A Remark on Asymptotic Sufficiency of Statistics in Non-Regular Cases

著者

AKAHIRA Masafumi

journal or publication title

Reports of the University of Electro-Communications

volume

27

number

1

page range

125-128

year

1976-08

URL

http://hdl.handle.net/2241/119449
A Remark on Asymptotic Sufficiency of Statistics in Non-Regular Cases*

Masafumi AKAHIRA**

Abstract

Suppose that $X_1, X_2, \ldots, X_n, \ldots$ is a sequence of independent identically distributed random variables with the density $f(x: \theta)$ with a compact support, where θ is a real valued parameter. We suppose that a strongly $\{c_n\}$-consistent estimator of θ exists. Then we show that a statistic $(\min_{1 \leq i \leq n} X_i, \max_{1 \leq i \leq n} X_i)$ is asymptotically sufficient in non-regular cases.

1. Introduction

A consistent estimator with order $\{c_n\}$ (or a $\{c_n\}$-consistent estimator) is defined and discussed in Akahira [1], where the necessary conditions for the existence of such an estimator are established and the bounds of the orders of convergence of consistent estimators are obtained for non-regular cases. Further the asymptotic accuracies of $\{c_n\}$-consistent estimators are discussed in Akahira [2].

Asymptotic sufficiency has been discussed under regularity conditions by LeCam [4]. In this paper we extend a similar approach to non-regular cases.

Let $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of independent identically distributed random variables with the density $f(x: \theta)$ with a compact support, where θ is a real valued parameter. We suppose that a strongly $\{c_n\}$-consistent estimator of θ exists. Then we shall obtain that a statistic $(\min_{1 \leq i \leq n} X_i, \max_{1 \leq i \leq n} X_i)$ is asymptotically sufficient in non-regular cases.

2. Notations and definitions

Let \mathcal{X} be an abstract sample space whose generic point is denoted by x, \mathcal{B} a σ-field of subsets of \mathcal{X} and $\{P_\theta: \theta \in \Theta\}$ a set of probability measures on \mathcal{B}, where Θ is called a parameter space. We suppose that Θ is an open set in a Euclidean 1-space \mathbb{R}^1. Consider n-fold direct products $(\mathcal{X}(n), \mathcal{B}(n))$ of $(\mathcal{X}, \mathcal{B})$ and the corresponding product measure $P_\theta^{(n)}$ of P_θ. For each $n=1, 2, \ldots$, the points of $\mathcal{X}^{(n)}$ will be denoted by $\bar{x}_n = (x_1, \ldots, x_n)$ and the corresponding random variable by \bar{x}_n. An estimator of θ is defined to be a sequence $\{\hat{\theta}_n\}$ of $\mathcal{B}^{(n)}$-measurable functions $\hat{\theta}_n$ on $\mathcal{X}^{(n)}$ into Θ. For a sequence of positive numbers $\{c_n\}$ (c_n tending to infinity) an estimator $\{\hat{\theta}_n\}$ is called strongly consistent with order $\{c_n\}$ (or strongly $\{c_n\}$-consistent for short) if for every $\varepsilon > 0$ and for every compact subset K of Θ, there exists a sufficiently large positive number L satisfying the following:

$$\lim_{n \to \infty} \sup_{\theta \in K} P_\theta^{(n)}(\{c_n|\hat{\theta}_n - \theta| \geq L\}) < \varepsilon.$$

* Received on June 9, 1976
This research was supported by Japan Ministry of Education.
** Statistical Laboratory, University of Electro-Communications
A weaker definition of a \(\{ c_n \} \)-consistent estimator than that of the above form has been given in Akahira [1].

We suppose that every \(P_\theta(\cdot) (\theta \in \Theta) \) is absolutely continuous with respect to a \(\sigma \)-finite measure \(\mu \). Then we denote the density \(dP_\theta/d\mu \) by \(f(\cdot : \theta) \). If the distribution of \(x_n \) is the product measure \(P_\theta^{(n)} \), then the corresponding density with respect to the product measure \(\mu^{(n)} \) will be denoted by \(\prod f(x_i : \theta) \). A statistic \(T_n(\bar{x}_n) \) is called asymptotically sufficient if there exist a nonnegative function \(p_n(x_n : \theta) \), each the product of a function of \(x_n \) only by a function of \(T_n \) and \(\theta \) only such that
\[
\lim_{n \to \infty} \sup_{\theta \in K, \bar{x} \in \mathcal{X}} \left| \prod f(x_i : \theta) - p_n(x_n : \theta) \right| d\mu^{(n)} = 0
\]
for any compact subset \(K \) of \(\Theta \) (LeCam [4]).

3. Asymptotically sufficient statistics

Before discussing the asymptotic sufficiency in detail we shall give a definition and a lemma.

Definition. (Generalized from Gnedenko and Kolmogorov [3]) For each \(\theta \in \Theta \) the sums
\[
Y_n(\theta) = X_1(\theta) + X_2(\theta) + \cdots + X_n(\theta)
\]
of positive independent random variables \(X_1(\theta), X_2(\theta), \ldots, X_n(\theta), \ldots \) are said to be uniformly relatively stable for constants \(B_n(\theta) \) if there exist positive constants \(B_1, B_2, \ldots \) such that for any \(\varepsilon > 0 \)
\[
P_\theta^{(n)} \left(\left| \frac{Y_n(\theta)}{B_n(\theta)} - 1 \right| > \varepsilon \right) \to 0
\]
as \(n \to \infty \) uniformly in any compact subset of \(\Theta \).

In the subsequent lemma we use the notation that for each \(k \) and each \(\theta \in \Theta \), \(F_{\theta k}(x) \) is the distribution function of \(X_k(\theta) \).

Lemma. (Gnedenko and Kolmogorov [3]).

For each \(\theta \in \Theta \), let \(X_1(\theta), X_2(\theta), \ldots, X_n(\theta), \ldots \) be a sequence of positive independent random variables. The sums
\[
Y_n(\theta) = X_1(\theta) + X_2(\theta) + \cdots + X_n(\theta)
\]
are uniformly relatively stable for constants \(B_n(\theta) \) if there exists a sequence of positive constants \(B_1, B_2, \ldots, B_n, \ldots \) such that for any \(\varepsilon > 0 \)
\[
\sum_{k=1}^{n} \sum_{x B_n} dF_{\theta k}(x) \to 0
\]
as \(n \to \infty \) uniformly in any compact subset of \(\Theta \),
\[
\frac{1}{B_n(\theta)} \sum_{k=1}^{n} e^{B_k(\theta)} \sum_{x B_n} x dF_{\theta k}(x) \to 1
\]
as \(n \to \infty \) uniformly in any compact subset of \(\Theta \).

Let \(\mathcal{X} = \mathbb{R}^1 \). Now we suppose that every \(P_\theta(\cdot) (\theta \in \Theta) \) is absolutely continuous with respect to a Lebesgue measure \(m \). Then we denote the density \(dP_\theta/dm \) by \(f(\cdot : \theta) \) and by \(A(\theta) \subseteq \mathcal{X} \) the set of points in the space of \(\mathcal{X} \) for which \(f(x : \theta) > 0 \) and suppose \(f(x : \theta) = f(x - \theta) \).

We make the following assumptions (A), (B) and (C).

Assumption (A). \(f(x) > 0 \) for \(a \leq x \leq b \);
\(f(x) = 0 \) for \(x < a, x > b \),
and \(f(a) \) and \(f(b) \) are finite.
Assumption (B). \(f(x) \) is twice continuously differentiable in the interval \((a, b)\).

Define
\[
\varphi(\theta) = \int_0^\infty w \text{d}F(w : \theta)
\]
where \(F(w : \theta) \) is the distribution function of
\[
W(X : \theta) = \chi(a, b \cap A(\theta))(X) \log \frac{f(x - \theta)}{f(x)}
\]
\((\chi(a, b \cap A(\theta))(\cdot)) \) denotes the indicator of \((a, b) \cap A(\theta))\).

Let \(T_n = (Y, Z) \), where \(Y = \min X_i \) and \(Z = \max X_i \). We suppose that \(\{\hat{\theta}_n(T_n)\} \) is a \(\{c_n\} \)-consistent estimator. The existence of the estimator is guaranteed (See Theorem 4.1 of [1]). Then for any \(\delta > 0 \) and any compact subset \(K \) of \(\Theta \) there exists a sufficiently large positive number \(L \) satisfying the following:

\[
\lim \sup_{n \to \infty} P_{\theta} \left(\{||\hat{\theta}_n(T_n) - \theta| > Lc_n^{-1}\} \right) < \delta. \tag{3.1}
\]

Assumption (C). The following \((3.2) \sim (3.4)\) hold:
\[
\lim_{n \to \infty} n \varphi(Lc_n^{-1}) = 0 \tag{3.2}
\]
\[
\lim_{n \to \infty} \sup_{\theta \in K} n \int_{\varphi(Lc_n^{-1})}^\infty \text{d}F(w : \theta) = 0 \tag{3.3}
\]
for any \(\varepsilon > 0 \) and any compact subset \(K \) of \(\Theta \);
\[
\lim_{n \to \infty} \sup_{\theta \in K} \frac{1}{\varphi(Lc_n^{-1})} \int_{\varphi(Lc_n^{-1})}^\infty \text{d}F(w : \theta) = 1 \tag{3.4}
\]
for any \(\varepsilon > 0 \) and any compact subset \(K \) of \(\Theta \).

Theorem. Under Assumptions (A), (B) and (C), the statistic \(T_n \), i.e. \((\min X_i, \max X_i)\), is asymptotically sufficient.

Proof. Let \(\varepsilon \) be an arbitrary positive number. We define \(h(T_n, \theta) \) and \(g(\bar{x}_n, \hat{\theta}_n(T_n)) \) as follows:
\[
h(T_n, \theta) = \chi(\theta, x) = \begin{cases} 1, & \text{if } x - b < \theta < y - a; \\ 0, & \text{otherwise} \end{cases} \tag{3.5}
\]
\[
g(\bar{x}_n, \hat{\theta}_n(T_n)) = \prod_{i=1}^n f(x_i - \theta_n(T_n)). \tag{3.6}
\]

It follows from \((3.3), (3.4)\) and Lemma that \(\sum_{i=1}^n W(X_i : \hat{\theta}_n(T_n) - \theta) \) is uniformly relatively stable for \(n \varphi(Lc_n^{-1}) \). Hence we have for any compact subset \(K \) of \(\Theta \)
\[
\lim_{n \to \infty} \inf_{\theta \in K} P_{\theta} \left(A_n(\hat{\theta}_n(T_n) - \theta : \varepsilon) \right) = 1,
\]
where \(A_n(\hat{\theta}_n(T_n) - \theta : \varepsilon) = \left[\bar{x}_n : \left[\frac{1}{n \varphi(Lc_n^{-1})} \sum_{i=1}^n W(x_i : \hat{\theta}_n(T_n) - \theta) \right] - 1 \right] < \varepsilon \).

It follows from \((3.1), (3.2)\) and \((3.5) \sim (3.7)\) that for any compact subset \(K \) of \(\Theta \)
\[
\limsup_{n \to \infty} \sup_{\theta \in K} \left(\prod_{i=1}^n f(x_i - \theta) - h(T_n, \theta)g(\bar{x}_n, \hat{\theta}_n(T_n)) \right) \leq \sum_{\theta \in K} \left(\int_{|\hat{\theta}_n(T_n) - \theta| \leq Lc_n^{-1}} A_n(\hat{\theta}_n(T_n) - \theta : \varepsilon) \right) \cdot \left(\prod_{i=1}^n f(x_i - \theta) - h(T_n, \theta)g(\bar{x}_n, \hat{\theta}_n(T_n)) \right) \prod_{i=1}^n \text{d}x_i
\]
\[
\leq \sum_{\theta \in K} \left(\int_{|\hat{\theta}_n(T_n) - \theta| > Lc_n^{-1}} A_n(\hat{\theta}_n(T_n) - \theta : \varepsilon) \right) \cdot \left(\prod_{i=1}^n f(x_i - \theta) - h(T_n, \theta)g(\bar{x}_n, \hat{\theta}_n(T_n)) \right) \prod_{i=1}^n \text{d}x_i
\]
\[
\leq \sum_{\theta \in K} \left(\int_{|\hat{\theta}_n(T_n) - \theta| \leq Lc_n^{-1}} A_n(\hat{\theta}_n(T_n) - \theta : \varepsilon) \right) \cdot \left(\prod_{i=1}^n f(x_i - \theta) - h(T_n, \theta)g(\bar{x}_n, \hat{\theta}_n(T_n)) \right) \prod_{i=1}^n \text{d}x_i
\]
\[
\leq \sum_{\theta \in K} \left(\int_{|\hat{\theta}_n(T_n) - \theta| > Lc_n^{-1}} A_n(\hat{\theta}_n(T_n) - \theta : \varepsilon) \right) \cdot \left(\prod_{i=1}^n f(x_i - \theta) - h(T_n, \theta)g(\bar{x}_n, \hat{\theta}_n(T_n)) \right) \prod_{i=1}^n \text{d}x_i
\]
\[= \lim_{n \to \infty} \sup_{\theta \in K} \left\{ \prod_{i=1}^{n} f(x_i - \theta) - \prod_{i=1}^{n} f(x_i - \hat{\theta}_n(T_n)) \right\} d(x_i) \]

\[+ \lim_{n \to \infty} \sup_{\theta \in K} 2 \sum_{i=1}^{n} f(x_i - \theta) d(x_i) \]

\[+ \lim_{n \to \infty} \sup_{\theta \in K} \left\{ 1 - P_{\theta}^{(n)}(A_n(\theta) - \theta : \varepsilon) \right\} \]

\[\leq \lim_{n \to \infty} \sup_{\theta \in K} \left\{ \prod_{i=1}^{n} f(x_i - \hat{\theta}_n(T_n)) - 1 \right\} \prod_{i=1}^{n} f(x_i - \theta) d(x_i) + 2\delta \]

\[\leq \lim_{n \to \infty} \left\{ \exp \sum_{i=1}^{n} W(x_i : Lc_n^{-1}) \right\} - 1 \prod_{i=1}^{n} f(x_i) d(x_i) + 2\delta \]

\[= 2\delta \]

Letting \(\delta \to 0\), we complete the proof of the theorem.

Acknowledgements

The author wishes to thank Professor K. Takeuchi of Tokyo University for valuable suggestions and Professor T. Homma for his encouragement.

References

