (n - 2)A\} = P\{R'_n > (n - 2)A/\xi\}$ and (2.6), and $P\{R_{n-1} > (n - 2)A\} = 0$ for $(n - 2)A/\xi \geq 1$. Denoting by $f_{X_{(1|n-1)}, X_{(n-1|n-1)}}(u, v)$ the joint density of $X_{(1|n-1)}$ and $X_{(n-1|n-1)}$, we have

$$
P\{R_n > (n - 1)A, R_{n-1} > (n - 2)A\}
$$

$$
= \int_{B_{n-1}} \int_{B_n} P\{R_n > (n - 1)A \ | \ X_{(1|n-1)} = u, X_{(n-1|n-1)} = v\}
$$

$$
\cdot f_{X_{(1|n-1)}, X_{(n-1|n-1)}}(u, v) dudv
$$

$$
= \left(\int_{B_{n-1} - B_n} + \int_{B_n}\right) P\{R_n > (n - 1)A \ | \ X_{(1|n-1)} = u, X_{(n-1|n-1)} = v\}
$$

$$
\cdot f_{X_{(1|n-1)}, X_{(n-1|n-1)}}(u, v) dudv, \quad (4.2)
$$
where \(B_i := \{(u, v) \mid v-u > (i-1)A, \theta-(\xi/2) \leq u \leq \theta+(\xi/2)\} \) \((i \geq 1) \).

If \((X_{(1|n-1)}, X_{(n-1|n-1)}) = (u, v)\) is given for \(\theta-(\xi/2) \leq u \leq \theta+(\xi/2)\), then
\[
(X_{(1|n)}, X_{(n|n)}) = \begin{cases}
(X_n, v) & \text{with probability } F(u), \\
(u, v) & \text{with probability } F(v) - F(u), \\
(u, X_n) & \text{with probability } 1 - F(v),
\end{cases}
\]
where \(F(\cdot)\) is the distribution function of \(X_i\) given by
\[
F(x) = \begin{cases}
0 & \text{if } x < \theta - (\xi/2), \\
\{x - \theta + (\xi/2)\}/\xi & \text{if } \theta - (\xi/2) \leq x \leq \theta + (\xi/2), \\
1 & \text{if } x > \theta + (\xi/2).
\end{cases}
\] \((4.3) \)

So, \(X_{(n|n)} > X_{(1|n)} + (n - 1)A\) holds with probability 1 given \((u, v)\) satisfying \(v > u + (n - 1)A\), and with probability \(\{1+F(v-(n-1)A)-F(u+(n-1)A)\}\) given \((u, v)\) satisfying \(u + (n - 2)A < v < u + (n - 1)A\). Then the right-hand side of (4.2) is equal to
\[
\iint_{B_{n-1} - B_n} \{1+F(v-(n-1)A)-F(u+(n-1)A)\} \\
\cdot f_{X_{(1|n-1)}, X_{(n-1|n-1)}} (u, v) \, du \, dv \\
+ \iint_{B_n} f_{X_{(1|n-1)}, X_{(n-1|n-1)}} (u, v) \, du \, dv. \quad (4.4)
\]

Since
\[
f_{X_{(1|n-1)}, X_{(n-1|n-1)}} (u, v) = \begin{cases}
(n-1)(n-2)\{F(v) - F(u)\}^{n-3}/\xi^2 & \text{for } \theta - (\xi/2) \leq u \leq v \leq \theta + (\xi/2), \\
0 & \text{otherwise},
\end{cases}
\]

it follows from (4.3) that (4.4) equals, by letting \(I_{l,m} := \iint_{B_{l}} (v-u)^m \, du \, dv\) for \(l \geq 1\) and \(m \geq 0\),
\[
\frac{(n-1)(n-2)}{\xi^{n-1}} \left[\left\{ \frac{1 - 2}{\xi} (n-1)A \right\} (I_{n-1,n-3} - I_{n,n-3}) \\
+ \frac{1}{\xi} (I_{n-1,n-2} - I_{n,n-2}) + I_{n,n-3} \right] \quad (n \geq 3)
\]
with $I_{l,m} = \frac{1}{(m+1)(m+2)}(\xi^{m+2} + (m+1)((l-1)A)^{m+2} - (m+2)((l-1)A)^{m+1})$, which is the desired equality.

Remark. The values of ASN $E(\tau(A))$ can be calculated by using $\{p_n\}$. Indeed, since $p_n = P\{\tau(A) > n\}$ ($n \geq 2$),

$$\begin{align*}
\sum_{i=2}^{\infty} p_i &= \sum_{i=2}^{\infty} P\{\tau(A) > i\} = \sum_{i=2}^{\infty} \sum_{j=i+1}^{\infty} P\{\tau(A) = j\} = \sum_{j=3}^{\infty} \sum_{i=2}^{j-1} P\{\tau(A) = j\} \\
 &= \sum_{j=3}^{\infty} jP\{\tau(A) = j\} - 2 \sum_{j=3}^{\infty} P\{\tau(A) = j\} \\
 &= E(\tau(A)) - 2P\{\tau(A) = 2\} - 2\{1 - P\{\tau(A) = 2\}\} \\
 &= E(\tau(A)) - 2,
\end{align*}$$

we have

$$E(\tau(A)) = \sum_{i=2}^{\infty} p_i + 2.$$

ACKNOWLEDGEMENTS

The authors would like to thank the referees for their valuable comments.

REFERENCES

