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 21 

a-Axis-oriented undoped n-BaSi2 epitaxial films were grown on Si(111) substrates by 22 

molecular beam epitaxy, and the crystalline quality and grain boundaries were investigated by 23 

means of reflection high-energy electron diffraction, X-ray diffraction, and transmission 24 

electron microscopy (TEM). The grain size of the BaSi2 films was estimated to be 25 

approximately 0.1-0.3 µm, and straight grain boundaries (GBs) were observed in the 26 

plan-view TEM images. Dark-field TEM images under two-beam diffraction conditions 27 

showed that these GBs consist mostly of BaSi2 {011} planes. The diffusion length of minority 28 

carriers in n-BaSi2 was found to be approximately 10 µm by an electron-beam-induced 29 

current technique.  30 

31 
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1. Introduction 32 

 Solar cells have recently been receiving considerable interest as a next-generation 33 

energy source to replace conventional sources such as oil and coal. Approximately 90% of 34 

solar cells are made from silicon owing to its abundance in the earth’s crust, its well-known 35 

semiconducting properties and established handling technologies. The production of Si solar 36 

cells has been increasing year over year, and this trend is anticipated to continue in the future. 37 

However, it is difficult to realize high-efficiency thin-film solar cells using crystalline Si 38 

because the absorption coefficient is as small as approximately 103 cm-1 at 1.5 eV and the 39 

band gap is 1.1 eV. These properties are not suitable for high-efficiency thin-film solar cells 40 

[1]. Therefore, other novel Si-based materials are of great interest for solar cells. We have 41 

specifically targeted realizing pn junction solar cells using semiconducting barium disilicide 42 

(BaSi2). Composed of the abundant Ba and Si, BaSi2 has a very large absorption coefficient of 43 

3×104 cm-1 at 1.5 eV, and a band gap of 1.3 eV, matching the solar spectrum [2-4]. Thus, 44 

BaSi2 is considered to be an alternative new material to Si. Recent achievements of large 45 

photoresponsivity of BaSi2 epitaxial layers formed on Si(111) substrates and polycrystalline 46 

BaSi2 layers on SiO2 substrates have spurred interest in this material [5-7]. Orthorhombic 47 

BaSi2 is stable under ambient conditions and room temperature (RT), with lattice constants of 48 

a=0.891, b=0.672, and c=1.153 nm [8-10]. This material can be grown epitaxially on a 49 

Si(111) substrate with the orientation alignment of BaSi2(100)//Si(111), with a small lattice 50 
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mismatch of 1.0% for BaSi2[010]//Si[112] and 0.1% for BaSi2[001]//Si[110] [11]. The grain 51 

size of BaSi2 can be as small as approximately 0.1 µm [12], due to three epitaxial variants 52 

rotating around each other by 120° with respect to the surface normal [13,14]. Many grain 53 

boundaries (GBs) and other defects in a film typically deteriorate optical and electrical 54 

properties of the film. Thus, it is very important to investigate the GBs character in BaSi2. In 55 

the case of polycrystalline Si, GBs enhance carrier recombination due to their high defect 56 

densities [15], however this recombination activity depends significantly on the GB character 57 

due to the difference in the ability of gettering impurities. For example, low-Σ GBs such as Σ3 58 

do not act as defect centers of minority carriers [16]. On the other hand, it is thought that 59 

recombination of carriers is suppressed by the local built-in potential at the GBs in the case of 60 

GBs in Cu(InGa)Se2 [17]. However, there have been no reports thus far on GBs in BaSi2 61 

epitaxial films. The diffusion length of minority carriers, a key parameter determining the 62 

performance of solar cells, has yet to be evaluated in BaSi2. The electron-beam-induced 63 

current (EBIC) technique is considered to be a powerful method for investigating the 64 

electrical properties of various semiconductor materials [18].  65 

In this study, we grew a-axis-oriented BaSi2 epitaxial films on Si(111) substrates by 66 

molecular beam epitaxy (MBE) and examined the GBs by transmission electron microscopy 67 

(TEM). It was found, from plan-view TEM images and selected-area electron diffraction 68 

(SAED) patterns, that the GBs in these BaSi2 epitaxial films are composed mostly of 69 
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BaSi2{011} planes. We also evaluated the minority-carrier (holes) diffusion length in n-type 70 

BaSi2 epitaxial layers using the EBIC technique.  71 

 72 

2. Experimental procedures 73 

A two-stage growth method was adopted, which included reactive deposition epitaxy 74 

(RDE; Ba deposition on hot Si) and molecular beam epitaxy (MBE; co-deposition of Ba and 75 

Si) to form thick BaSi2 films [10]. The RDE process was carried out for deposition of a 76 

template layer as a BaSi2 precursor prior to the subsequent MBE process [13,14]. The same 77 

growth method was successfully utilized for the epitaxial growth of semiconducting β-FeSi2 78 

films on both Si(001) and Si(111) substrates [19,20]. An ultrahigh vacuum (UHV) chamber 79 

equipped with a Knudsen cell for Ba and an electron beam gun for Si was employed. Before 80 

the growth, the n-Si substrates (ρ= 0.1 Ω·cm) were prepared by subjecting them to the 81 

following treatment. The substrates were washed using RCA clean steps, which removed 82 

organic and metallic contaminants. The substrates were then annealed at 830 °C for 30 min in 83 

the UHV (1 × 10-6 Pa) chamber to remove the protective SiO2 layers. After annealing, a 7×7 84 

streaky reflection high-energy electron diffraction (RHEED) pattern was observed, indicating 85 

a clean Si surface. 86 

We fabricated 300-nm-thick undoped n-BaSi2 films by RDE at 550 °C for 5 min, 87 

followed by MBE at 600 °C for 120 min. Undoped BaSi2 shows n-type conductivity with 88 
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electron concentrations of approximately 1016 cm-3 [2]. The crystalline quality of the films 89 

was evaluated using RHEED and θ-2θ X-ray diffraction (XRD) measurements. In order to 90 

investigate the grain size of BaSi2 and GBs, plan-view TEM samples prepared by mechanical 91 

polishing and ion milling were observed using TOPCON EM-002B operated at 120 kV. For 92 

EBIC measurements, Al/n-BaSi2 Schottky diode was formed. Front-side Schottky contacts 93 

were formed with Al on the BaSi2 surface via wire bonding, and the back-side ohmic contact 94 

was made with Al by sputtering. EBIC observations were carried out in the edge-scan 95 

configuration with a Hitachi S4300 field-emission scanning electron microscope (SEM) in the 96 

EBIC mode at RT [16]. The acceleration voltage of the electron beam, Vac, was set at 5 kV to 97 

avoid penetration of the beam into the Si substrate. The penetration depth of the electron 98 

beam is estimated to be shorter than 300 nm, which is the thickness of the BaSi2 layers, when 99 

Vac is 5 kV, with the density of BaSi2 being 5.14 g/cm3. 100 

 101 

3. Results and discussion 102 

Figure 1(a) shows RHEED patterns of MBE-grown BaSi2 observed along the Si 103 

[1-10] azimuth. Sharp streaky patterns of BaSi2 can be seen. Figure 1(b) shows the θ-2θ XRD 104 

patterns from the sample. Diffraction peaks can be seen only from (100)-oriented BaSi2 105 

planes, such as the (200), (400) and (600) planes. These results indicate that highly 106 

a-axis-oriented BaSi2 epitaxial films were grown.  107 
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Figure 2(a) shows a bright-field (BF) plan-view TEM image of the BaSi2. The 108 

incident electron beam direction was almost parallel to the BaSi2 [100] zone axis, but was 109 

slightly tilted for the GBs to be seen clearly. Because GBs are parallel to the surface normal, 110 

their contrast vanishes in the exact [100] zone axis. The BaSi2 grain size is approximately 111 

0.1-0.3 µm. We should also note here that approximately 120° sharp GBs are present, and 112 

these GBs tend to align along specific directions. Figure 2(b) presents the SAED pattern 113 

obtained from the area including several BaSi2 grains in the [100] zone axis. Considering that 114 

the GBs are caused by three different a-axis-oriented BaSi2 epitaxial variants rotated from 115 

each other by 120° with respect to the surface normal [14], the (002), (011), and (020) spots 116 

can be grouped into three, shown in red, green, and blue colors in Fig. 2(b). Considering the 117 

green and blue epitaxial variants, for example, the green (011) plane is parallel to the blue 118 

(002) plane. Thus, it can be stated that the grain boundary indicated by the white dotted line in 119 

Fig. 2(a) is composed of the green (011) plane and/or blue (002) plane. It is difficult to 120 

distinguish the green (011) plane from the blue (002) plane in the SAED pattern because their 121 

lattice spacing, d, is almost the same, that is, d(011)=0.586 nm, and d(002)=0.579 nm, 122 

respectively.  123 

Figure 3(a) shows SAED patterns obtained from single grain regions under 124 

two-beam diffraction conditions. The diffraction vectors g were set to be <004> for the three 125 

epitaxial variants shown by blue, red and green in Fig. 2(b). Under these conditions, the 126 
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diffraction spot corresponding to the (004) plane becomes bright, as seen in Fig. 3(b), while 127 

other spots denoted by (00n) (n= ± 1, ± 2, ± 3,…) can also be seen. These facts can help to 128 

distinguish (002) plane from (011) plane.   129 

Figures 4(a)-4(c) show dark-field (DF) plan-view TEM images using <004> plane 130 

reflections observed at the same sample region. The diffraction conditions of these DF images 131 

are the same as those in Fig 3(a). Under these conditions, BaSi2 grains satisfying Bragg’s 132 

condition of diffraction, indicated by the blue-, red-, or green-colored domain, are supposed to 133 

be bright in these images; in other words, one of the three BaSi2 epitaxial variants becomes 134 

bright in each figure. It should be noted that the superposition of bright regions in Figs. 135 

4(a)-4(c) covers the whole surface of BaSi2. In Figs. 4(a)-4(c), it can be seen that the GBs are 136 

parallel to the dashed lines in the blue-, red-, and green-colored BaSi2 variants, respectively. 137 

On the basis of this discussion, we conclude that the GBs are formed mostly from BaSi2 138 

{011} planes. Further discussion is mandatory to clarify why BaSi2 {011} planes are likely to 139 

form GBs.   140 

Figure 5(a) shows the current-voltage (I-V) characteristics of the Al/n-BaSi2 Schottky 141 

diode measured at RT. The bias voltage was applied to the front Al contact with respect to the 142 

sputtered Al back contact. Rectifying properties can be clearly observed. More current flows 143 

when a positive bias is applied to the Al wire with respect to the back contact. These results 144 

indicate that the Al/n-BaSi2 junction forms a Schottky diode.  145 
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Figures 6(a)(b) and 6(c)(d) show secondary-electron (SE) and EBIC images around 146 

the Al contact, respectively, with Vac = 5 kV. In the EBIC method, carriers generated within 147 

the diffusion length in the n-type BaSi2 are collected by the electric field under the Al contact 148 

and sensed as a current in the external circuit. In Figs. 6(c)(d), the brighter regions show 149 

higher collection of electron-beam-induced carriers in the BaSi2. We cannot see defect-related 150 

black lines. Figure 7 shows the EBIC line-scan data along dotted line AA’ in Fig. 6(c). The 151 

EBIC profile shows an exponential dependence of the distance from the Al contact. In this 152 

work, the diffusion length of minority carriers was roughly estimated to be approximately 10 153 

µm, assuming that the EBIC profile varies as exp(-x/L), where x is the distance from the Al 154 

edge (point A) along the dotted line, and L is the diffusion length of holes for BaSi2. The 155 

obtained minority-carrier diffusion length is much larger than the grain size of the BaSi2, 156 

implying that the GBs do not work as defect centers for minority carriers in n-BaSi2. The 157 

contribution of carriers generated within the n-Si substrate to the measured EBIC signals can 158 

be excluded, because the simulated penetration depth of the electron beam is shorter than 300 159 

nm, the thickness of the BaSi2 layers, when Vac is 5 kV. Thus, it is reasonable to think that the 160 

number of carriers generated within the Si substrate was negligibly small compared to those 161 

generated in the BaSi2 layers. To confirm the GBs character, an EBIC system with spatial 162 

resolutions less than 0.1 µm may be necessary. We should also note here that the obtained 163 

minority-carrier diffusion length is roughly 30 times larger than 1/α (=0.3 µm) at 1.5 eV, 164 
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suggesting that this value is large enough for solar cell applications.  165 

 166 

4. Conclusions 167 

We investigated the crystalline quality and GBs in a-axis-oriented BaSi2 epitaxial 168 

films grown on Si(111) substrates by MBE using RHEED, XRD, and TEM. The grain size in 169 

the BaSi2 films was found to be approximately 0.1-0.3 µm. Detailed investigation of BF and 170 

DF TEM images and SAED patterns showed that the GBs in the BaSi2 epitaxial layers consist 171 

mostly of BaSi2 {011} planes. The EBIC techniques revealed that the diffusion length of 172 

minority carriers was estimated to be approximately 10 µm, much larger than the grain size of 173 

the BaSi2.  174 
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Fig.1 (a) RHEED patterns of MBE-grown BaSi2 observed along the Si[1-10] azimuth (b) θ-2θ 212 
XRD pattern. 213 

 214 

Fig.2 (a) Plan-view BF TEM image near the [100] zone axis of BaSi2, and (b) SAED pattern 215 

(crystallographic orientation) obtained from the area including several BaSi2 grains in the 216 

exact [100] zone axis. 217 

 218 

Fig. 3 (a) SAED patterns obtained from single grain regions under two-beam diffraction 219 

conditions. The diffraction vectors g were set to three different <004> directions. (b) Enlarged 220 

SAED pattern.  221 

 222 

Fig.4(a)-(c) DF TEM images under two-beam diffraction conditions. The diffraction vector g 223 

was set to be <004> for each epitaxial variant. The schematics of three epitaxial variants of 224 

BaSi2 are shown. The colored domains look bright in each DF TEM image. The dashed lines 225 

correspond to {011} planes.  226 

 227 

Fig. 5 I-V characteristics of the Al/n-BaSi2 Schottky diode at RT. 228 

 229 

Fig. 6 (a)(b) SE and (b)(d) EBIC images around the Al contact.  230 

 231 
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Fig. 7 Experimental and simulated (solid line) EBIC line-scan profiles along the dotted line 232 

from points A to A’ in Fig. 6(c). 233 
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