A remark on comparison with a maximum likelihood estimator in asymptotic variances in a non-regular case

<table>
<thead>
<tr>
<th>著者別名</th>
<th>赤平 昌文</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本語名</td>
<td>赤平 昌文</td>
</tr>
<tr>
<td>言語</td>
<td>日本語</td>
</tr>
<tr>
<td>コレクション</td>
<td>未定</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2241/119451</td>
</tr>
</tbody>
</table>
A Remark on Comparison with a Maximum Likelihood Estimator in Asymptotic Variances in a Non-Regular Case*

Masafumi AKAHIRA**

Abstract

Let $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of independent and identically distributed random variables with a truncated exponential density. Then it is shown that there exists an estimator whose asymptotic variance is smaller than that of a maximum likelihood estimator.

1. Introduction

Suppose that $X_1, X_2, \ldots, X_n, \ldots$ is a sequence of independent and identically distributed random variables with a density $f(x-\theta)$ satisfying

$$f(x) = \begin{cases} ce^{-x} & \text{for } 0<x<1; \\ 0 & \text{otherwise}, \end{cases}$$

where $c=1/(1-e^{-1})$.

It is easily seen that the maximum likelihood estimator (MLE) $\hat{\theta}_{ML}$ is given by $\hat{\theta}_{ML} = \min_{1 \leq i \leq n} X_i$. Then it is shown that there exists an estimator whose asymptotic variance is smaller than that of $\hat{\theta}_{ML}$.

Although the density of only the form (1) is treated in this paper, it is possible to extend it to the density $f(x)$ such that $f(x)$ is continuously differentiable in the interval (α, β),

$$f(x) > 0 \text{ for } \alpha < x < \beta;$$

$$f(x) = 0 \text{ otherwise,}$$

and $0 < \lim_{x \to \alpha} f(x) = \lim_{x \to \beta} f(x) < \infty$.

2. Results

Let \mathcal{X} be an abstract sample space whose generic point is denoted by x, \mathcal{B} a σ-field of subsets of \mathcal{X} and $\{P_\theta : \theta \in \Theta\}$ a set of probability measures on \mathcal{B}, where Θ is called a parameter space. We suppose that $\mathcal{X} = \Theta = R^1$ and \mathcal{B} is a Borel σ-field and for each θ P_θ has the density $f(x-\theta)$ of the form (1). Consider n-fold direct products (R^n, \mathcal{B}^n) of (R^1, \mathcal{B}) and the corresponding product measure P_θ^n of P_θ. An estimator of θ is defined to be a sequence $\{\hat{\theta}_n\}$ of \mathcal{B}^n-measurable functions $\hat{\theta}_n$ on R^n into Θ. For simplicity we denote $\{\hat{\theta}_n\}$ by $\hat{\theta}$. A distribution function $F_{\theta, \hat{\theta}^2(y)}$ is called to be the asymptotic distribution function of an estimator $\hat{\theta}$ of order $C = \{c_n\}$ if for each real number y, $F_{\theta, \hat{\theta}^2(y)}$ is continuous in θ and for

* Received on December 7, 1976.
This research was supported by Japan Ministry of Education.
** Statistical Laboratory, University of Electro-Communications
any $\theta \in \Theta$ there exists a positive number d such that for any continuity point y of $F_\theta, \delta \in \mathbb{C}(y)$,

$$\lim_{n \to \infty} \sup_{\theta_1 \in [\theta], |\theta_1 - \theta| < \delta} |P_n^\delta\{c_n(\theta_n - \theta) \leq d\} - F_\theta, \delta \in \mathbb{C}(y)| = 0$$

(Akahira [1]).

Since

$$\lim_{n \to \infty} P_n^\delta\{n(\theta_{ML} - \theta) \leq y\} = \lim_{n \to \infty} P_n^\delta\{\min_{1 \leq i \leq n} x_i \leq \theta + y/n^{-1}\} = \begin{cases} 1 - e^{-cy} & \text{for } y > 0; \\ 0 & \text{for } y \leq 0, \end{cases}$$

it follows that the density $f_{\theta_{ML}}(y)$ of the asymptotic distribution of θ_{ML} of order $\{n\}$ is given by

$$f_{\theta_{ML}}(y) = \begin{cases} ce^{-cy} & \text{for } y > 0; \\ 0 & \text{for } y \leq 0. \end{cases} (2)$$

Let $\hat{\theta}^* = \max_{1 \leq i \leq n} X_i - 1$. Then we have

$$\lim_{n \to \infty} P_n^\delta\{n(\hat{\theta}^* - \theta) \leq y\} = \lim_{n \to \infty} P_n^\delta\{\max_{1 \leq i \leq n} x_i \leq \theta + 1 + y/n^{-1}\} = \begin{cases} 1 & \text{for } y \geq 0; \\ e^{-cy} & \text{for } y < 0. \end{cases}$$

Hence the density $g_{\theta^*}(y)$ of the asymptotic distribution of $\hat{\theta}^*$ of order $\{n\}$ is given by

$$g_{\theta^*}(y) = \begin{cases} 0 & \text{for } y \geq 0; \\ Ce^{-cy} & \text{for } y < 0. \end{cases} (3)$$

We define an estimator $\hat{\theta}_a$ by $a\delta_{ML} + (1-a)\hat{\theta}^*$, where $4/5 \leq a < 1$.

We remark that $(\min_{1 \leq i \leq n} X_i, \max_{1 \leq i \leq n} X_i)$ is asymptotically sufficient (Akahira [2]).

Since θ_{ML} and $\hat{\theta}^*$ are asymptotically independent, the density $h_{\theta_a}(y)$ of the asymptotic distribution of $\hat{\theta}_a$ of order $\{n\}$ is a convolution of $f_{\theta_{ML}}(y)$ and $g_{\theta^*}(y)$. It follows from (2) and (3) that

$$h_{\theta_a}(y) = \begin{cases} K_a \exp\left(\frac{c}{(1-a)e}y\right) & \text{for } y \leq 0; \\ K_a \exp\left(-\frac{c}{a}y\right) & \text{for } y < 0, \end{cases}$$

where $K_a = c/[a(1-a)e]$.

Next we shall calculate the asymptotic variances $V_a(Y)$ and $V_{ML}(Y)$ of $\hat{\theta}_a$ and θ_{ML}, respectively.

Since

$$E_a(Y) = K_a \frac{a^2 - e^2(1-a)^2}{c^2};$$

$$E_a(Y^2) = 2K_a \frac{a^3 + e^2(1-a)^3}{c^3},$$

it follows that

$$V_a(Y) = \frac{a^2 + e^2(1-a)^2}{c^2}.$$
Since $e < 3$ and $4/5 \leq a < 1$, we have

$$V_a(Y) < \frac{a^2 + 9(1-a)^2}{c^2} \leq \frac{1}{c^2}.$$

On the other hand it is easily seen that

$$V_{ML}(Y) = \frac{1}{c^2}.$$

Hence

$$V_a(Y) < V_{ML}(Y).$$

Therefore it is shown that the asymptotic variance of $\hat{\theta}_a$ is smaller than that of $\hat{\theta}_{ML}$.

References
