Fast electron transfer from PbSe quantum dots to TiO₂

<table>
<thead>
<tr>
<th>著者別名</th>
<th>卑本 泰章</th>
</tr>
</thead>
<tbody>
<tr>
<td>言語名</td>
<td>日本語</td>
</tr>
<tr>
<td>種類</td>
<td>記述</td>
</tr>
<tr>
<td>論文タイトル</td>
<td>未掲載</td>
</tr>
<tr>
<td>ジャーナル名</td>
<td>Applied physics letters</td>
</tr>
<tr>
<td>巻</td>
<td>100</td>
</tr>
<tr>
<td>号</td>
<td>25</td>
</tr>
<tr>
<td>うち</td>
<td>252106</td>
</tr>
<tr>
<td>年</td>
<td>2012-06</td>
</tr>
</tbody>
</table>

(C) 2012 American Institute of Physics

This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Appl. Phys. Lett. 100, 252106 (2012); http://dx.doi.org/10.1063/1.4729881

URL http://hdl.handle.net/2241/117455

doi: 10.1063/1.4729881
Fast electron transfer from PbSe quantum dots to TiO2
Yasuaki Masumoto, Hayato Takagi, Hikaru Umino, and Eri Suzumura

Citation: Appl. Phys. Lett. 100, 252106 (2012); doi: 10.1063/1.4729881
View online: http://dx.doi.org/10.1063/1.4729881
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v100/i25
Published by the American Institute of Physics.

Related Articles
Nanoscale fluorescence imaging with quantum dot near-field electroluminescence
Theoretical optimization of multi-layer InAs/GaAs quantum dots subject to post-growth thermal annealing for tailoring the photoluminescence emission beyond 1.3μm
Ultrafast third order nonlinear optical response of donor and acceptor codoped and compensated silicon quantum dots
Type-II GaSb/GaAs coupled quantum rings: Room-temperature luminescence enhancement and recombination lifetime elongation for device applications
Optically engineered ultrafast pulses for controlled rotations of exciton qubits in semiconductor quantum dots

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors
Fast electron transfer from PbSe quantum dots to TiO₂

Yasauki Masumoto,¹ Hayato Takagi, Hikaru Umino, and Eri Suzumura
Institute of Physics, University of Tsukuba, Tsukuba 305-8571, Japan

(Received 29 March 2012; accepted 3 June 2012; published online 19 June 2012)

Fast electron transfer from PbSe quantum dots (QDs) to the porous anatase TiO₂ film was observed in transient absorption and luminescence, when the lowest unoccupied molecular orbital level of PbSe QDs is higher than that of TiO₂. In PbSe QDs 2.7 nm in diameter linked to the TiO₂ film the bleaching recovery and the luminescence decay shortened to 1 ps and 4.2 ns from 650 ps and 1.3 µs observed in the non-linked PbSe QDs, respectively. The electron transfer from both the quantum state and the localized state in PbSe QDs to TiO₂ takes place fast and efficiently. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729881]

Quantum dots (QDs) have recently attracted much attention as a light harvesting element in solar cells. Quantum size effect changes both the highest occupied molecular orbital (HOMO) level and the lowest unoccupied molecular orbital (LUMO) level, and the HOMO-LUMO gap of PbSe and PbS QDs covers the solar spectrum ranging from the visible region to the infrared region. Strong spatial confinement of electrons in QDs enhances the Coulomb interaction among electrons and holes and carrier multiplication followed by the absorption of a high energy photon.¹ A highly efficient solar cell of layered PbSe QDs having Schottky barriers and p–n junctions was reported.² A Grätzel-type solar cell sensitized by PbS QDs was also reported.³ Solar cells sensitized by QDs are based on efficient charge transfer from QDs to transparent conducting oxides like dye-sensitized solar cells. Especially efficient electron transfer from PbSe QDs to TiO₂ particles is expected in the same manner as dye-sensitized solar cells, if the LUMO level of PbSe QDs is higher than that of TiO₂. Fast electron transfer assures efficient electron transfer. Fast electron transfer from PbSe and PbS QDs to TiO₂ particles is expected through the linker molecules but the transfer times reported so far are scattered depending on interfaces between QDs and TiO₂. Electron transfer from PbSe QDs to TiO₂ particles was reported to be slow in 100 ns range⁴ or to take place in 1.2 ns,⁵ while hot electron transfer from PbSe QDs to a TiO₂ crystal was reported to take place in subpicosecond.⁶ In this report we show the electron transfer from PbSe QDs to the porous TiO₂ film takes place in picosecond range which is much faster than the electron-hole recombination time.

Samples investigated in this study are chemically synthesized PbSe QDs capped by oleic acid with the lowest clear optical absorption band. PbSe QDs capped by oleic acid in trichloroethylene (TCE) solvent, PbSe QDs linked to either TiO₂ particles through bifunctional linker molecules, 3-mercaptopropionic acid (MPA), in TCE solvent or porous anatase TiO₂ film linked to MPA were studied.⁷ Absorption spectra and photoluminescence (PL) spectra of 2 samples of PbSe QDs are shown in Fig. 1. The smaller PbSe QDs show the lowest-energy absorption peak at 1070 nm (1.16 eV) and a PL peak at 1145 nm (1.08 eV). Small Stokes shift of the PL suggests the localization of electron-hole pairs. The average diameter, D, of PbSe QDs is evaluated to be 2.7 nm on the basis of the relationship \(E_{\text{H-L}} = 0.278 + 1/(0.016D^2 + 0.209D) \) between the HOMO-LUMO gap energy, \(E_{\text{H-L}} \) (eV), equal to the absorption peak energy and the diameter, \(D(\text{nm}) \), which fits well experimental PbSe data from many studies.⁸ The larger PbSe QDs show the lowest-energy absorption peak at 1471 nm (0.843 eV) and a PL peak at 1475 nm (0.840 eV). The average diameter of PbSe QDs is evaluated to be 4.7 nm.

Femtosecond pump-probe measurement was done at the room temperature by means of a 250 kHz optical parametric amplifier (OPA) pumped by a Ti:sapphire regenerative amplifier (REGA) system. Pump pulses at 802 nm (band width = 9 nm) were the output of REGA and probe pulses (band width = 20–30 nm) coming from OPA were resonant to the absorption peak of the lowest \(1_s - 1_s \) transition of PbSe QDs. Excitation densities of the pump and the probe were 22–52 \(\mu J/cm^2 \) and 0.8–4 \(\mu J/cm^2 \), respectively. The pulse width was 225 fs. Sub-nanosecond time-resolved absorption spectra and PL spectra of 2 samples of PbSe QDs are shown in Fig. 1. The smaller PbSe QDs show the lowest-energy absorption peak at 1070 nm (1.16 eV) and a PL peak at 1145 nm (1.08 eV). Small Stokes shift of the PL suggests the localization of electron-hole pairs. The average diameter, D, of PbSe QDs is evaluated to be 2.7 nm on the basis of the relationship \(E_{\text{H-L}} = 0.278 + 1/(0.016D^2 + 0.209D) \) between the HOMO-LUMO gap energy, \(E_{\text{H-L}} \) (eV), equal to the absorption peak energy and the diameter, \(D(\text{nm}) \), which fits well experimental PbSe data from many studies.⁸ The larger PbSe QDs show the lowest-energy absorption peak at 1471 nm (0.843 eV) and a PL peak at 1475 nm (0.840 eV). The average diameter of PbSe QDs is evaluated to be 4.7 nm.

Femtosecond pump-probe measurement was done at the room temperature by means of a 250 kHz optical parametric amplifier (OPA) pumped by a Ti:sapphire regenerative amplifier (REGA) system. Pump pulses at 802 nm (band width = 9 nm) were the output of REGA and probe pulses (band width = 20–30 nm) coming from OPA were resonant to the absorption peak of the lowest \(1_s - 1_s \) transition of PbSe QDs. Excitation densities of the pump and the probe were 22–52 \(\mu J/cm^2 \) and 0.8–4 \(\mu J/cm^2 \), respectively. The pulse width was 225 fs. Sub-nanosecond time-resolved absorption spectra and PL spectra of 2 samples of PbSe QDs are shown in Fig. 1. The smaller PbSe QDs show the lowest-energy absorption peak at 1070 nm (1.16 eV) and a PL peak at 1145 nm (1.08 eV). Small Stokes shift of the PL suggests the localization of electron-hole pairs. The average diameter, D, of PbSe QDs is evaluated to be 2.7 nm on the basis of the relationship \(E_{\text{H-L}} = 0.278 + 1/(0.016D^2 + 0.209D) \) between the HOMO-LUMO gap energy, \(E_{\text{H-L}} \) (eV), equal to the absorption peak energy and the diameter, \(D(\text{nm}) \), which fits well experimental PbSe data from many studies.⁸ The larger PbSe QDs show the lowest-energy absorption peak at 1471 nm (0.843 eV) and a PL peak at 1475 nm (0.840 eV). The average diameter of PbSe QDs is evaluated to be 4.7 nm.

Femtosecond pump-probe measurement was done at the room temperature by means of a 250 kHz optical parametric amplifier (OPA) pumped by a Ti:sapphire regenerative amplifier (REGA) system. Pump pulses at 802 nm (band width = 9 nm) were the output of REGA and probe pulses (band width = 20–30 nm) coming from OPA were resonant to the absorption peak of the lowest \(1_s - 1_s \) transition of PbSe QDs. Excitation densities of the pump and the probe were 22–52 \(\mu J/cm^2 \) and 0.8–4 \(\mu J/cm^2 \), respectively. The pulse width was 225 fs. Sub-nanosecond time-resolved absorption spectra and PL spectra of 2 samples of PbSe QDs are shown in Fig. 1. The smaller PbSe QDs show the lowest-energy absorption peak at 1070 nm (1.16 eV) and a PL peak at 1145 nm (1.08 eV). Small Stokes shift of the PL suggests the localization of electron-hole pairs. The average diameter, D, of PbSe QDs is evaluated to be 2.7 nm on the basis of the relationship \(E_{\text{H-L}} = 0.278 + 1/(0.016D^2 + 0.209D) \) between the HOMO-LUMO gap energy, \(E_{\text{H-L}} \) (eV), equal to the absorption peak energy and the diameter, \(D(\text{nm}) \), which fits well experimental PbSe data from many studies.⁸ The larger PbSe QDs show the lowest-energy absorption peak at 1471 nm (0.843 eV) and a PL peak at 1475 nm (0.840 eV). The average diameter of PbSe QDs is evaluated to be 4.7 nm.

Femtosecond pump-probe measurement was done at the room temperature by means of a 250 kHz optical parametric amplifier (OPA) pumped by a Ti:sapphire regenerative amplifier (REGA) system. Pump pulses at 802 nm (band width = 9 nm) were the output of REGA and probe pulses (band width = 20–30 nm) coming from OPA were resonant to the absorption peak of the lowest \(1_s - 1_s \) transition of PbSe QDs. Excitation densities of the pump and the probe were 22–52 \(\mu J/cm^2 \) and 0.8–4 \(\mu J/cm^2 \), respectively. The pulse width was 225 fs. Sub-nanosecond time-resolved absorption spectra and PL spectra of 2 samples of PbSe QDs are shown in Fig. 1. The smaller PbSe QDs show the lowest-energy absorption peak at 1070 nm (1.16 eV) and a PL peak at 1145 nm (1.08 eV). Small Stokes shift of the PL suggests the localization of electron-hole pairs. The average diameter, D, of PbSe QDs is evaluated to be 2.7 nm on the basis of the relationship \(E_{\text{H-L}} = 0.278 + 1/(0.016D^2 + 0.209D) \) between the HOMO-LUMO gap energy, \(E_{\text{H-L}} \) (eV), equal to the absorption peak energy and the diameter, \(D(\text{nm}) \), which fits well experimental PbSe data from many studies.⁸ The larger PbSe QDs show the lowest-energy absorption peak at 1471 nm (0.843 eV) and a PL peak at 1475 nm (0.840 eV). The average diameter of PbSe QDs is evaluated to be 4.7 nm.
luminescence measurement was done by the time-correlated single photon counting with an infrared InP/InGaAsP photomultiplier and a 70 ps semiconductor laser emitting at 653 nm. Time resolution of the time-correlated single photon counting was 1 ns.

Size-dependent LUMO and HOMO energy levels of PbSe QDs are calculated on the four-band effective-mass model, although the calculated HOMO-LUMO gap and the relationship between E_{HOMO} and D shown above are used to derive the diameter of PbSe QDs. Size-dependent LUMO and HOMO levels of PbSe QDs relative to the vacuum level are plotted in Fig. 2, where the electron affinity of bulk PbSe is assumed to be -4.85 eV. The LUMO level of the porous anatase TiO$_2$ film is considered to be -4.45 eV, which is shifted from -3.9 eV of the LUMO level of TiO$_2$ particles in organic solvent. Energy crossing is expected around $D = 4$ nm. According to the Marcus theory, electron transfer between two states is dominated by the difference of the free energy between the two states and later the Marcus theory is applied to electron transfer from dyes to continuous LUMO state of semiconductors. Similarly the theory allows the electron transfer, when the LUMO level of QDs is higher than that of TiO$_2$. Therefore, we can expect electron transfer from PbSe QDs to the anatase TiO$_2$ film, if D of QDs is smaller than 4 nm.

Fast electron transfer from the quantum state of PbSe QDs to the porous TiO$_2$ film was observed in transient absorption. When the LUMO level of PbSe QDs ($D = 2.7$ nm) is higher than that of porous TiO$_2$ films (-4.45 eV), pump-probe transient absorption of PbSe QDs showed the recovery time of the bleaching becomes as short as 1 ps, as is shown in Fig. 3. The decay is well fitted by $0.98 \exp(-t/0.95[ps]) + 0.02$. On the other hand, transient absorption bleaching of PbSe QDs ($D = 2.7$ nm) in TCE solution decays slowly. The decay is well fitted by $0.31 \exp(-t/5.2[ps]) + 0.61 \exp(-t/1.1[ns])$. The $1/e$ recovery time of the bleaching is 650 ps. These observation shows the electron transfer from quantum state in PbSe QDs to TiO$_2$ takes place in 1 ps evaluated by $1/(1/1[ps] - 1/650[ps])$.

To cross-check our argument, we made pump-probe measurement of the larger PbSe QDs whose LUMO level is not higher than that of porous anatase TiO$_2$ film. The LUMO level of PbSe QDs 4.7 nm in diameter is not higher than that of the porous TiO$_2$ films (-4.45 eV). The pump-probe transient absorption shows little difference between PbSe QDs in TCE solution and PbSe QDs linked to the porous anatase TiO$_2$ film, as is shown in Fig. 3. For PbSe QDs in TCE solution the decay is well fitted by $0.03 + 0.52 \exp(-t/30[ps]) + 0.49 \exp(-t/300[ps])$, while for PbSe QDs linked to the porous anatase TiO$_2$ film the decay is well fitted by $0.10 + 0.52 \exp(-t/35[ps]) + 0.36 \exp(-t/300[ps])$. Transient absorption time trace for PbSe QDs in TCE solution almost coincides with that for PbSe QDs linked to the porous anatase TiO$_2$ film through MPA. This observation shows that electron transfer from the quantum state of PbSe QDs ($D = 4.7$ nm) to the porous TiO$_2$ film does not take place. At the same time pump-probe transient absorption of PbSe QDs ($D = 4.7$ nm) shows that the 1 ps recovery of transient absorption observed for PbSe QDs ($D = 2.7$ nm) linked to the porous anatase TiO$_2$ film is ascribed to fast electron transfer from PbSe QDs to the porous anatase TiO$_2$ film and is not to the nonradiative decay caused by the oxidation.

The pump-probe transient absorption shows little difference between PbSe QDs ($D = 2.4$ nm) in TCE solution and PbSe QDs linked to TiO$_2$ particles in TCE solution. This is because electron transfer from PbSe QDs ($D = 2.4$ nm) to TiO$_2$ particles in organic solution is difficult because of the relative LUMO energies of them. The LUMO level of the PbSe QDs is still lower than that of TiO$_2$ particles in TCE (-3.9 eV), even if electrostatic energy shift of the charged
dielectric sphere is included.4,14,15 Then pump-probe transient absorption of PbSe QDs showed the recovery time of bleaching is longer than 1 ns.

Time-correlated single photon counting of PL gives the lifetime of localized electron-hole pairs in PbSe QDs (\(D = 2.7\) nm) linked to a TiO\(_2\) porous film and in TCE solution. For both the samples, the experimental data are well fit by the double exponential decay, as shown in Fig. 4. The PL decay of PbSe QDs in TCE solution is fitted by

\[
0.06 \exp(-t/1.42[\text{ns}]) + 0.89 \exp(-t/1.14[\mu\text{s}]),
\]

while the PL decay of PbSe QDs linked to a porous TiO\(_2\) films is fitted by

\[
0.73 \exp(-t/2.9[\text{ns}]) + 0.16 \exp(-t/45[\text{ns}]).
\]

The PL of PbSe QDs linked to a porous TiO\(_2\) films decays in the 1/\(e\) time of 4.2 ns, while the PL of the PbSe QDs in TCE decays in the 1/\(e\) time of 1.3 \(\mu\)s. The shortening of PL decay, \(1/(1/4.2[\text{ns}]-1/1.14[\mu\text{s}])\), indicates the electron transfer from the localized state in PbSe QDs to TiO\(_2\) takes place in 4.2 ns.

We consider the localization of electron-hole pairs in PbSe QDs shortens the lifetime of the quantum state of PbSe QDs and supplies PL. We show the electron transfer from the quantum state and the localized state of PbSe QDs to the porous TiO\(_2\) film takes place in the picosecond and nanosecond ranges which are much faster than the lifetime of the quantum state in the subnanosecond range and the electron-hole recombination time in the microsecond range, respectively. It means the electron transfer efficiency is as high as 1.

In summary, we have studied the energy transfer from PbSe QDs to TiO\(_2\) particles by means of transient recovery of absorption bleaching and PL decay. We demonstrated the efficient electron transfer from PbSe QDs to the porous anatase TiO\(_2\) films, when the LUMO level of PbSe QDs is higher than that of porous anatase TiO\(_2\). The observed transfer time is 1ps which is much shorter than the lifetime of the quantum state of 650ps and the recombination time of 1.3 \(\mu\)s. It means the transfer efficiency is 1.

Authors acknowledge Dr. D. Sekiba at University of Tsukuba, Dr. T. Iimori, and Professor F. Komori at the University of Tokyo for the ultraviolet photoelectron spectroscopy measurement. This work was supported by Innovative Research Support Program (Pilot Model) of University of Tsukuba, Japan.

6W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X.-Y. Zhu, \textit{Science} \textbf{328}, 1543 (2010).
7Crystal structure of the porous TiO\(_2\) film was determined to be anatase (90%) and rutile (10%) by x-ray diffraction.
10The LUMO level of the porous anatase TiO\(_2\) film in vacuum was measured to be \(-4.4\) eV based on the ultraviolet photoelectron spectroscopy and the optical absorption spectroscopy.
15Electrostatic energy shift of the LUMO level of the ionized dielectric sphere (\(D = 2.4\) nm) in organic solution is evaluated to be 0.16 eV.