Molecular beam epitaxy of BaSi$_2$ thin films on Si(001) substrates

著者

| Katsuaki, Toh | Kosuke, Hara O. | Noritaka, Usami | Noriyuki, Saito | Noriko, Yoshizawa | Kaoru, Toko | Takashi, Suemasu |

| 345 | 1 | 16-21 | 2012-04 |

(C) 2012 Elsevier B.V.

NOTICE: this is the author's version of a work that was accepted for publication in Journal of crystal growth. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of crystal growth, 345(1), 2012 DOI:10.1016/j.jcrysgro.2012.01.049

URL http://hdl.handle.net/2241/117058
doi: 10.1016/j.jcrysgro.2012.01.049
Molecular beam epitaxy of BaSi$_2$ thin films on Si(001) substrates

Katsuaki Toha, Kosuke O. Harab, Noritaka Usamib,c, Noriyuki Saitod, Noriko Yoshizawad

Kaoru Tokoa, and Takashi Suemasua,c

aInstitute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

bInstitute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan

cJapan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan

dElectron Microscope Facility, IBEC Innovation Platform, AIST, 16-1 Onogawa, Tsukuba 305-8569, Japan

Keywords: reactive deposition epitaxy, molecular beam epitaxy, silicide, BaSi$_2$

An attempt was made to grow BaSi$_2$ epitaxial films on Si(001) substrates using molecular beam epitaxy. The structure and morphology of the films were investigated using reflection high-energy electron diffraction, X-ray diffraction, electron backscatter diffraction, atomic force microscopy, and transmission electron microscopy. The BaSi$_2$ film grown was a-axis oriented, despite a large lattice mismatch. The measurements indicated that there are two
possible epitaxial relationships of BaSi$_2$(100)//Si(001) with BaSi$_2$(010)//Si[110] and BaSi$_2$(001)//Si[110], due to the fourfold symmetry of Si(001). X-ray reciprocal space mapping revealed that the BaSi$_2$ film was almost strain-free. Plan-view transmission electron microscopy clarified the grain size and the existence of grain boundaries in the BaSi$_2$ film.
1. Introduction

Until quite recently, the solar cell market has been growing rapidly with the increasing demand for renewable energy. A decrease in material consumption by decreasing the absorption layer thickness is required, while at the same time improving the energy conversion efficiency to encourage the application of solar cells throughout the world. Most solar cells currently produced are based on crystalline Si, because Si is an abundant and well-known material in the semiconductor industry. However, Si solar cells have two fundamental problems: a low absorption coefficient and an inappropriate band gap (1.1 eV). For these reasons, a sub-millimeter thick Si absorption layer is required, although the maximum conversion efficiency is theoretically limited to ca. 27% in a single pn junction structure [1]. To solve these two problems, we have focused on semiconducting silicides that are composed of abundant elements, and have a large absorption coefficient and an ideal band gap that matches the solar spectrum. Some of these silicides, such as BaSi$_2$ and β-FeSi$_2$, have a large absorption coefficient [2-4]. Among them, orthorhombic BaSi$_2$ has particularly favorable characteristics for a solar cell; the absorption coefficient reaches 3×10^4 cm$^{-1}$ at 1.5 eV and the band gap of 1.3 eV is more favorable than crystalline Si [5]. We have achieved large photoresponsivity for photon energies greater than the band gap [6,7]. Orthorhombic BaSi$_2$ is stable at ambient conditions and room temperature (RT), and has lattice constants of $a=0.891$, $b=0.672$, and $c=1.153$ nm [8-10]. This material can be grown epitaxially on a
Si(111) substrate with the orientation alignment of BaSi$_2$(100)//Si(111), with a small lattice mismatch of 1.0% for BaSi$_2$[010]/Si[112] and 0.1% for BaSi$_2$[001]/Si[110] [11,12]. With respect to the lattice mismatch, we have considered that the (111) facet of a Si substrate is best for BaSi$_2$ growth, although the grain size of BaSi$_2$ is as small as approximately 0.1 µm (as shown later), due to three epitaxial variants rotating around each other by 120° in the surface normal. Many grain boundaries and other defects in a film would deteriorate the optical and electrical properties.

We have attempted to grow BaSi$_2$ on Si(001) substrates rather than Si(111) substrates with an aim to enlarge the grain size by decreasing the number of possible epitaxial variants. A few reports have already demonstrated monolayer-thick BaSi$_2$ epitaxial growth on Si(001) using reactive deposition epitaxy (RDE), which involves Ba deposition on a hot Si substrate [13,14]. Mckee and Walker reported the epitaxial growth of BaSi$_2$ thin films on both Si(111) and Si(001) substrates using RDE [15]. a-Axis oriented BaSi$_2$ was surprisingly grown on the Si(001) substrate, despite the large lattice mismatch of 0.1% for BaSi$_2$[001]/Si[110] and 12.5% for BaSi$_2$[010]/Si[110]. They presented a reflection high-energy electron diffraction (RHEED) pattern and cross-sectional transmission electron microscopy (TEM) image as evidence for the epitaxial growth. However, the detailed growth conditions were not described. In addition, the grown thickness was limited to less than 20 nm. On the basis of the epitaxial relationship they reported, we can expect the epitaxial growth of BaSi$_2$ films with two
possible epitaxial variants, and enlargement of the grain size by decreasing the number of epitaxial variants from three for BaSi$_2$ on Si(111) to two for BaSi$_2$ on Si(001).

2. Experimental procedures

A two stage growth method was adopted, which included RDE and molecular beam epitaxy (MBE; codeposition of Ba and Si) to form thick BaSi$_2$ films [12]. The RDE process was conducted for deposition of a template layer as a BaSi$_2$ precursor prior to the subsequent MBE process. The same growth method was successfully utilized for the epitaxial growth of semiconducting β-FeSi$_2$ films on both Si(001) and Si(111) substrates [16,17]. An ultrahigh vacuum (UHV) chamber equipped with a Knudsen cell for Ba and an electron beam gun for Si was employed. Exact Si(001) substrates were used. Prior to the growth, the Si substrates were prepared by the following treatment. Firstly, the substrates were washed using RCA clean steps, which involved the removal of organic and metallic contaminants. The substrates were then annealed at 830 °C for 30 min in the UHV chamber to evaporate the protective SiO$_2$ layers. After annealing, a 2×1/1×2 streaky RHEED pattern was observed, which indicates that a clean Si surface was obtained.

In the first experiment, the growth temperature was varied over the range from 440 to 530 °C to investigate the crystallinity and morphology of the BaSi$_2$ films formed after 5 min RDE process. The Ba deposition rate was fixed at 0.9 nm/min. In the second experiment, the
growth temperature of RDE was set at 530 °C and the growth time was increased up to 120 min with a Ba rate of 0.5 nm/min to cover the entire Si(001) surface. MBE growth was conducted after this process at 580 °C. The total thickness of the film was approximately 120 nm. For reference, 240 nm thick BaSi₂ layers were epitaxially grown on Si(111) using the growth conditions presented in Ref. 12. The crystalline quality of the film was evaluated using RHEED and θ-2θ X-ray diffraction (XRD) measurements. Both pole figure measurement with an azimuthal (φ) scan for out of BaSi₂ plane and electron backscatter diffraction pattern (EBSP) measurement were also conducted to determine the crystal orientation of the BaSi₂ variants. The EBSP measurement was carried out at intervals of 0.1 µm. The surface morphology of the film was investigated using atomic force microscopy (AFM) and the strain in the film was evaluated using X-ray reciprocal space mapping (RSM). Plan-view TEM samples were prepared by mechanical polishing and ion milling, and observed using TOPCON EM-002B operated at 120 kV to investigate grain size, grain boundaries, and dislocations in the film.

3. Results and discussion

Figure 1 shows RHEED patterns obtained along the Si<110> azimuth after 5 min Ba deposition on the Si(001) substrate at various temperatures. Figure 2 presents AFM images of these films, where Si[110] is fixed in an upward direction. We were able to observe a faint
streaky pattern for the sample grown at 440 °C in Fig. 1(a) and two clear sets of streaky patterns with different spacings for the samples grown above 490 °C in Figs. 1(b) and 1(c). The ratio of wide streaky spacing to narrow spacing is approximately 1.7, which is explained by the ratio of 1/b to 1/c. Taking into account that the electron beam was incident along the Si<110> azimuth, these two streaky patterns with different spacings indicate the existence of epitaxial variants rotating 90° to each other in the surface normal, as discussed later; BaSi2(100)//Si(001) with BaSi2[010]//Si[110] and BaSi2[001]//Si[110]. BaSi2 microcrystals were grown on the surface at 440 °C, and a relatively flat surface was obtained at 490 °C, as shown in Figs. 2(a) and (b), respectively. At 530 °C, three-dimensional islands were grown with a very smooth rectangular-shaped facet. Single-height steps corresponding to the lattice constant a of BaSi2 were observed on these islands in the cross-sectional line-scan profile shown in Fig. 2(d). The rectangular shape is attributed to the a-axis oriented orthorhombic BaSi2 unit cell. The crystalline quality of the film grown at 530 °C was excellent, and it was thus decided to conduct the RDE growth at 530 °C.

Figure 3 presents RHEED and θ-2θ XRD patterns of the BaSi2 film grown on the Si(001) substrate after MBE. The RHEED pattern observed along the Si<110> azimuth maintained the same two sets of streaky patterns with different spacings during the MBE growth as those observed for the RDE-grown BaSi2 shown in Figs. 1(b) and 1(c). In Fig. 3, diffraction peaks of only (100)-oriented planes, such as (200), (400), and (600) of BaSi2, were
observed. It was therefore concluded that the entire film was an a-axis oriented BaSi$_2$
epitaxial film on the Si(001) substrate. The AFM image shown in Fig. 4 revealed a
cross-hatched pattern for the surface of the BaSi$_2$ film, which is caused by two epitaxial
variants having different crystallographic orientation. The white arrow in Fig. 4 indicates the
Si$<110>$ direction. Steps were observed on every rectangular island after the MBE growth.

EBSP mapping observed along the normal direction (ND), reference direction (RD),
and transverse direction (TD) are shown in Fig. 5. The color in the maps corresponds to the
indices of BaSi$_2$ in the inverse pole figure shown in Fig. 5(d). For the ND map, the green area
is dominant in the film, which indicates that BaSi$_2$ is a-axis oriented, and is consistent with
the θ-2θ XRD results. For the RD and TD maps, there are two colored areas, blue and red,
which represent the (010) and (001) planes of BaSi$_2$, respectively. The RD is perpendicular to
the TD; therefore, the red area in the RD map changes to blue in the TD map, and vice versa.

Figures 6(a) and 6(b) show an X-ray pole figure and ϕ scan pattern for the BaSi$_2$(301) plane.
Four inner peaks of the BaSi$_2$(301) plane were detected near the center of the circle and each
peak has 90$^\circ$ spacing in the ϕ angle. Four other outer peaks caused by the BaSi$_2$(203) plane
were also detected due to the small difference in the lattice spacing between the (301) and
(203) planes. This is because the BaSi$_2$ film has two variants and fourfold symmetry with
respect to the Si(001) substrate, as illustrated in Fig. 7. On the basis of these results, the
epitaxial relationship of BaSi$_2$(100)//Si(001) with BaSi$_2$(001)//Si[110] and
BaSi$_2$(010)//Si[110] was confirmed. This epitaxial relationship explains the RHEED and EBSP results presented. However, considering the crystal orientation of the epitaxial variants, a large lattice mismatch of 12.5% was presumed along BaSi$_2$(010)//Si[110]. RSM measurement was conducted to evaluate the distortion in the film and revealed that the BaSi$_2$ film was almost strain-free. For the RSM of BaSi$_2$ (502) and (620), the lattice constants of a, b, and c in BaSi$_2$ were determined to be 0.8898, 0.6777, and 1.1588 nm, respectively, as deduced from the peak positions presented in Figs. 8(a) and 8(b). These values were almost the same as those of bulk BaSi$_2$, which indicates no significant distortion in the in-plane and normal directions of the film. It was considered that the epitaxial BaSi$_2$ film was grown using the point-on-line configuration, which is well known as the organic crystal growth mode [18,19]. Orthorhombic BaSi$_2$ has low symmetry and an extremely large lattice mismatch with respect to Si(001), so that it is impossible to induce distortion in the BaSi$_2$ film.

Figure 9(a) shows a plan view bright-field TEM image of the film. We can see the grains of more than 1 µm in diameters, and maximum grain size determined in this observation was about 6 µm. Moreover, some small dislocations and grain boundaries were observed, but there were not any remarkable defects in this area. Several dark lines are bend contour which indicate crystal lattice bending, and not dislocations. It is assumed that these lattice bending were occurred in TEM sample preparation. Figs. 9(b) and (c) are selected-area electron diffraction (SAED) patterns observed along the [100] zone axis of BaSi$_2$ for areas I
and II, respectively. The SAED patterns in the neighboring areas I and II, separated by a grain boundary were hexagonal shaped with rotational symmetries through 90°, as shown in Figs. 9(b) and 9(c). Similar SAED patterns showing the coexistence of 90° rotational domains were observed for a-axis oriented orthorhombic β-FeSi$_2$ on Si(001) [20]. These results also support our discussion regarding the BaSi$_2$ variants and confirm that a decrease in the number of the epitaxial variants is quite effective to increase the volume per one grain. Figure 9(d) shows a typical example of a plan view bright-field TEM image for the BaSi$_2$ epitaxial film on Si(111); approximately 120° sharp grain boundaries due to epitaxial variants of BaSi$_2$ rotating each other by 120° in the surface normal are evident [12]. Comparing the plan view TEM images shown in Figs. 9(a) and 9(d), it was concluded that the grain size of BaSi$_2$ on Si(001) is much larger than that on Si(111). We speculate that the large grain of BaSi$_2$ on Si(001) is partly due to the reduced number of epitaxial variants. However, the difference in grain size is significantly larger than expected. Thus, further studies are required to clarify the mechanism that explains this difference.

4. Conclusions

Epitaxial BaSi$_2$ films were successfully grown on a Si(001) substrate using a two step growth method including RDE and MBE. The RDE growth temperature was quite effective for the growth mode of BaSi$_2$ on Si(001) substrate. RHEED, θ-2θ and pole figure
XRD measurements, and EBSP provided evidence that the BaSi$_2$ film is a-axis oriented with 90° rotational epitaxial variants: BaSi$_2$(100)//Si(001) with BaSi$_2$(010)//Si[110] or BaSi$_2$(001)//Si[110]. The BaSi$_2$ film was almost strain-free, despite a large lattice mismatch. Plan-view TEM revealed that the grain size of BaSi$_2$ on Si(001) was much larger than that on Si(111).

Acknowledgements

This work was financially supported by the Japan Science and Technology Agency (JST/CREST). TEM observations were conducted at Electron Microscope Facility, supported in IBEC Innovation Platform, AIST, Japan.
References

Fig. 1. RHEED patterns of BaSi$_2$ films grown on Si(001) substrates at (a) 440, (b) 490, and (c) 530 °C along the Si<110> azimuth after 5 min RDE process.

Fig. 2. AFM images of BaSi$_2$ films grown on Si(001) substrates at (a) 440, (b) 490, and (c) 530 °C after 5 min RDE process.

Fig. 3. RHEED and θ-2θ XRD patterns of BaSi$_2$ film on Si(001) substrates using two step growth including RDE (at 530 °C) and MBE (at 580 °C) processes.

Fig. 4. AFM images showing a cross-hatched pattern taken from the 120 nm thick BaSi$_2$ film on a Si(001) substrate.

Fig. 5. (a) ND, (b) RD, and (c) TD maps of EBSD for the 120 nm thick BaSi$_2$ film on Si(001) substrate. (d) Inverse pole figure of BaSi$_2$ corresponding to the colors indicated in the maps.

Fig. 6. (a) X-ray pole figure and (b) ϕ scan for BaSi$_2$ (301) exhibiting fourfold symmetry.

Fig. 7. Schematic model of BaSi$_2$ film having two epitaxial variants on Si(001).
Fig. 8. RSM for BaSi$_2$ (502) and (620) of the 120 nm thick BaSi$_2$ film on a Si(001) substrate. Red and blue colors indicate the highest and lowest intensities, respectively.

Fig. 9. (a) Plan view bright-field TEM image of the 120 nm thick BaSi$_2$ film on a Si(001) substrate. The incident electron beam direction was parallel to BaSi$_2$ [100] zone axis. SAED patterns for (b) area I and (c) area II. The 90° rotational symmetry of the SAED patterns for areas I and II indicates the coexistence of 90° rotational domains of a-axis oriented BaSi$_2$. (d) Plan view bright-field TEM image of the 240 nm thick BaSi$_2$ film on a Si(111) substrate.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

(a) α^* direction (nm$^{-1}$)

(b) c^* direction (nm$^{-1}$)

b^* direction (nm$^{-1}$)
Fig. 9