Role of dynamic polar nanoregions in heterovalent perovskite relaxor: Inelastic light scattering study of ferroelectric Ti rich Pb(Zn1/3Nb2/3)O3-PbTiO3

Md. Saidul Islam, Shinya Tsukada, Wenzhi Chen, Zuo-Guang Ye, and Seiji Kojima

Citation: J. Appl. Phys. 112, 114106 (2012); doi: 10.1063/1.4768278
View online: http://dx.doi.org/10.1063/1.4768278
View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v112/i11
Published by the American Institute of Physics.

Related Articles
Quenching-induced circumvention of integrated aging effect of relaxor lead lanthanum zirconate titanate and (Bi1/2Na1/2)TiO3-BaTiO3
Appl. Phys. Lett. 102, 032901 (2013)
Relaxor behavior of ferroelectric Ca0.22Sr0.12Ba0.66Nb2O6
Appl. Phys. Lett. 102, 022903 (2013)
Structural diversity of the (Na1−xKx)0.5Bi0.5TiO3 perovskite at the morphotropic phase boundary
Composition and orientation dependence of high electric-field-induced strain in Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals
Influence of electric field on local phase transformations in relaxor ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3

Additional information on J. Appl. Phys.
Journal Homepage: http://jap.aip.org/
Journal Information: http://jap.aip.org/about/about_the_journal
Top downloads: http://jap.aip.org/features/most_downloaded
Information for Authors: http://jap.aip.org/authors

ADVERTISEMENT
Role of dynamic polar nanoregions in heterovalent perovskite relaxor: Inelastic light scattering study of ferroelectric Ti rich Pb(Zn$_{1/3}$Nb$_{2/3}$)O$_3$-PbTiO$_3$

Md. Saidul Islam,1,2,a Shinya Tsukada,1,3 Wenzhi Chen,4 Zuo-Guang Ye,4 and Seiji Kojima1,b

1Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
2Department of Materials Science and Engineering, University of Rajshahi, Rajshahi-6205, Bangladesh
3Faculty of Education, Shimane University, Matsue city, Shimane 690-8504, Japan
4Department of Chemistry and 4D LABS, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada

(Received 23 July 2012; accepted 1 November 2012; published online 4 December 2012)

The role of dynamic polar nanoregions (PNRs) of (1-x)Pb(Zn$_{1/3}$Nb$_{2/3}$)O$_3$-xPbTiO$_3$ (PZN-xPT) single crystals with the PT content $x = 0.15$ (i.e., higher than above the morphotropic phase boundary composition $x \sim 0.09$) has been investigated using inelastic light scattering. The remarkable anomaly of the longitudinal acoustic mode is clearly observed in the vicinity of the cubic-tetragonal phase transition temperature at the $T_{C-T} = 481$ K. A broad central peak (CP) appears below the Burns temperature $T_B \sim 700$ K. Upon cooling, the relaxation time determined from the CP width clearly shows a critical slowing down when approaching T_{C-T} in contrast with the suppressed slowing down previously observed in PZN-7PT [S. Tsukada and S. Kojima, Phys. Rev. B 78, 144106 (2008)]. These facts are due to the existence of dynamic PNRs and the disappearance of chemically ordered regions resulting from a higher PT content in the solid solution. In the cubic phase, the local symmetry breaking caused by the PNRs was observed by Raman scattering. The initial size of dynamic PNRs is about 3 nm just below T_B, and it increases significantly upon cooling below the intermediate temperature $T^* \sim 600$ K, reaching 10 nm down to T_{C-T}. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768278]

I. INTRODUCTION

Pb-based perovskite relaxors, represented by Pb(Mg$_{1/3}$Nb$_{2/3}$)$_3$O$_3$ (PMN) and Pb(Zn$_{1/3}$Nb$_{2/3}$)$_3$O$_3$ (PZN), exhibit a broad frequency-dependent dielectric peak and Vogel-Fulcher freezings. They have attracted a great deal of research work in the last two decades in their peculiar nonergodic behaviors related to the disordered occupancy of heterovalent cations on the perovskite B sites. The colossal piezoelectric response discovered in the relaxor-PbTiO$_3$ solid solutions has been extensively studied by neutron, x-ray, and inelastic light scattering, and electron diffraction, etc., however, their structure and dynamics remain to be a fascinating puzzle, especially in a paraelectric phase with high symmetry.$^{1-3}$ The solid solution of (1-x)Pb(Zn$_{1/3}$Nb$_{2/3}$)$_3$O$_3$-xPbTiO$_3$ (PZN-xPT) is one of the relaxor-based ferroelectrics (RFEs) exhibiting a typical relaxor behavior with a diffuse and dispersive dielectric permittivity peak for low PT content, and a morphotropic phase boundary (MPB) where the rhombohedral ($R3m$) and tetragonal ($P4mm$) phases coexist for the composition range $x = 0.08$–0.10 (at room temperature).4,5 The high piezoresponse of PZN-xPT near the MPB has recently been attributed to the intermediate monoclinic/orthorhombic phases that could facilitate polarization rotation in the symmetry plane.6 As the PT content increases from zero towards the MPB, PZN-xPT shows different phase sequences upon cooling. The symmetry and the phase transition anomalies of PZN-xPT near MPB were found to be much more complex than previously imagined and monoclinic and/or orthorhombic symmetries appear with and/or without biasing electric field depending on the PT content.7,8 However, the exact crystal symmetry, the elastic properties, and the dynamical features of the phase transitions in PZN-xPT over wide composition and temperature ranges still remain unclear, as attested to by a number of controversial results.$^9-11$

The compositional disorder, i.e., the disorder in the arrangement of different ions on a crystallographically equivalent site, is a common structural feature of RFEs. The chemically ordered nanoregions (CORs) are formed when the two kinds of different cations with heterovalence states (e.g., Zn$^{2+}$ and Nb$^{5+}$) occupy the perovskite B sites alternatively.2 It is commonly agreed that the polar nanoregions (PNRs) and CORs that are inherently present give rise to unique physical properties of RFEs.12 Upon cooling, the dynamic PNRs start to appear at the so called Burns temperature, T_B.13 Recently, an intermediate temperature, T^*, was suggested to exist between T_B and the temperature of maximum dielectric constant, T_m. At T_B, dynamic PNRs are formed due to the short-lived correlation between the off centered ions, whereas at T^*, the dynamic PNRs transfer to a static with a rapid growth in size owing to the long-lived correlation between the atomic displacements of off centered ions.14 The microscopic mechanism underlying the appearance, growth, dynamics, and length scale of PNRs has not been well understood yet. Another important question on PNRs in the PZN-PT solid solutions is about the upper limit of the PT content at which the PNRs persist. In PMN-xPT, the elastic anomaly owing to the interaction between the longitudinal acoustic (LA) mode and dynamic PNRs was still
observed in PMN-55PT, i.e., with a PT content beyond the MPB composition.15

Recent report on the acoustic emission (AE) of Pb-based relaxors at $T^* \sim 500$ K suggests that the martensitic transformation of PNRs generates AE bursts that were detectable by the ultrasonic transducer in the kilohertz range.14 While the Brillouin scattering technique probes, the acoustic modes in the gigahertz range with a wavelength much shorter than that of the standard ultrasonic detection. Therefore, the temperature dependence of the local polarization fluctuations of PNRs can be detected with a high sensitivity by the broadband Brillouin scattering technique in the frequency range from 1 to 1000 GHz.16 Up to the present, Brillouin scattering band Brillouin scattering technique in the frequency range PNRs can be detected with a high sensitivity by the broadband Brillouin scattering technique in the frequency range from 1 to 1000 GHz.16 The temperature of the sample was controlled by a temperature solution method as described in Ref.27 A microscope (OLYMPUS BX 41) was associated with the FPI type tandem Fabry-Perot interferometer (FPI) was used to measure the Brillouin spectra at a backward scattering geometry with free spectral ranges 75 and 300 GHz. An optical microscope (OLYMPUS BX 41) was associated with the FPI to achieve a fine focal region. A green YAG laser with a wavelength of 532 nm and a power of 50 mW was used to excite the sample. A conventional photon counting system and a multi-channel analyzer were employed to detect and average the signals. Raman scattering was measured by a laser with a wavelength of 532 nm and a power of 50 mW was used to excite the sample. A conventional photon counting system and a multi-channel analyzer were employed to detect and average the signals. Raman scattering was measured by a green YAG laser with a wavelength of 532 nm and a triple-pass Sandercock-corrected Gaussian instrumental function to obtain the Brillouin frequency shift (ν_{LA}) and the full-width at half maximum (FWHM or Γ_{LA}). The temperature dependences of ν_{LA} related to the elastic constant C_{11} and C_{12} are plotted in Fig. 2. In both heating and cooling processes, a significant softening of the LA mode and a clear anomaly corresponding to the cubic-tetragonal phase transition are observed at 481 K (T_{C-T}), which can be attributed to the interaction between the LA mode and the polarization flipping inside the dynamic PNRs.16 The observed anomalous temperature dependence is similar to that of PMN-55PT with no COR,15,28 while such a sharp elastic anomaly is uncharacteristic in typical RFEs such as PMN, PZN with CORs. In addition, ν_{LA} shows a mild softening below $T_B \sim 700$ K, demonstrating that only normal anharmonic effects dominate in the lattice dynamics above T_B.14 On cooling from T_B, a remarkable softening of ν_{LA} is observed near T_{C-T}. The temperature dependence of Γ_{LA}, which is related to the acoustic damping of the LA mode, shows the sharp increase near T_{C-T}, suggesting the increase of scattering of the LA mode by the growth of dynamic PNRs.15,16

\section*{B. Local symmetry and PNR}

It is known that Raman scattering is very sensitive to the local symmetry breaking in a cubic phase.26,28 The temperature dependence of Raman scattering was measured and shown in Fig. 3. In the cubic phase with space group $Pm\overline{3}m$, optical modes have T_{1u} and T_{2u} symmetry, which are Raman...
inactive. Nevertheless, the Raman spectra (Fig. 3) show the forbidden optical bands arising from the local breaking of the cubic symmetry in PNRs by the existence of local polarization which destroys the center of symmetry. This result is in agreement with inelastic neutron scattering study of PZN-15PT which shows the existence of PNRs by the observation of “waterfall” effect.30

Raman scattering also provides some important information on the existence of the soft optic mode. The temperature dependence of the Raman spectra shows the lowest frequency optic mode at about 50 cm$^{-1}$, which is attributed to the positional disorder of lead ions, and this mode does not show any softening, which is the same as the case of PZN-9PT.29 Although PbTiO$_3$ shows typical optic soft modes with E symmetry,31 PZN-15PT has no displacive nature at the zone center. Since there is no soft mode, the origin of intense CP appearing below the T_B, as shown in Fig. 1(a), cannot be the tail of the overdamped soft optic mode but the relaxation mode instead. Therefore, we have analyzed the CP in the Brillouin scattering spectra to clarify the critical

C. Critical slowing down

Under the assumption of a single relaxation process, CP is fitted by using a single Lorentzian function centered at zero frequency shifts, and the relaxation time τ_{CP} is calculated by $\pi \cdot (\text{FWHM of CP}) \times \tau_{CP} = 1$. The temperature dependence of the inverse of τ_{CP} is plotted in Fig. 4. A critical slowing down is clearly observed above $T_{C,T} = 481$ K, which can be described by Eq. (1)

$$\frac{1}{\tau} = \frac{1}{\tau_0} + \frac{T - T_C}{\tau_1 T_C}, \quad \text{for } T > T_{C,T},$$

where $\tau_0 = 2.5$ ps and $\tau_1 = 0.30$ ps. The value of τ_j is comparable with that of 0.70Pb(Sr$_{1/2}$Nb$_{1/2}$)O$_3$-0.30PbTiO$_3$ (PSN-30PT), while the value of τ_0 is much smaller than that of PSN-30PT reflecting the first-order nature of the ferroelectric phase transition in PZN-15PT.16

The observed critical slowing down is characteristic of an order-disorder phase transition. In PZN-7PT, slowing down was observed; however, the critical slowing down is suppressed near T_C due to the existence of CORs.21,32 Similar phenomena were reported in PMN-αPT.15 In PMN-αPT, a strong spatial correlation between PNRs and nanoscale regions of chemical ordering (or CORs) on the B-site was suggested by recent first principle calculations.33 However, in PMN-αPT, the size of CORs decreases with the increase of Ti-content and CORs finally disappear at $\alpha = 0.4$, as revealed by transmission electron microscopy34 and synchrotron x-ray scattering studies.35 Therefore, in PMN-55PT, the critical slowing down is clearly observed by Brillouin scattering.15 The dynamic behavior observed in PZN-αPT can be explained in a similar way. In PZN-αPT of low PT content, such as PZN-7PT, both the PNRs and the CORs could coherently contribute to the phase transition dynamics, and the critical slowing down is suppressed due to the existence of
CORs. In contrast, in PZN-15PT, the CORs disappears or become very small with a higher PT-content, and only the polarization fluctuations in dynamic PNRs play a dominant role on the critical slowing down.

The growth and temperature evolution of the dynamic PNRs are also important in understanding the dynamics of PNRs of REFs. According to neutron diffuse scattering study, for PZN, a diffuse intensity peak appears at $T_B \sim 720$ K and the formation of static PNRs starts at temperature $T^* \sim 450$ K and similarly, $T^* \sim 500$ K for PZN-4.5PT, and $T^* \sim 550$ K for PZN-9PT. For PZN-4.5PT, $T_B \sim 800$ K and $T^* \sim 550$ K were reported by Raman scattering study. For PZN-4.5PT, the correlation lengths determined from the width of diffuse scattering are about 4–18 Å at $T_B \sim 720$ K, 13–30 Å at $T^* \sim 500$ K, and 51–91 Å at 300 K, respectively.

D. Size of dynamic PNR

In the present Brillouin scattering study, the size of a dynamic PNR, l_{PNR}, is estimated from the relaxation time related to local polarization flipping therein and the phase velocity of the LA mode, because the characteristic length of polarization flipping can be given by the propagation length of local strain in the period of a relaxation time. Figure 5 shows the temperature dependence of l_{PNR} for PZN-15PT between $T_B \sim 700$ K and $T^* \sim 600$ K. At high temperatures, the size of dynamic PNRs is about 3 nm and remains nearly constant, while upon cooling below T^* starts to increase sharply and reaches 13 nm near $T_{C,T}$ on cooling. These values are comparable with those of PZN-4.5PT determined by neutron diffuse scattering and the initial size of dynamic PNRs of ~ 2.5 nm in PZN-7PT at T^* determined by Brillouin scattering.

IV. CONCLUSION

In conclusion, we have shown the precursor dynamics of relaxor ferroelectric 0.85Pb(Zn$_{1/3}$Nb$_{2/3}$)O$_3$-0.15PbTiO$_3$ single crystals using Brillouin and Raman scattering. The remarkable elastic softening and the increase of hypersonic damping were observed around $T_{C,T}$ demonstrating a strong interaction between the LA mode and the dynamic PNRs below T_B. The local symmetry breaking related to PNRs was observed above $T_{C,T}$ by Raman scattering. The relaxation time estimated from the CP width shows a critical slowing down behavior above $T_{C,T}$, reflecting the absence of CORs at a higher concentration of PT. The size of dynamic PNR is found to increase markedly upon cooling down to $T_{C,T}$.

ACKNOWLEDGMENTS

The authors thank S. G. Lushnikov, J.-H. Ko, A. Bokov, G. Shabbir, and V. Sivasubramanian for fruitful discussions. M.S.I. is grateful for accepting as a short-term visiting research fellow to University of Tsukuba and for the assistance of experiment of Brillouin scattering to T. H. Kim. The work at SFU was supported by the U.S. Office of Naval Research (Grants No. N00014-06-1-0166 and N00014-11-1-0552) and Natural Science and Engineering Research Council of Canada (NSERC).