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We demonstrate that a simple two-color ionization measurement can be used to extract the time of birth of
attosecond extreme ultraviolet pulses. A high-order-harmonic attosecond pulse train generated in xenon gas is
used to excite a laser-dressed helium atom, which we model using the Floquet formalism. The interference
between ionization paths from different Fourier components of the Floquet states results in the oscillation of
ion yield with time delay. Using two IR pulses to create a reference intensity modulation, we obtain the phase
of ion-yield oscillations, which provides the absolute timing of attosecond bursts with respect to the driving IR
field.
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The discovery of laser high-order-harmonic generation
(HHG) process seeded a revolution in the field of atomic and
molecular sciences [1]. The dynamics of electrons in strong
fields and the process of high-order-harmonic generation
still represent active fields of investigation. Recently, the
HHG process itself has been used as a probe of atomic
wave functions [2] and multielectron dynamics [3]. One
important use of the HHG process is in the generation of
attosecond pulse trains (APT) and single attosecond pulses
approaching durations shorter than 100 as [1,4–7]. These
extreme-ultraviolet (XUV) attosecond sources allow direct
probing of fast electron dynamics in atoms, molecules,
and materials through photoionization and photoexcitation
mechanisms.

Due to the importance of attosecond sources in cutting-
edge investigations of atomic and molecular processes, it is
very important to have robust methods for characterizing the
spectral and temporal nature of these sources [4,8,9]. The
spectral content of attosecond bursts is often fairly easy to
obtain, but the measurement of temporal structure is nontrivial
and requires precision, pump-probe measurements of electron
spectra. For temporal characterization of single attosecond
pulses, streaking methods have been used [8]. In the case of
attosecond pulse trains, XUV pulse autocorrelation [9] and the
reconstruction of attosecond beating by interference of two-
photon transitions (RABBITT) techniques [4,10] have been
utilized. In the RABBITT approach, attosecond XUV bursts
are converted to continuum electron wave packets through
ionization of atoms in the presence of moderate strength visible
or near-infrared (IR) laser fields. The interference between
two-photon continuum transitions modulates the electronic
yield at a specific phase. Knowing this phase as a function
of energy allows characterization of the temporal profile of
attosecond bursts [4]. In such measurements, the absolute
timing of attosecond pulses relative to the driving field is
not directly accessible. However, variations of the RABBITT
method can be used to obtain the timing information [11,12].
Here, we demonstrate another straightforward method that
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provides the absolute timing of attosecond bursts directly
from ion-yield measurements in XUV + IR photoionization
of helium. One major simplification in our method is that it is
purely based on ion counting and there is no requirement of
energy-resolved measurements of electrons.

In our experimental setup, an amplified 65-fs, 785-nm
IR pulse of 1.5-mJ energy is split into two pulses using a
broadband beam splitter. One pulse of intensity ∼6 × 1013

W cm−2 is focused onto a xenon gas-filled hollow-glass
waveguide to generate high-order harmonics in the form of
an APT. The APT along with the copropagating HHG-driver
beam (IRd ) is focused onto an effusive helium gas jet using
a toroidal mirror. The copropagating IR pulse (IRd ) is phase
locked to the APT due to the mechanism of generation and has
an intensity of ∼3 × 1010 W cm−2 in the interaction region.
The second pulse (IRp) goes to a precision delay stage and
is then focused with a 50 cm lens onto the He target in the
interaction region with a peak intensity ∼3 × 1012 W cm−2.
In the interaction region, the XUV and IR fields are linearly
polarized along the z direction. Additional experimental details
can be found in an earlier publication [13]. The He+ ions are
imaged using a spatially selective Gouy phase gating technique
which allows us to eliminate Gouy phase averaging and obtain
a high-quality signal [13].

Figure 1(a) shows the configuration of the pulses used
in the experiment and defines the sign conventions used in
the theoretical model discussed below. Figure 1(b) shows
the harmonic spectra generated in Xe. There are only two
dominant harmonics (13th and 15th) in the XUV spectrum.
These harmonics are located near the field-free 2p, 4p, and 5p

atomic resonances. Under the action of a strong femtosecond
IR pulse, the He atomic structure substantially changes with
time, and the ionization pathways evolve dynamically [14]. We
will utilize the ion-yield measurements under these dynamic
conditions to extract the timing of attosecond bursts relative to
the driving IR field.

The XUV APT creates excited states in helium which
were simultaneously modified and ionized by an IR field
created by the superposition of two pulses, the driver (IRd )
and the probe (IRp). In this configuration [Fig. 1(a)] where
the APT + IRd is delayed with respect to the probe IR (IRp),
the electric fields for IRp, IRd , and net IR can be written,
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FIG. 1. (Color online) (a) The configuration of the APT, IRd , and
IRp used in the experiment. The APT is inherently phase locked to
the driver IRd at a phase δ0, which we are interested in measuring.
Our sign conventions are such that time delay τ is positive when IRd

arrives earlier in time and δ0 is positive when the attosecond bursts
are located earlier than the peak of IRd cycle. (b) The XUV spectrum
used in the experiment and the relevant He atomic states.

respectively, as

Ep = Ap cos(ωt),

Ed = Ad cos(ωt + ωτ ),

Enet =
√

I (τ ) cos[ωt + δ(τ )],

where

I (τ ) = A2
p + A2

d + 2ApAd cos(ωτ )

and

δ(τ ) = arcsin[Ad sin(ωτ )/
√

I (τ )],

where ω is the angular frequency of the IR fields.

The XUV field in the time domain can be written as an
inverse Fourier transform of the high-order-harmonic field in
the frequency domain as

EX =
∫

f (ωx)e−iωx (t+τ+δ0/ω) dωx, (1)

where f (ωx) is the harmonic spectral amplitude and δ0/ω is
the time at which the attosecond bursts are locked with respect
to the peak of IRd . This is the time of birth of the attosecond
bursts as they come out of the gas-filled capillary in which
they are generated. The measurement of δ0 thus provides the
absolute timing of the attosecond pulses.

The high-order harmonics present in the XUV pulse
excite an atom from its ground state to laser-dressed atomic
states, which can be considered as Floquet states [15,16] for
multicycle laser fields. In this picture, each Floquet state is
represented by a series of Fourier components that are spaced
by the dressing laser frequency ω. The Floquet manifold for
the atomic 2p state is shown in Fig. 2(a) along with the 13th
and 15th harmonics used for excitation in our experiment.
Mathematically, the Floquet manifold associated with an
atomic state can be written as [15–17]

ψα(t) = e−iεα [t+δ(τ )/ω]
∑

n

φαne
−inω[t+δ(τ )/ω], (2)

where εα is the quasienergy of the Floquet state and φαn is the
wave function of the nth Fourier component of this Floquet
state.

The photoexcitation probability can be calculated as the
XUV dipole matrix element from the ground state to a
Floquet state using Eqs. (1) and (2) and integrating over time.
We can then write the photoionization probability, which is
proportional to the excitation probability, as

P (τ ) ∝
∣∣∣∣∣
∑

n

〈φαn|z|φg〉f (ωn)e−in[ωτ+δ0−δ(τ )]

∣∣∣∣∣
2

, (3)

FIG. 2. (Color online) (a) The Floquet manifold corresponding to the 2p state and the two harmonics used in our experiment. The interference
between two Fourier paths leads to 2ω oscillation. (b) The net IR intensity variation at the timing of the XUV burst for the case of a single IR
pulse and two IR pulses. Use of two IR pulses leads to an intensity modulation at ω, which acts as a reference in our experiment.
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where φg is the ground-state wave function and f (ωn) is the
XUV spectral amplitude Eq. (1) at the energy corresponding
to the nth Fourier component of the excited Floquet state.

In our experiment, as we have only two dominant harmonics
(13th and 15th) in the XUV spectrum, only two Fourier
components of the Floquet state need to be considered, and
hence the ionization probability can be simplified as

P (τ ) ∝ |M0f0 + M2f2e
−i[2ωτ+2δ0−2δ(τ )+φ]|2, (4)

where M0 and M2 are the two transition matrix elements and
f0 and f2 are the strengths of the two harmonics at the energies
corresponding to the n = 0 and n = 2 components of a given
Floquet state [Fig. 2(a)]. The matrix elements depend on the
net IR intensity [I (τ ), Fig. 2(b)], which modulates at frequency
ω. Importantly, the matrix elements are real and can only be
either positive or negative. The relative sign of matrix elements
is included in this expression through φ, which can take values
0 or π .

We utilize the fact that in our experimental geometry
Ad/Ap � 1 to retain only first-order terms in Ad/Ap. This
leads to the following simplified expression for the probability
of ionization:

P (τ ) = P1(τ ) cos(ωτ ) + P2(τ ) cos(2ωτ + 2δ0 + φ). (5)

P1(τ ) and P2(τ ) are the time-delay-dependent amplitudes of
the two frequencies in the signal. The phase term δ0 is, of
course, the desired quantity in this Rapid Communication.

The ionization probability given by Eq. (5) exhibits periodic
oscillations at ω and 2ω frequencies. The experimental
measurements of the He+ ion yield shown in Fig. 3 also have an
oscillation structure with these two frequencies, indicating that
our model correctly captures the essence of the XUV + 2IR
ionization process. We note that similar 2ω oscillations have
also been observed in other experiments [18].

The half-cycle (i.e., 2ω) oscillation in Fig. 3 can be
interpreted as a quantum interference between different
Fourier components of the Floquet states [16], as illustrated
in Fig. 2(a). The one-cycle (i.e., ω) variation is due to
interference between two IR fields that leads to a net IR
intensity modulation at ω frequency [Fig. 2(b)].

FIG. 3. (Color online) Experimental He+ ion yield in the presence
of XUV and two IR fields as a function of time delay between the
APT + IRd and IRp . The fit obtained using a model for Floquet
interferences in XUV + 2IR fields described by Eq. (5) is also shown.

Before we proceed with further data analysis using our
model, it is important to realize that Eq. (5) describes the
ionization resulting from a single Floquet state. In contrast, the
helium atom has many relevant “np” atomic states, which can
all be interpreted in terms of Floquet states in the presence of an
IR field. In particular, as Fig. 1(b) shows, the field-free 2p, 4p,
and 5p atomic states are nearly resonant with the 13th and 15th
harmonics. However, if ionization contribution from a certain
Floquet state is dominant over the others, the total ionization
yield can be modeled by Eq. (5) for the dominant state. Since
phase terms corresponding to various Floquet states only differ
by 0 or π , the phase of the net ionization signal is completely
determined by the phase term of the dominant Floquet state.

The 13th and 15th harmonics in our case predominantly
excite 2p, 4p, and 5p states. However, the photoabsorption
cross section of these states is strongly dependent on the
IR field strength. The modification of the atomic structure
in the presence of a strong field is discussed in [19].
Figure 4(a) shows the calculated ionization probability for 2p,
4p, and 5p states as a function of IR laser intensity. To obtain
this plot, we performed time-dependent Schrödinger equation
(TDSE) simulations using a method discussed in Ref. [16].
We identified the contribution of 2p, 4p, and 5p states to the
total ionization yield by artificially removing these resonances
from the calculation. From the plot, we can see that above
an intensity of ∼3 × 1012 W/cm2, the ionization from the
2p state is the dominant contribution to the total ionization.
Figure 4(b) is a schematic of the evolution of the different
Floquet blocks with IR intensity which illustrates how the
2p state comes into resonance at higher intensities. Since
it has more than an order of magnitude higher absorption
cross section compared to the 4p and 5p states, the 2p state
dominates the absorption and hence the ionization process. In
the measurement corresponding to Fig. 3, we used an intensity
of 3.4 × 1012 W cm−2 at which the 2p state clearly dominates.

Since a single Floquet state path corresponding to the
atomic 2p state dominates the ionization yield, we can obtain
the phase term in Eq. (5) from the experimental data. Fourier
transforming the experimental data in Fig. 3, we extract the P1

and P2 amplitude terms. This leaves only the quantity φ + 2δ0,
which we obtain by fitting Eq. (5) to the data in Fig. 3. The
value φ + 2δ0 = −2.4 rad yields a very good fit to the data.

As mentioned earlier, φ represents the sign of matrix
elements, and it can take values of 0 or π . Apart from this
discrete phase or sign ambiguity of 0 or π , we can obtain
the quantity δ0, which relates to the absolute timing of the
attosecond pulse train. The 0 or π phase ambiguity can be
easily removed using either of the two methods discussed
below.

One method to establish whether φ = 0 or φ = π is
appropriate for the 2p Floquet state under consideration is
to use TDSE simulations. These simulations establish that the
phase φ in this situation is zero [16]. The other method to
establish the value of φ is based on the fact that only one of
these options leads to a physically justifiable answer for the
time of birth of attosecond bursts. Using the possibility φ = π ,
we can fit Eq. (5) to the data and obtain δ0 as 0.37 rad. This
corresponds to a XUV burst occurring 150 as before the peak
of the IR field, which implies a 15th harmonic short-trajectory
return phase of 160◦ relative to the negative peak of the IR field.
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FIG. 4. (Color online) (a) Calculated ionization probability from the XUV excited 2p, 4p, and 5p states as a function of IR intensity. The
2p mediated ionization pathway dominates at high intensity and hence determines the phase of 2ω oscillations. (b) A schematic of the evolution
of the 2p, 4p, and 5p Floquet blocks with IR intensity. Thicker lines represent a higher-absorption cross section. The horizontal blue boxes
represent the harmonics. The vertical rectangle indicates the IR intensity regime used in our experiment.

A simple calculation of classical trajectories for harmonic
emission [20] easily rules out this result as too short of a
return time for the harmonics under consideration.

Using the second option, i.e., φ = 0, we obtain a value of
δ0 = −1.2 rad, which corresponds to an APT time of birth
of 500 as after the peak of the driver electric field. This
burst timing corresponds to the 15th harmonic short-trajectory
return at 250◦ phase relative to the negative peak of the IR
field. As shown in Fig. 5, this agrees well with the single-atom
prediction for timing of near-cutoff harmonics in Xe gas being
driven at 6 × 1013 W cm−2. Furthermore, our measurement
of the XUV burst timing relative to the IR field is also in
qualitative agreement with the experimental results reported
in Ref. [12].

From the above discussion it is clear that, in APT + IR
pump-probe experiments, interferences between XUV tran-
sitions are determined by both the phases of light fields and
quantum phases of transitions to laser-dressed resonances. The
dynamics under these conditions cannot be fully captured by
a classical cross correlation between light fields. However,
the Floquet formalism provides a convenient approach for
modeling the excitation to laser-dressed resonances. Though
we have used an XUV spectrum with only two dominant
harmonics in our experiment, this technique of extracting the
timing can be applied to more general APTs consisting of
many harmonics. In cases where harmonics beyond the 15th
harmonic are present, the direct transitions to the continuum
will increase the DC level of the ionization signal. Even
if the background ionization level increases by an order
of magnitude, by appropriate Fourier filtering, it should be
possible to extract the few percent oscillations in the ionization
signal, and hence the timing information can be extracted. In
the case of isolated attosecond pulses, the broad, continuous
spectrum of such pulses can create a complicated mixture of

different Floquet states, which can make the measurement and
analysis quite difficult. Hence, an important limitation of our
technique is that it may not be applicable to isolated attosecond
pulses.

In conclusion, we have obtained the time of birth of
attosecond bursts produced by high-order-harmonic genera-
tion using the ionization of a laser-dressed helium atom as

FIG. 5. (Color online) Classical short trajectories of the electron
for the 13th and 15th harmonic generation in Xe at a laser intensity
of 6 × 1013 W cm−2. The electron excursion and electric-field
amplitudes are x0 = 5.44 a.u. and E0 = 0.18 a.u. Note that the phases
are measured from the negative peak of the IR field. The recollision
phase for the 15th harmonic is thus 250◦. The timing of a XUV burst
corresponding to our harmonics is 500 as relative to the positive peak
of IR field.
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a measurement probe. The ion-yield signal, as a function
of time delay, directly provides the absolute timing of the
attosecond bursts when a single Floquet state dominates the
ionization. The experimental knowledge of attosecond burst
timing can be useful in many experiments of current interest
where the result of an XUV-IR induced process critically
depends on the absolute timing between the two fields. For
example, it can be useful in obtaining deeper insight into
processes like control of electron localization in molecular
dissociation where the phase of the IR field at the time of
excitation by the XUV field sets the initial conditions. In
experiments which use high-order-harmonic generation to
probe molecular structure and dynamics, the time of birth
of attosecond bursts can help data analysis and interpretation

by providing additional experimental constraints. In general,
photoexcitation or photoionization with XUV pulse trains
in the presence of strong laser fields involves multipath
interferences whose result is determined by the quantum
phase difference between paths as well as the absolute time
delay between the XUV and IR fields. The knowledge of
absolute XUV timing from measurements in helium can be
used to obtain quantum phase differences between excitation or
ionization channels in molecules, leading to quantum control
schemes in the XUV regime.
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tion (NSF) under Contract No. PHY-0955274.
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