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We demonstrate the electron transfer (ET) processes from CuInS2/ZnS core/shell quantum dots
(QDs) into porous anatase TiO2 films by time-resolved photoluminescence spectroscopy. The rate
and efficiency of ET can be controlled by changing the core diameter and the shell thickness. It is
found that the ET rates decrease exponentially at the decay constants of 1.1 and 1.4 nm–1 with
increasing ZnS shell thickness for core diameters of 2.5 and 4.0 nm, respectively, in agreement
with the electron tunneling model. This shows that optimized ET efficiency and QD stability can
be realized by controlling the shell thickness. VC 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4790603]

Quantum dots (QDs) have been considered as a revolu-
tionizing material in next-generation photovoltaics (PVs)1,2

because of their size-dependent properties, flexible solution-
processing, and higher photostability compared to traditional
organic dyes. Efficient electron transfer (ET) from QDs to
external electrodes is a key factor to achieve high power-
conversion-efficiency in PVs. From Marcus theory,3 the ET
rate is determined by the electronic coupling strength (HDA),
the total reorganization energy (k), and the driving force
energy (DG). In donor-acceptor hybrid systems of CdSe,4–6

CdS,7 and PbS QDs8 tethered to TiO2 or ZnO, the effects of
above three parameters on the ET dynamics have been
explored widely. The photoelectrochemical response has
been tuned via the size control of CdSe QDs to obtain the
maximum photoconversion efficiency in QD-sensitized solar
cells.6 It is well known that overcoating CdSe QDs with
wide band-gap shell materials, such as ZnS, to form type I
core/shell structures can greatly enhance their photo- and
thermal-stability9 and efficiency10 in QD-sensitized solar
cells. Bulk CuInS2 has a direct bandgap of 1.53 eV, which is
well matched with the optimal spectral range for photovol-
taic applications, resulting in Cd-free solar harvesters in solar
cells. The band gap of CuInS2 QDs can be tuned not only by
controlling their size11,12 and stoichiometry13,14 but also by
introducing other elements such as Zn.15–18 Therefore, they
are considered to be alternative low-toxicity materials as so-
lar harvesters for the solution-processed PVs.19 We need to
fully understand the extraction efficiency of photogenerated
charges from CuInS2 QDs to the external electrodes, such as
TiO2, by controlling their size and surface structures for bet-
ter performances of the PVs.

Here, we demonstrate efficient electron injection from
CuInS2 core and CuInS2/ZnS core/shell QDs to the porous
anatase TiO2 films by using steady-state and time-resolved
photoluminescence (PL) spectroscopy. The relevant energy

levels of CuInS2 QDs are obtained by cyclic voltammetry
(CV) measurements, which is in accordance with the values
calculated by the effective mass approximation (EMA).12

The lowest unoccupied molecular orbital (LUMO) level in
CuInS2 QDs is above that of the TiO2 films, resulting in the
efficient electron injection into TiO2 films from CuInS2 QDs.
The effect of the core diameter and the ZnS shell thickness
on the ET rate and efficiency is studied in detail. We make
the tunneling calculation to describe the ET rate as a function
of the shell thickness and to understand the ET rate and effi-
ciency in the QD/TiO2 system.

The CuInS2 core and CuInS2/ZnS core/shell QDs were
synthesized by means of the wet chemical method.13 Trans-
mission electron microscopy (TEM) images of the QDs are
shown in the inset of Fig. 1(a), which determine the diameter
of three samples of CuInS2 core QDs to be 2.5, 3.3, and
4.0 nm, respectively. Furthermore, the CuInS2 core QDs
were coated with a ZnS shell to form the CuInS2/ZnS core/
shell QDs by means of a successive ionic layer adsorption
and reaction (SILAR) methods.13 The size and the size distri-
bution histogram of the CuInS2/ZnS core/shell QDs deter-
mined by TEM are shown in supplementary material.20 The
TiO2 and ZrO2 metallic oxide electrodes used in this work
were fabricated by the same method reported before.21 As
for the QDs-sensitization, metallic oxide electrodes were
tethered 3-mercaptopropionic acid (MPA) first and then
immersed in QDs in toluene.6 Time-resolved PL was meas-
ured by means of a time-correlated single photon counting
(TCSPC) system with a visible photomultiplier and a 70 ps
pulsed diode laser emitting at 375 nm. Time resolution of the
TCSPC system was about 1 ns.

The absorption and PL spectra of synthesized CuInS2
core QDs are shown in Fig. 1(a). The absorption edge gradu-
ally shifts toward longer wavelength with increasing the
diameter of the QDs, in consistent with quantum confine-
ment effect. Emission peaks of the QDs exhibit a large
Stokes shift of about 300 meV from their corresponding opti-
cal band gaps, indicating that the radiative transition does
not come from excitonic recombination.11–14
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The LUMO and the highest occupied molecular orbital
(HOMO) energy levels of the CuInS2 core QDs were
obtained from a CV method. The resulting energy levels
shown in Fig. 1(b) by red circles are consistent with the
energy levels calculated in EMA with a finite-depth well,12

where LUMO and HOMO levels of bulk CuInS2 are
assumed to be �4.1 eV and �5.6 eV,22 respectively. The
effective masses of electrons and holes are 0.16m0 and
1.30m0, respectively, where the m0 is the electron mass in
vacuum.10 The LUMO level of the porous anatase TiO2 film
obtained from the CV method is located at �4.21 eV, which
is much lower than the LUMO level of �3.88 eV for the
largest CuInS2 core QDs. Therefore, the ET from the QDs to
the porous anatase TiO2 films is energetically allowable.
According to the Marcus theory, the ET between two states
is dominated by DG.3,4 In the case of electron injection into
TiO2, the DG is the difference between the lowest quantum
electron level of the QDs and the LUMO level of TiO2. As
the DG between acceptor and donor systems increases, the
ET rate increases and reaches a maximum when the DG is
equal to the reorganization energy.

PL decay curves of the CuInS2 core QDs 2.5, 3.3, and
4.0 nm in average diameter deposited on TiO2 and ZrO2
films are shown in Fig. 2. From the PL dynamics of the
CuInS2 core QDs, the fast decay comes from nonradiative
surface-traps and the long lifetime contribution is ascribed to
the internal defect state emission. Recently, the long lifetime
emission was suggested to originate from the recombination
from an electron quantum state to a localized hole state.11

The LUMO level of the ZrO2 film was obtained to be
�3.17 eV, which is even higher than the LUMO level of
�3.65 eV in the smallest CuInS2 core QDs. Therefore, the
ET from CuInS2 QDs to ZrO2 is energetically unfavorable,
and thus the observed PL decay curves in this system can be
used as a reference. The significant shortening in the PL
decays of CuInS2 core QDs is clearly observed. This sug-
gests that the ET adds another decay channel to the excited
states of the QDs. To calculate the ET rate, we assume that
the average PL lifetimes of the QDs on TiO2 and ZrO2 films
are given by sQD�TiO2 … 1=ðkR þ kNR þ kETÞ and sQD�ZrO2

… 1=ðkR þ kNRÞ, respectively, where kR and kNR are radiative
and nonradiative decay rates for QDs, respectively.4–6 The
ET rate (kET) and efficiency (gET) can be calculated as:
kET … 1=sQD�TiO2 � 1=sQD�ZrO2 and gET … 1 � sQD�TiO2=
sQD�ZrO2 , respectively. The evaluated ET rates and efficien-
cies are summarized in Table I. The ET rate reaches 107 s�1

close to the rate in CdSe-TiO2 donor-accepter systems.4,6,24

The rate slightly increases with decreasing the core diame-
ters of the CuInS2 QDs, in consistent with the Marcus theory.
However, the size dependence of the ET rate is clearly lower
than that of CdSe QDs.4 On the other hand, the ET efficiency
shows the opposite trend. The maximum efficiency is
obtained in the largest CuInS2 QDs. It has been reported the
ET process is impeded in QDs by the considerable amount
of surface-localized trap states.1,5 Considering that the lumi-
nescence of the CuInS2 QDs is significantly reduced by the
surface traps and that the PL lifetimes of CuInS2 QDs in tol-
uene are shortened with decreasing the diameters, we attrib-
ute the low ET efficiency in small CuInS2 QDs to the
relatively large amount of surface-localized states.

As known, the stability of bare QDs remains an issue
due to photo-induced oxidation in photovoltaic devices.5 We

FIG. 1. (a) Steady-state PL and absorption spectra of CuInS2 core QDs with
diameters of 2.5 (blue), 3.3 (green), and 4.0 nm (red), respectively, in tolu-
ene and the corresponding high-resolution TEM image from left to right.
The scale bar is 5 nm; (b) The LUMO and HOMO levels of CuInS2 QDs
shown by red circles were measured by CV. Black lines represent LUMO
and HOMO levels of the CuInS2 QDs calculated in EMA. Blue lines repre-
sent the LUMO and HOMO levels of the TiO2 film measured by CV and op-
tical absorption.

FIG. 2. PL decay curves of CuInS2 core QDs deposited on the ZrO2 (solid
dots) and TiO2 films (empty dots).

TABLE I. The efficiency (gET) and rate (jET) of ET from CuInS2 QDs to
the porous anatase TiO2 film.

Diameters of
CuInS2 (nm) jET ð107 s�1Þ gET (%)

2.5 6.0 69
3.3 5.4 74
4.0 4.5 83
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further investigated photoinduced ET into TiO2 from
CuInS2/ZnS core/shell QDs. With increasing the ZnS shell
thickness, the PL peak of the QDs slightly shifts to higher
energy compared with the bare QDs, which is slightly differ-
ent from the case of CdSe/ZnS core/shell QDs.11,13 For
CuInS2/ZnS core/shell QDs, the surface coating by a ZnS
shell involves an interdiffusion alloying process, perhaps
resulting in formation of an inner alloying layer and etching
of the CuInS2 cores. However, we ignored the size change of
the CuInS2 core in order to facilitate the estimation of the
ZnS shell thickness. As shown in Fig. 3, the PL lifetimes of
the CuInS2/ZnS core/shell QDs tethered onto the ZrO2 films
exhibit a significant increase with increasing the shell thick-
ness, suggesting the improved passivation of surface defects
in the QDs.

PL decay curves of the two series of CuInS2/ZnS core/
shell QDs 2.5 and 4.0 nm in core diameter tethered onto the
TiO2 films are shown in Fig. 3. It is expected that the ZnS
shell acts as a tunneling barrier for ET from the photoexited
CuInS2 QDs to the TiO2 film because the HDA between
CuInS2 QDs and a TiO2 film would be weakened with
increasing the ZnS shell thickness. The ET rates for the two
series of core/shell QDs plotted as a function of ZnS shell
thickness are shown in Fig. 4. As we expected, the ET rate
rapidly decreases with increasing the ZnS shell thickness.
The decrease in the ET rate is considered to result from the
weak electronic coupling between the TiO2 films and the
QDs with the increase of the ZnS shell thickness. Surpris-
ingly, the ET efficiency slightly decreases with the increase
of ZnS shell thickness. For example, the ET efficiency of
QDs 2.5 nm in core diameter decreases from 65% for the 1.1
monolayer (ML) ZnS shell to 38% for the 3.2 ML ZnS shell.
Despite the significant decrease in the ET rate in contrast

with that for the CuInS2 core QDs, the CuInS2/ZnS core/
shell QDs exhibit only a slight reduction in ET efficiency
with increasing the ZnS shell thickness. This is because a
thin ZnS shell can effectively reduce the number of the traps
as nonradiative recombination centers and results in efficient
enhancement in the PL quantum efficiency.11 This gives us a
hint that how we can control the ET rate and the ET effi-
ciency in such a donor-accepter system by controlling the
QDs shell thickness to optimize the performance of the QD-
based solar cells.

We assume the LUMO and HOMO levels of the CuInS2
core remain unchanged for different thickness of the ZnS
shell and ignore the intersphere distance between the
CuInS2/ZnS QDs and TiO2 films.24 The ET rates should be
related to the thickness of the shell and could be described
by the following expression:5,23

kðdÞ … k0e�bd ; (1)

where d is the thickness of the ZnS shell and k0 is the ET
rate for bare QDs. Experimental plots of the two series of ET
rates as a function of ZnS shell thickness can be well fitted
by the above equation. The good fit confirms the tunneling
of the electron through the ZnS barrier shell. The fitting by
the Eq. (1) yields semilogarithmic slopes, b, of 1.1 and
1.4 nm–1 for CuInS2/ZnS core/shell QDs 2.5 and 4.0 nm in
core diameter, respectively. The slope is comparable to
reported one (3.5 nm–1) for CdSe QDs.5 The value of b for
2.5 nm QDs is less than that in the 4.0 nm QDs. This is
because b is dependent on the barrier height for the 1s elec-
tron in the CuInS2 core to tunnel into the ZnS shell. There-
fore, the 1s electron in the small CuInS2 core is easier to
tunnel into the ZnS shell than that in the large core, resulting
in smaller factor b.

The eigen function and energy of the electron in
CuInS2/ZnS core/shell QDs were calculated to quantify the
effect of ZnS shell thickness on the ET rate by modeling
them as a particle confined in a spherical well of finite
depth.25,26 The effective mass of electrons is 0.28m0 for
ZnS.5 The LUMO levels are �4.1 eV for the CuInS2 core,

FIG. 3. PL decay curves of CuInS2/ZnS core/shell QDs with various core
diameters and the ZnS shell thicknesses deposited on the ZrO2 (solid dots)
and TiO2 films (empty dots).

FIG. 4. Plots of ET rates of CuInS2/ZnS core QDs with core diameters of
D … 2.5 nm (red squares) and D … 4.0 nm (blue circles), respectively, as a
function of ZnS shell thickness. The solid line represents the fit of the
ET rate. The calculated electron densities at the ZnS surface as a func-
tion of ZnS shell thickness are shown by dashed lines. The electron den-
sities lines were normalized to the fastest measured ET rates for
comparison.
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