In-situ heavily p-type doping of over 10^20 cm^-3 in semiconducting BaSi2 thin films for solar cells applications

<table>
<thead>
<tr>
<th>著者別名</th>
<th>都甲 薫・末益 崇</th>
</tr>
</thead>
<tbody>
<tr>
<td>専門分野</td>
<td>未分類</td>
</tr>
<tr>
<td>契約内容</td>
<td>未分類</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>権利</th>
<th>未分類</th>
</tr>
</thead>
</table>

URL: http://hdl.handle.net/2241/118783
doi: 10.1063/1.4796142
In-situ heavily p-type doping of over 10^20 cm\(^{-3}\) in semiconducting BaSi\(_2\) thin films for solar cells applications

M. Ajmal Khan, K. O. Hara, W. Du, M. Baba, K. Nakamura et al.

Citation: Appl. Phys. Lett. 102, 112107 (2013); doi: 10.1063/1.4796142

View online: http://dx.doi.org/10.1063/1.4796142

View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v102/i11

Published by the American Institute of Physics.

Related Articles
Growth of randomly oriented single-crystalline tin (IV) oxide nanobelts: Control on the predominant crystalline growth axis

Thermoelectric properties of intermetallic semiconducting RuIn3 and metallic IrIn3

Thermoelectric properties of p-type (Bi\(_2\)Te\(_3\))\(_x\)(Sb\(_2\)Te\(_3\))\(_{1-x}\) single crystals doped with 3wt. % Te
J. Appl. Phys. 113, 073709 (2013)

Dielectric function of Cu(In, Ga)Se\(_2\)-based polycrystalline materials

High-pressure synthesis and in-situ high pressure x-ray diffraction study of cadmium tetraphosphide

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT
Materials for low cost, eco-friendly, and high efficiency solar cell applications have been of great importance. Among such materials, we have focused much attention on semiconducting BaSi$_2$. BaSi$_2$ has a simple orthorhombic structure and is considered a Zintl phase. It has an indirect band gap of approximately 1.3 eV, matching the solar spectrum. In addition, BaSi$_2$ has a large absorption coefficient of 3×10^4 cm$^{-1}$ at 1.5 eV, much larger than crystalline Si. Recent reports on high photoresponsivity and large internal quantum efficiencies exceeding 70% have spurred interest in this material. The remaining process was the formation of p-type BaSi$_2$ on the undoped n-type BaSi$_2$ layer ($n = 5 \times 10^{15}$ cm$^{-3}$) to complete the BaSi$_2$ pn junction diode. However, very little work has been done on the formation of impurity-doped BaSi$_2$ up to now. According to Imai and Watanabe, substitution of Si in the BaSi$_2$ lattice is more favorable than substitution of Ba from the energetic point of view. In line with this theoretical expectation, S-doped BaSi$_2$ exhibits n-type conductivity, while In-, Al-, and Ag-doped BaSi$_2$ exhibit p-type conductivity. The electron concentration of S-doped BaSi$_2$ was controlled in the range between 10^{17} and 10^{20} cm$^{-3}$ at room temperature by changing the temperature of the S Knudsen cell crucible. The acceptor level of the B atoms was estimated to be approximately 23 meV. High hole concentrations exceeding 1×10^{20} cm$^{-3}$ were achieved via dopant activation using RTA at 800°C in Ar. The activation efficiency was increased up to 10%. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4796142]
sample C by 6–7 times. This is reasonable to think that the vapor pressure of B at 1550 °C is approximately 7 times larger than that at 1450 °C.15

B-doped as-grown BaSi\textsubscript{2} showed p-type conductivity for samples E-G. For the other as-grown samples, however, it was difficult to obtain reliable carrier concentrations and mobilities due to difficulties in forming ohmic contacts on the surface. As described later, the RTA treatment enabled us to measure them for all the samples. Figure 2(a) shows the temperature dependence of hole concentrations in sample E. The hole concentration reached 1.0×10^{19} cm-3 at RT and decreased with decreasing temperatures. The acceptor level, E_A, calculated using Eq. (1) was 23 meV

$$ p \propto \exp \left(- \frac{E_A}{2k_BT} \right). $$

Here, k_B is the Boltzmann’s constant, and T the absolute temperature. This E_A value is much smaller than those in Al-doped BaSi\textsubscript{2} ($E_A = 50$ and 140 meV).11 Such a shallow acceptor level of 23 meV could be the reason for heavily p-type doping in sample E. The activation energies of as-grown and RTA-treated samples E and G are almost the same, which were roughly 20 meV. But for other samples such as sample C, the activation energy became more than 70 meV after the RTA treatment. Thus, further systematic studies are necessary in order to understand fully the dependencies of the activation energy on B concentration and RTA duration. Regarding Ga-, Cu-, and Ag-doped BaSi\textsubscript{2} films, variable range hopping conduction of carriers was observed, while conventional band transport of carriers was observed for Sb- and In-doped BaSi\textsubscript{2}.12 In order to exclude the possibility of variable range hopping in B-doped BaSi\textsubscript{2}, we plotted the logarithmic dependence of resistivity on both $1/T^{1/2}$ and $1/T^{1/4}$ for B-doped BaSi\textsubscript{2} (sample E) in Fig. 2(b). Non-linear behaviors were observed, meaning that the carrier transport cannot be explained by variable range hopping,14–16 differently from Ga-, Cu-, and Ag-doped BaSi\textsubscript{2}. Similar results were obtained for other samples. The temperature dependence of mobility for sample E was inserted. The mobility decreased with increasing temperature, meaning that the phonon scattering dominates in sample E. Actually, the scattering mechanism differed between samples, depending on B concentrations. Detailed studies will be reported elsewhere.

We next performed the RTA on all the samples to electrically activate the B atoms. Figure 3(a) presents the dependence of hole concentrations on RTA duration, t_{RTA}, for samples A, C, E, and G. The hole concentration increased from 8.5×10^{16} to 6.0×10^{17} cm-3 for sample A when t_{RTA} was increased from 0.5 to 2 min, similarly from 5.0×10^{17} to 1.6×10^{19} cm-3 for sample C. These results revealed that RTA is a very effective means to activate the B atoms in BaSi\textsubscript{2}, as reported in other materials such as Si, GaAs, GaN, and ZnO.17–20 For sample E, the hole concentration increased from 1.0×10^{19} to 2.7×10^{19} cm-3 after the 1 min RTA but decreased down to 1.1×10^{19} cm-3 by further annealing. This might be caused by low T_S for too large N_B in sample E. We therefore decided to increase T_S from 600 to 650 °C and decreased N_B from 1×10^{22} to 2×10^{21} cm-3 for sample G. As shown in Fig. 3(a), the hole concentration was increased much further up to 2.0×10^{20} cm-3 after the 2 min RTA in sample G. This value is the highest ever achieved for BaSi\textsubscript{2}, indicating that higher T_S improved the electrical activation efficiency of B atoms. The activation efficiency of B atoms in sample G can thus be estimated, that is, $p/N_B = 2.0 \times 10^{20}/2 \times 10^{21} \approx 10\%$ after the 2 min RTA. The obtained p and hole mobility μ_p were summarized in Fig. 3(b). As the hole concentration increased, the mobility decreased. This trend is usually predicted by ionized
impurity scattering in conventional semiconductors. As can be seen, the hole concentration was controlled in the range between 10^{17} and 10^{20} cm$^{-3}$ at RT by changing the temperature of the B Knudsen cell crucible.

In conclusion, we have achieved heavily p-type doping over 10^{20} cm$^{-3}$ in B-doped BaSi$_2$ by MBE. The acceptor level was estimated to be approximately 23 meV. The RTA treatment at 800°C enhanced the electrical activation of doped B atoms, thereby increasing the hole concentrations up to 2.0×10^{20} cm$^{-3}$.

This work was supported in part by Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency.