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A 180-nm-thick boron (B) layer was deposited on a 300-nm-thick a-axis-oriented BaSi2 epitaxial

film grown by molecular beam epitaxy on Si(111) and was annealed at different temperatures in

ultrahigh vacuum. The depth profiles of B were investigated using secondary ion mass spectrometry

(SIMS) with O2þ, and the diffusion coefficients of B were evaluated. The B profiles were reproduced

well by taking both the lattice and the grain boundary (GB) diffusions into consideration. The cross-

sectional transmission electron microscopy (TEM) image revealed that the GBs of the BaSi2 film

were very sharp and normal to the sample surface. The plan-view TEM image exhibited that the

grain size of the BaSi2 film was approximately 0.6 lm. The temperature dependence of lattice and

GB diffusion coefficients was derived from the SIMS profiles, and their activation energies were

found to be 4.6 eV and 4.4 eV, respectively. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4790597]

I. INTRODUCTION

Photovoltaic cell production has been increasing and its

market continues to expand rapidly. Approximately 90% of

solar cells are made from Si, because Si is an abundant and

well-known material in the semiconductor industry. How-

ever, the optical absorption layers of crystalline Si (c-Si)

solar cells tend to be much thicker than the conventional

thin-film solar cells, such as CuInGaSe2 (CIGS), because the

optical absorption coefficient is much smaller for c-Si.

Therefore, other Si-based materials for high-efficiency thin-

film solar cells are of great interest. Among such materials,

we have been focusing on semiconducting orthorhombic

BaSi2, which has particularly favorable characteristics for

solar cell applications. BaSi2 has the bandgap of approxi-

mately 1.3 eV and a very large optical absorption coefficient,

reaching 3� 104 cm�1 at 1.5 eV experimentally.1–3 a-Axis-

oriented BaSi2 can be grown epitaxially on Si(111) and

Si(001) substrates.4–10 Recently, we have successfully

achieved large photoresponsivity and internal quantum effi-

ciency exceeding 70% in a-axis-oriented BaSi2 epitaxial

layers grown by molecular beam epitaxy (MBE).11–14 Excess

carrier recombination mechanisms in BaSi2 have also been

studied.15 These results have spurred interest in this material.

The basic structure of a solar cell is a p-n junction.

Therefore, control of the conductivity of BaSi2 by impurity

doping is required. The carrier concentration of undoped

n-BaSi2 is approximately 5� 1015 cm�3.1 According to Imai

and Watanabe,16 the substitution of Si in the BaSi2 lattice is

more favorable than the substitution of Ba from an energetic

point of view by first-principles calculation. In our previous

works, the electron concentration of Sb-doped BaSi2 was

controlled in the range between 1016 and 1020 cm�3 at room

temperature (RT). In contrast, Al- and In-doped BaSi2 show

p-type conductivity, but the hole concentration was limited

up to 3� 1017 cm�3.17 Very recently, we have achieved the

hole concentration exceeding 1019 cm�3 in B-doped BaSi2.18

The hole concentration of B-doped BaSi2 was controlled in

the range between 1016 and 1020 cm�3 at RT. Thus, B is con-

sidered a suitable p-type dopant. However, there has been no

report on the diffusion coefficient of B in BaSi2. Diffusion

coefficient is a decisive parameter that will affect the steep-

ness of a p-n junction.

In this study, we aim to evaluate the lattice diffusion

coefficient of B using secondary ion mass spectrometry

(SIMS) measurement. Grain boundary (GB) diffusion coeffi-

cient was also investigated because the plan-view and the

cross-sectional transmission electron microscopy (TEM)

images revealed the presence of GBs in the a-axis-oriented

BaSi2 epitaxial layer on Si(111). This is due to the sixfold

symmetry caused by three epitaxial variants rotated by 120�

with respect to each other around the surface normal.6,19

II. EXPERIMENTAL METHOD

A two-step growth method was adopted, that is, the reac-

tive deposition epitaxy (RDE; Ba deposition on hot Si) for

BaSi2 template layers and followed by the molecular beam

epitaxy (MBE; codeposition of Ba and Si on Si) at 600 �C to

form 300 nm-thick a-axis-oriented BaSi2 epitaxial films on

Si(111). The details of the growth procedure have been previ-

ously described.6,19 The grown samples were post-annealed

at 850 �C for 10 min in ultrahigh vacuum (UHV). This high-

temperature annealing was performed so that the crystal qual-

ity of BaSi2 film remains unchanged by the annealing for B

a)Author to whom correspondence should be addressed. Electronic mail:

suemasu@bk.tsukuba.ac.jp. Tel./Fax: þ81-29-853-5111.
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diffusion. Then, an approximately 180-nm-thick B layer was

evaporated at RT. This sample was cut into several pieces

and annealed at different temperatures of 775, 800, and

825 �C for 5, 1, and 0.5 h, respectively, in UHV. These tem-

peratures are much higher than the MBE growth temperature

of 600 �C. The sample preparation is summarized in Table I.

We investigated the depth profiles of B in the BaSi2 using

SIMS measurement with O2þ and evaluated the lattice and

GB diffusion coefficients. In order to investigate the grain

size of BaSi2 and the GBs, both plan-view and cross-sectional

TEM observations were performed.

III. RESULTS AND DISCUSSIONS

Figure 1(a) shows the plan-view bright-field (BF) TEM

image of the post-annealed a-axis-oriented BaSi2 epitaxial

film. The incident electron beam was almost parallel to the

BaSi2[100] zone axis, but it was slightly tilted for the GBs to

be seen clearly. Note that approximately 120�, sharp GBs are

present, and these GBs consist mostly of BaSi2{011} planes.

Detailed discussions about the GBs were given in our previous

report.19 We can see that the grain size of the post-annealed

BaSi2 was approximately 0.6 lm. The cross-sectional TEM

image of this sample, shown in Fig. 1(b), shows that the GBs

of the BaSi2 film were very sharp and normal to the substrate

surface, namely in the BaSi2[100] direction. On the basis of

these cross-sectional and plan-view TEM images, we con-

cluded that the a-axis-oriented BaSi2 film is composed of

columnar-shaped BaSi2 grains.

We then discussed the diffusion coefficients of B in

BaSi2. The depth profiles of B are shown in Fig. 2, where the

B concentrations were normalized by the B concentration in

the B layer, C0, described later. Reference samples with a

controlled number of B doped in BaSi2 have not yet been

prepared but it is necessary to precisely determine the impu-

rity concentration by SIMS. Although the exact B concentra-

tions could not be obtained, it does not affect the analyses

afterwards. In order to fit the experimental SIMS profiles,

both lattice and GB diffusions were taken into consideration

because we can see clear GBs in the BaSi2 films as shown in

Figs. 1(a) and 1(b). We adopted Eqs. (1) and (2) for fitting

the SIMS profiles of B atoms. The concentration distribution

C(x, t) of impurity atom due to the lattice diffusion is given

by Eq. (1)

Cðx; tÞ ¼ C0 erfcðx=2
ffiffiffiffiffiffi
Dlt

p
Þ; (1)

where x¼ 0 is set at the B/BaSi2 interface, and C0 is the B

concentration at x¼ 0, Dl is the lattice diffusion coefficient,

and t is the annealing duration. On the other hand, the

concentration distribution due to GB diffusion follows

Eq. (2)20–22

sdDGB ¼ 1:322ðDl=tÞ1=2ð�@ ln Cðx; tÞ=@x6=5Þ�5=3; (2)

TABLE I. Sample preparation: annealing temperature and duration for post-

anneal and for B diffusion in UHV.

Sample Post anneal ( �C/min) Diffusion for B diffusion ( �C/h)

A 850/10 775/5

B 850/10 800/1

C 850/10 825/0.5

FIG. 1. (a) Plan-view BF TEM image and (b) cross-sectional TEM images

for the post-annealed BaSi2 film. In the plan-view TEM, the incident elec-

tron beam was almost parallel to the BaSi2[100] zone axis but was slightly

tilted for the GBs to be seen clearly.

FIG. 2. Normalized SIMS depth profiles of B for samples A-C, annealed at

different temperatures.
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where s is the segregation factor, d is the grain boundary

width, and DGB is the GB diffusion coefficient. Equation (2)

corresponds to the Harrison Type-B kinetics regime which

refers to a situation where the average lattice diffusion length

of the diffusion atoms is less than the grain size.22–24 The

grain size of the post-annealed BaSi2 was approximately

0.6 lm as shown in Fig. 1(a). This value is much larger than

the diffusion length of B in the post-annealed BaSi2 film,

meaning that Eq. (2) is valid in this work. Figure 3 shows an

example of the measured and simulated SIMS profiles of B

for sample B. Annealing for B diffusion was performed at

800 �C for 1 h. The experimentally obtained depth profile of

B was reproduced well with Eqs. (1) and (2). We should note

here that there are four regions in Fig. 3, that is, the B capping

layer region, the lattice diffusion region (broken line), the GB

diffusion region (dotted line), and the Si substrate. The SIMS

profile in the region deeper than 500 nm from the surface

could not be explained well by the GB diffusion. This is

because the interface of undoped BaSi2/Si(111) substrate was

located around there. Similar fittings were performed for sam-

ples A and C to evaluate the diffusion coefficients.

The Arrhenius plots for the obtained Dl and sdDGB are

shown in Figs. 4(a) and 4(b), respectively. The gradient of the

Arrhenius plots in these figures revealed that the activation

energies of lattice and GB diffusions are 4.6 eV and 4.4 eV for

B atoms, respectively. Dl in single crystal Si and DGB in poly

crystalline Si for B(B2H6) are shown in Fig. 5.25,26 Dl and

sDGB for Ni, Si, As atoms in the Ni2Si thin film and Co, Si

atoms in the CoSi2 bulk are also shown for comparison.27–32

The GB width d for the BaSi2 film was set to 0.5 nm because

it is usually taken as 0.5 nm in GB diffusion studies.33,34

The GB in the BaSi2 epitaxial film is so sharp as shown in

Fig. 1(b) that this assumption seems reasonable. Although the

segregation factor s cannot be determined for BaSi2 in this

work, it was reported that s is equal to 1 for self-diffusion like

GB diffusion of Ni in Ni2Si.24 The values of Dl and sDGB for

B in the BaSi2 film seem valid because they are not far from

those of some atoms in Si and silicides.

Here, we discuss the diffusion length of B atoms along

the GBs in such a case that we form a B-doped p-BaSi2/

undoped n-BaSi2 junction on a metal electrode and perform

rapid thermal annealing (RTA) to activate B atoms in the

BaSi2. RTA treatment at 800 �C for 2 min was known to be

an effective means to activate B atoms.18 During the RTA,

the B atoms were supposed to diffuse faster along the GBs

FIG. 3. Measured and simulated SIMS profiles of B for sample B, annealed

at 800 �C for 1 h.

FIG. 4. Arrhenius plots of (a) Dl and (b) sdDGB of B in BaSi2.

FIG. 5. Arrhenius plots of Dl and sDGB of B in BaSi2 and those of some

atoms in crystalline Si and silicide materials.25–32 GB width d is set to

0.5 nm for each silicide films including BaSi2.
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because sDGB is 104 times larger than Dl for B at around

800 �C in the BaSi2 film. The carrier concentration of

undoped n-BaSi2 is approximately 1016 cm�3.1 Thus, the dif-

fused B concentration should be less than 1016 cm�3 at the

diffusion front edge provided that the activation rate of B is

100%; otherwise the B-doped GBs will reach the electrode

and work as leakage pathways. Assuming that the B concen-

tration in the B-doped p-BaSi2 is 1020 cm�3, the concentra-

tion of B diffused into undoped n-BaSi2 should be 104 times

smaller than that of B-doped layer. The estimated GB diffu-

sion length of B, where the B concentration becomes as large

as 1016 cm�3, is shown in Fig. 6. The GB diffusion length of

B is predicted to be about 520 nm for RTA treatment at

800 �C for 5 min. Therefore, the BaSi2 optical absorption

layer thickness should be much more than 500 nm in a BaSi2
pn junction solar cell structure.

IV. SUMMARY

The lattice and GB diffusion coefficients of B atoms

were evaluated using the a-axis-oriented BaSi2 epitaxial film

capped with B layer. The cross-sectional and plan-view

TEM observations showed that the 0.6-lm-sized grains were

separated by very sharp GBs running normal to the sample

surface in the post-annealed BaSi2 film. The SIMS depth

profiles of B atoms were reproduced relatively well by taking

both the lattice and GB diffusions into consideration. The

activation energy of lattice diffusion of B is 4.6 eV while the

GB diffusion is 4.4 eV.
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