A tt^*-bundle associated with a harmonic map from a Riemann surface into a sphere

Sanae Kurosua, Katsuhiro Moriyab

a Department of Mathematics, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, JAPAN

b Institute of Mathematics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8571, JAPAN

Abstract

A tt^*-bundle is constructed by a harmonic map from a Riemann surface into an n-dimensional sphere. This tt^*-bundle is a high-dimensional analogue of a quaternionic line bundle with a Willmore connection. For the construction, a flat connection is decomposed into four parts by a fiberwise complex structure.

Keywords: tt^*-bundle, harmonic map, the Clifford algebra

2010 MSC: 53C43, 81R12

1. Introduction

A tt^*-bundle is a real vector bundle equipped with a family of flat connections, parametrized by a circle. The present paper delivers a tt^*-bundle derived from a harmonic map from a Riemann surface to an n-dimensional sphere.

The notion of tt^*-bundles is introduced by Schäfer [10] as a simple solution to a generalized version of the equation of topological-antitopological fusion, introduced by Cecotti and Vafa [2], in terms of real differential geometry. A topological-antitopological fusion of a topological field theory model is a special geometry structure on a Frobenius manifold. As a geometric interpretation of a special geometry structure on a quasi-Frobenius manifold, Dubrovin [6] showed that a solution to the equation is locally a pluriharmonic map from an n-dimensional quasi-Frobenius manifold to the symmetric space $\text{GL}(n, \mathbb{R})/\text{O}(n)$.
Schäfer [10] showed that an admissible pluriharmonic map from a simply connected complex manifold \(M \) to a symmetric space \(\text{GL}(r, \mathbb{R})/\text{O}(p, q) \), and that to \(\text{SL}(r, \mathbb{R})/\text{SO}(p, q) \) with \(p + q = r \), gives rise from a metric \(tt^* \)-bundle. A harmonic map from a Riemann surface to \(\text{SU}(1, 1)/\text{SU}(1) \times \text{U}(1) \cong \text{SL}(2, \mathbb{R})/\text{SO}(2) \) is obtained by the generalized Weierstrass representation formula by Dorfmeister, Pedit, and Wu [5]. The Gauss map of a spacelike surface of constant mean curvature in the Minkowski space \(\mathbb{R}^{2,1} \) is a harmonic map from a Riemann surface to \(\text{SL}(2, \mathbb{R})/\text{SO}(2) \). The Sym-Bobenko formula (Bobenko [1], Dorfmeister and Haak [4]) connects a surface and its Gauss map. Applying these formulae, Dorfmeister, Guest, and Rossman [3] gave the description of the quantum cohomology of \(\mathbb{C}P^1 \). The quantum cohomology of \(\mathbb{C}P^1 \) provides a solution to the third Painlevé equation.

A surface of constant mean curvature in \(\mathbb{R}^3 \) is an interesting research subject in the theory of surfaces. Its Gauss map is a harmonic map from a Riemann surface to the two-dimensional sphere \(S^2 \). It is impossible to write \(S^2 \) as a symmetric space \(\text{GL}(r, \mathbb{R})/\text{O}(p, q) \) or \(\text{SL}(r, \mathbb{R})/\text{SO}(p, q) \). This led the authors to find a \(tt^* \)-bundle for a harmonic map into \(S^2 \). The theory of a quaternionic line bundle with a Willmore connection by Ferus, Leschke, Pedit, and Pinkall [8] provides a way to construct a \(tt^* \)-bundle for a harmonic map from a Riemann surface into \(S^2 \). This method is extended and a \(tt^* \)-bundle associated with a harmonic map from a Riemann surface into \(S^n \) \((n \geq 2)\) is obtained (Theorem 4.1).

2. \(tt^* \)-bundles

We recall a \(tt^* \)-bundle (Schäfer [10]).

Let \(M \) be a complex manifold with complex structure \(J^M \). For a one-form \(\omega \) on \(M \), we define a one-form \(\ast \omega \) on \(M \) by \(\ast \omega := \omega \circ J^M \). Let \(E \) be a trivial real vector bundle of rank \(n \) over \(M \), \(\nabla \) a connection on \(E \), and \(S \) a one-form with values in the real endomorphisms of \(E \). A one-form \(S \) is considered as a one-form with values in \(n \)-by-\(n \) real matrices. Define a family of connections \(\{\nabla^\theta\}_{\theta \in \mathbb{R}} \) on \(E \) by

\[
\nabla^\theta := \nabla + \cos(\theta) S + \sin(\theta) \ast S.
\]
The curvature of ∇^θ is
\[
d^\nabla^\theta \circ \nabla^\theta = d^\nabla \circ \nabla + (\cos \theta) d^\nabla S + (\sin \theta) d^\nabla *S \\
+ ((\cos \theta) S + (\sin \theta) *S) \wedge ((\cos \theta) S + (\sin \theta) *S) \\
= d^\nabla \circ \nabla + (\cos \theta) d^\nabla S + (\sin \theta) d^\nabla *S \\
+ (\cos \theta)^2 S \wedge S + \cos \theta \sin \theta (S \wedge *S + *S \wedge S) + (\sin \theta)^2 *S \wedge *S \\
= d^\nabla \circ \nabla + (\cos \theta) d^\nabla S + (\sin \theta) d^\nabla *S \\
+ \frac{1 + \cos 2\theta}{2} S \wedge S + \frac{\sin 2\theta}{2} (S \wedge *S + *S \wedge S) + \frac{1 - \cos 2\theta}{2} *S \wedge *S \\
= d^\nabla \circ \nabla + \frac{1}{2} S \wedge S + \frac{1}{2} *S \wedge *S \\
+ (\cos \theta) d^\nabla S + (\sin \theta) d^\nabla *S \\
+ \frac{\cos 2\theta}{2} (S \wedge *S + *S \wedge S) + \frac{\sin 2\theta}{2} (S \wedge *S + *S \wedge S).
\]

A vector bundle E with ∇ and S is called a tt^*-bundle if ∇^θ is flat for all $\theta \in \mathbb{R}$. By the preceding calculation, a vector bundle E with ∇ and S is a tt^*-bundle, if and only if
\[
d^\nabla \circ \nabla + S \wedge S = 0, \quad d^\nabla S = 0, \quad d^\nabla *S = 0, \\
S \wedge S = *S \wedge *S, \quad S \wedge *S = - *S \wedge S.
\]

Indeed,
\[
(S \wedge *S + *S \wedge S)(X, Y) \\
= S(X)S(Y) - S(Y)S(X) - S(J^MX)S(J^MY) + S(J^MY)S(J^MX) \\
= -S(X)S(J^M,J^MY) + S(J^M,J^MY)S(X) \\
- S(J^MX)S(J^MY) + S(J^MY)S(J^MX) \\
= -S(X)S(J^M,J^MY) + S(J^MY)S(J^MX) \\
+ S(J^M,J^MY)S(X) - S(J^MX)S(J^MY) \\
= -(S \wedge *S + *S \wedge S)(X, J^MY)
\]

for any tangent vectors X, Y of M. Hence, $S \wedge S = *S \wedge *S$ is equivalent to $S \wedge *S = - *S \wedge S$. Then, a vector bundle E with ∇ and S is a tt^*-bundle, if and only if
\[
d^\nabla \circ \nabla + S \wedge S = 0, \quad d^\nabla S = 0, \quad d^\nabla *S = 0, \quad S \wedge S = *S \wedge *S.
(see Schäfer [10], Proposition 1).

Assume that E with ∇ and S forms a tt^*-bundle. Define F as the complexification of E, that is, $F := \mathbb{C} \otimes E$. Denote the complex-linear extensions of ∇ and S by the same notations respectively. Define a family of connections \[\{\nabla^\mu\}_{\mu \in \mathbb{C} \setminus \{0\}}\] of F by

\[
\nabla^\mu = \nabla + \frac{1}{\mu} C + \mu \bar{C}, \quad C = \frac{1}{2} (S - i * S). \tag{1}
\]

Then C is a $(1,0)$-form on M with values in complex linear endmorphisms of F. The tt^*-bundle E with ∇ and S is the real part of F with ∇^μ if and only if $|\mu| = 1$.

Proposition 2.1. For each $\mu \in \mathbb{C} \setminus \{0\}$, the connection ∇^μ is flat.

Proof. As E with ∇ and S is a tt^*-bundle, it follows that

\[
d^C = 0, \quad d\bar{C} = 0,
\]

\[
C \wedge C = \frac{1}{4} (S \wedge S - iS \wedge *S - i * S \wedge S - *S \wedge *S) = 0,
\]

\[
C \wedge \bar{C} = \frac{1}{4} (S \wedge S + iS \wedge *S - i * S \wedge S + *S \wedge *S) = \frac{1}{2} (S \wedge S + iS \wedge *S).
\]

Then

\[
d^{\nabla^\mu} \circ \nabla^\mu = d^C \circ \nabla + \left(\frac{1}{\mu} C + \mu \bar{C} \right) \wedge \left(\frac{1}{\mu} C + \mu \bar{C} \right)
\]

\[= d^C \circ \nabla + C \wedge \bar{C} + \bar{C} \wedge C
\]

\[= d^C \circ \nabla + S \wedge S = 0.
\]

Hence ∇^μ is flat. \hfill \Box

Adding the assumption in Proposition 2.1, we assume that there exists a hermitian pseudo-metric h on F, and a metric connection ∇ with respect to h, such that

\[h(C(X)a,b) = h(a, \bar{C}(X)b),\]

where $a, b \in \Gamma(F)$, and X is a vector field of type $(1,0)$ on M. Then $(F, \nabla, C, \bar{C}, h)$ becomes a harmonic bundle defined in Schäfer [11].
3. Decomposition of a connection

We obtain a condition for a map from a Riemann surface into a sphere, to become a harmonic map, by decomposing a flat connection into four parts.

Let Cl_n be the Clifford algebra associated with \mathbb{R}^n and the quadratic form $x_1^2 + x_2^2 + \cdots + x_n^2$ (see Lawson and Michelsohn [9]). The Clifford algebra Cl_n is the algebra generated by an orthonormal basis e_1, \ldots, e_n subject to the relation

$$e_i e_j + e_j e_i = -2\delta_{ij}.$$

Then Cl_n is identified with \mathbb{R}^{2^n}. The set

$$\{a \in \mathbb{R}^n \subset \text{Cl}_n \mid a^2 = -1\}$$

is an $(n - 1)$-dimensional unit sphere $S^{n-1} \subset \mathbb{R}^n \subset \text{Cl}_n \cong \mathbb{R}^{2^n}$.

Let M be a Riemann surface with complex structure J^M and V be the trivial associate bundle of a principal Cl_n-bundle, with right Cl_n action, over M. We denote the set of smooth sections of V by $\Gamma(V)$ and the fiber of V at p by V_p. Let $\Omega^m(V)$ be the set of V-valued m-forms on M for every non-negative integer m. Then $\Omega^0(V) = \Gamma(V)$. Let W be another trivial associate bundle of a principal Cl_n-bundle, with right Cl_n action, over M. We denote by $\text{Hom}(V,W)$ the Cl_n-homomorphism bundle from V to W. Let N be a smooth section of the Clifford endomorphism bundle $\text{End}(V)$ of V such that $-N_p \circ N_p$ is the identity map Id_p on V_p for every $p \in M$. The section N is a complex structure at each fiber of V. We have a splitting $\text{End}(V) = \text{End}(V)_+ \oplus \text{End}(V)_-$, where

$$\text{End}(V)_+ = \{\xi \in \text{End}(V) : N\xi = \xi N\},$$

$$\text{End}(V)_- = \{\xi \in \text{End}(V) : N\xi = -\xi N\}.$$

This splitting induces a decomposition of $\xi \in \text{End}(V)$ into $\xi = \xi_+ + \xi_-$, where $\xi_+ = (\xi - N\xi N)/2 \in \text{End}(V)_+$ and $\xi_- = (\xi + N\xi N)/2 \in \text{End}(V)_-.$

Let $T^*M \otimes_{\mathbb{R}} V$ be the tensor bundle of the cotangent bundle T^*M of M and V over real numbers. We set $\ast \omega = \omega \circ J^{T^*M}$ for every $\omega \in \Omega^1(V)$. We have a splitting $T^*M \otimes_{\mathbb{R}} V = KV \oplus \bar{KV}$, where

$$KV = \{\eta \in T^*M \otimes_{\mathbb{R}} V : \ast \eta = N\eta\}, \quad \bar{KV} = \{\eta \in T^*M \otimes_{\mathbb{R}} V : \ast \eta = -N\eta\}.$$

This splitting induces the type decomposition of $\eta \in T^*M \otimes_{\mathbb{R}} V$ into $\eta = \eta' + \eta''$, where $\eta' = (\eta - N \ast \eta)/2 \in KV$ and $\eta'' = (\eta + N \ast \eta)/2 \in \bar{KV}$.
Let C be the right trivial Clifford bundle over M with fiber $C\ell_n$. We identify a smooth map $\phi: M \to C\ell_n$ with a smooth section $p \mapsto (p, \phi(p))$ of C. The bundle $\text{End}(C)$ is identified with C, by the identification of $\xi_p \in \text{End}(C)_p$ with $P_p \in C_p$ such that $\xi_p(1) = P_p$ for every $p \in M$. We assume that N takes values in $\mathbb{R}^n \subset C\ell_n$. Then N is considered as a map from M to $S^{n-1} \subset \mathbb{R}^n$. Then $T^*M \otimes \mathbb{R} C$ decomposes as

$$T^*M \otimes \mathbb{R} C = (KC)_+ \oplus (KC)_- \oplus (\bar{K}C)_+ \oplus (\bar{K}C)_-.$$

According to this decomposition, a connection $\nabla: \Gamma(C) \to \Omega^1(C)$ of the Clifford bundle C decomposes as

$$\nabla = \partial^\nabla + A^\nabla + \bar{\partial}^\nabla + Q^\nabla,$$

$$\nabla': \Gamma(C) \to \Gamma(KC), \quad \nabla'\phi = (\nabla\phi)',$$

$$\nabla'': \Gamma(C) \to \Gamma(\bar{K}C), \quad \nabla''\phi = (\nabla\phi)'',$$

$$\partial^\nabla: \Gamma(C) \to \Gamma((KC)_+), \quad \partial^\nabla\phi = (\nabla\phi)_+,$$

$$A^\nabla \in \Gamma(\text{Hom}(C, (KC)_-)), \quad A^\nabla\phi = (\nabla'\phi)_-,$$

$$\bar{\partial}^\nabla: \Gamma(C) \to \Gamma((\bar{K}C)_+), \quad \bar{\partial}^\nabla\phi = (\nabla''\phi)_+,$$

$$Q^\nabla \in \Gamma(\text{Hom}(C, (\bar{K}C)_-)), \quad Q^\nabla\phi = (\nabla''\phi)_-,$$

where ϕ is any smooth section of C. We see that A^∇ and Q^∇ are tensorial, that is, $A^\nabla \in \Gamma(\text{Hom}(C, (KC)_-))$ and $Q^\nabla \in \Gamma(\text{Hom}(C, (\bar{K}C)_-))$. The sections A^∇ and Q^∇ are called the Hopf fields of ∇' and ∇'' respectively.

We denote by d the trivial connection on C.

Lemma 3.1. A map $N: M \to S^{n-1} \subset \mathbb{R}^n \subset C\ell_n$ is a harmonic map, if and only if $d * A^d = 0$.

Proof. The Hopf field A^d satisfies the equation

$$A^d\phi = \frac{1}{2} \left[(d'+ Jd'J) \right] \phi$$

$$= \frac{1}{4} \left[(d - J * d + J(d - J * d)J) \right] \phi$$

$$= \frac{1}{4} \left[(d\phi) - N * (d\phi) + [N(dN)\phi - d\phi] + [*(dN)\phi + N * d\phi] \right]$$

$$= \frac{1}{4} \left[N(dN) + *(dN) \right] \phi$$

6
for every \(\phi \in \Gamma(C) \). Hence

\[
d * A^d = \frac{1}{4} (dN \wedge * dN + Nd * dN).
\]

Hence \(d * A^d = 0 \) if and only if

\[
dN \wedge * dN + Nd * dN = 0.
\]

For an isothermal coordinate \((x, y)\) such that \(x + yi\) is a holomorphic coordinate, a map \(N: M \to S^{n-1} \subset \mathbb{R}^n \subset C\ell_n \) is a harmonic map if and only if

\[
\Delta N = -(N_{xx} + N_{yy})dx \wedge dy = |dN|^2 N
\]

(see Eells and Lemaire [7]). We have

\[
d * dN = d * (N_x dx + N_y dy) = d(-N_x dy + N_y dx)
\]

\[
= -(N_{xx} + N_{yy})dx \wedge dy = \Delta N,
\]

\[
dN \wedge * dN = (N_x dx + N_y dy) \wedge (-N_x dy + N_y dx) = (-N_x^2 - N_y^2)dx \wedge dy
\]

\[
= (|N_x|^2 + |N_y|^2)dx \wedge dy = |dN|^2,
\]

where the Clifford multiplication is used. Hence, \(N \) is a harmonic map if and only if \(d * A^d = 0 \).

4. Harmonic maps into a sphere

We construct a \(tt^* \)-bundle for a harmonic map from a Riemann surface to an \(n \)-dimensional sphere.

Let \(M \) be a Riemann surface with complex structure \(J_M \). For a one-form \(\omega \) on \(M \), define a one-form \(* \omega \) on \(M \) by

\[
* \omega = \omega \circ J_M.
\]

For one-forms \(\omega \) and \(\eta \) on \(M \) with values in \(C\ell_n \), we have the relation

\[
* \omega \wedge * \eta = \omega \wedge \eta.
\]

Indeed, for a basis \(E_1, E_2 \) of a tangent space of \(M \) with \(J^M E_1 = E_2 \), we have

\[
(\omega \wedge \eta)(qE_1 + rE_2, sE_1 + tE_2) = (qt - rs)(\omega(E_1)\eta(E_2) - \omega(E_2)\omega(E_1)),
\]

\[
(* \omega \wedge * \eta)(qE_1 + rE_2, sE_1 + tE_2) = (\omega \wedge \eta)(qE_2 - rE_1, sE_2 - tE_1)
\]

\[
= (qt - rs)(\omega(E_1)\eta(E_2) - \omega(E_2)\omega(E_1)).
\]
where \(q, r, s, t \in \mathbb{R} \).

Let \(F := M \times \mathbb{R}^2 \cong M \times C\ell_n \). For a map \(N: M \to S^{n-1} \subset \mathbb{R}^n \subset C\ell_n \), define a one-form \(S \) on \(M \) with values in \(C\ell_n \) by

\[
S := \frac{1}{4}(*dN + N dN).
\]

Lemma 4.1. \(N \) is a harmonic map if and only if the one-form \(S \) satisfies

\[
d^*S = 0.
\]

Proof. Since we have

\[
4d \ast S = d(-dN + N \ast dN) = dN \wedge \ast dN + N d \ast dN = 4d \ast A^d,
\]

this lemma follows from Lemma 3.1. \(\square \)

Theorem 4.1. A vector bundle \(F \) with \(\nabla := d - S \) and \(S \) is a \(tt^* \)-bundle.

Proof. We see that

\[
4dS = d \ast dN + dN \wedge dN = dN \wedge dN + N dN \wedge \ast dN,
\]

\[
16S \wedge S = (*dN + N dN) \wedge (*dN + N dN)
= *dN \wedge *dN + *dN \wedge N dN + N dN \wedge *dN + N dN \wedge N dN
= dN \wedge dN + N dN \wedge *dN + N dN \wedge *dN + dN \wedge dN
= 2(dN \wedge dN + N dN \wedge *dN).
\]

Hence \(dS = 2S \wedge S \) holds.

Lemma 4.1 and a direct calculation yield

\[
\nabla^\theta = d + (\cos \theta - 1)S + (\sin \theta) \ast S,
\]

\[
d^{\nabla^\theta} \circ \nabla^\theta
= (\cos \theta - 1)dS + ((\cos \theta - 1)S + (\sin \theta) \ast S) \wedge ((\cos \theta - 1)S + (\sin \theta) \ast S)
= (\cos \theta - 1)dS + (\cos \theta - 1)^2 S \wedge S + (\cos \theta - 1)(\sin \theta) S \wedge \ast S
+ (\sin \theta)(\cos \theta - 1) \ast S \wedge S + (\sin \theta)^2 \ast S \wedge \ast S
= (\cos \theta - 1)dS - 2(\cos \theta - 1)S \wedge S = 0.
\]

Hence \(F \) with \(\nabla \) and \(S \) is a \(tt^* \)-bundle. \(\square \)

For a harmonic map from a Riemann surface to \(S^2 \), we have two \(tt^* \)-bundles. One is the \(tt^* \)-bundle in Theorem 4.1. The other is that in the theory of quaternionic holomorphic line bundles (see [8]). These do not coincide directly as the fiber of the former is \(C\ell_3 \) and that of the latter is \(C\ell_2 \).
Acknowledgements.

The authors are very grateful to Claus Hertling for the comments to a preliminary version of this paper.

References

