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Abstract

This study evaluates both medium-range predictions and climate projections regarding
tropical cyclones (TCs) performed with the Meteorological Research Institute (MRI)/Japan
Meteorological Agency (JMA) 20-km mesh super high-resolution Atmospheric General
Circulation Model (MRI/JMA-AGCM). The 20-km mesh AGCM showed marked superi-
ority compared with coarser resolution models, indicating (i) significant improvements in
TC intensity, intensifying and decaying tendencies, and inner-core structure when verified
with observations; and (ii) accurate realizations of climatological TC frequency of occur-

rence (TCF) and temporal interannual and seasonal variations in TC genesis number.

On the basis of these encouraging results, two suits of 25-year climate projections were
conducted using the 20-km mesh AGCM for both the present-day (1979-2003) and future
(2075-2099) climate under the IPCC SRES A1B emission scenario to investigate possible
future changes in TC activities, especially TCF and TC tracks in the North Atlantic (NA)

and western North Pacific (WNP) ocean basins.

The future projection indicates statistically significant reduction in global TC genesis
number and increase in frequency of intense TCs; however, projected future changes in
TCF showed somewhat inhomogeneous within a specific ocean basin. In the NA, TCF will
decrease in the tropical western NA (WNA) and increase in the tropical eastern NA (ENA)
and northwestern NA (NWNA), suggesting a reduced probability of TC landfall over the
southeastern United States, and an increased influence of TCs on the northeastern United
States. The track changes are not due to changes in large-scale steering flows; instead,
they are due to changes in TC genesis locations. The increase in TC genesis in the ENA
arises from increasing background ascending motion and convective available potential
energy. In contrast, the reduced TC genesis in the WNA is attributed to decreases
in midtropospheric relative humidity and ascending motion caused by remotely forced

anomalous descent. This finding indicates that the impact of remote dynamical forcing is



greater than that of local thermodynamical forcing in the WNA. The increased frequency
of TC occurrence in the NWNA is attributed to reduced vertical wind shear and the

pronounced local warming of the ocean surface.

In the WNP, the future projection indicates (i) a significant reduction (by about 23%)
in both TC genesis number and frequency of occurrence, which occurs primarily during the
late part of the year (September—December); (ii) an eastward shift in the positions of the
two prevailing northward recurving TC tracks during the peak TC season (July—October);
and (iii) a significant reduction (by 44%) in TC frequency approaching coastal regions of
Vietnam. The changes in occurrence frequency are due in part to changes in large-scale
steering flows which hinder westward TC motion at lower latitudes, but due mainly to
changes in the location of TC genesis: fewer TCs will form in the western portion of the
WNP (west of 145 E), whereas more storms will form in the southeastern quadrant of
the WNP (10-20 N, 145-160 E). Analysis of the Genesis Potential Index reveals that the
reduced TC genesis in the western WNP is due mainly to in situ weakening of large scale
ascent and decreasing mid-tropospheric relative humidity, which are associated with the
enhanced descent of the tropical overturning circulation, especially the Walker circulation.
The analysis also indicates that enhanced TC genesis in the southeastern WNP is due
to increased low-level cyclonic vorticity and reduced vertical wind shear. These favorable
dynamical conditions are associated with the reinforced northward cross-equatorial lows
in the western Pacific that are induced by differential warming rates in the two hemispheres
(the Northern Hemisphere warms faster than the Southern Hemisphere). These changes

appear to be critically dependent on the spatial pattern of future sea-surface temperature.

Key Words: tropical cyclone, global warming, climate projection, weather prediction,

high resolution atmospheric general circulation model, track change
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Chapter 1

Introduction

1.1 Overview of numerical studies on tropical cyclone
climate changes

Tropical cyclones (TCs) are among the most harmful weather phenomena: The most
costly natural disaster to affect the United States of America over the period 1960-2005
was caused by TCs (Peterson et al., 2008). In recent years, Hurricane Katrina (2005)
was the most damaging storm (Schmidlin, 2006), Hurricane Wilma (2005) was the most
intense storm (central pressure of 882 hPa) on record in the North Atlantic (NA), and
Hurricane Rita (2005) was the most intense (central pressure of 895 hPa) tropical cyclone
ever observed in the Gulf of Mexico. Hurricane activity in the NA showed an increase over
the past 30 years (Goldenberg et al., 2001; Webster et al., 2005; Bell and Chelliah, 2006).
In Japan, 10 typhoons caused disastrous damage in 2004 (Levinson, 2005). The increased
severity of TCs has aroused public interest regarding the impact of global warming on TC
activity. Previous studies have proposed that these recent changes are largely due to global
warming (Emanuel, 2005; Anthes et al., 2006; Hoyos et al., 2006; Mann and Emanuel,
2006; Trenberth and Shea, 2006; Holland and Webster, 2007; Mann et al., 2007a; Mann
et al., 2007b). However, this view has been challenged by the following points: 1) recent
increases in the frequency of Atlantic TCs are within the range of observed multi-decadal
variability (e.g., Goldenberg et al., 2001; Pielke et al., 2005; Bell and Chelliah, 2006) and
2) the observational data used to attribute the trend to global warming are insufficient

(Landsea et al., 2006; Landsea, 2007).

Many studies have sought to project the future climate associated with warmer sea



surface temperature (SST') using increased-C' Oy scenarios and general circulation models
(GCMs) (Broccoli and Manabe, 1990; Haarsma et al., 1993; Bengtsson et al., 1996; Kr-
ishnamurti et al., 1998; Royer et al., 1998; Sugi et al., 2002; Tsutsui, 2002; McDonald
et al., 2005; Chauvin et al., 2006; Oouchi et al., 2006; Yoshimura et al., 2006; Bengtsson
et al., 2007; Gualdi et al., 2008; Zhao et al., 2009), and regional climate models (RCMs)
(Knutson et al., 1998; Knutson and Tuleya, 1999; Nguyen and Walsh, 2001; Knutson and
Tuleya, 2004; Walsh et al., 2004; Stowasser et al., 2007; Knutson et al., 2008; Bender
et al., 2010). Most of these studies projected a future increase of TC intensity. Most
models have also projected a reduced frequency of TCs globally, with a wide range of pre-
dictions among models. Consequently, the Intergovernmental Panel on Climate Change
(IPCC) Fourth Assessment Report (AR4)(IPCC, 2007) concluded in its summary chapter
for policymakers that there is “less confidence” in projections of a global decrease in the
frequency of TCs than in projections of increased maximum intensities. The inconsistency
in the TC frequency changes becomes more pronounced when specific tropical ocean basin
is considered. For example, among 14 (12) previous numerical studies of future TCs over
NA (western North Pacific (WNP)), 5 (5) explicitly indicated an increasing frequency,
whereas 9 (7) reported a decreasing frequency. Although many studies using the state-
of-the-art model appear to agree with reduction in global TC number and increase in
frequency of intense TCs in the future, consensus is yet to be reached regarding future
changes in TC frequency in a specific ocean basin. This is mainly due to different ex-
perimental designs (e.g., different warming rates, Gualdi et al., 2008; Zhao et al., 2009),
different model resolutions and physics (e.g., Bengtsson et al., 2007), model biases (e.g.,
Murakami and Sugi, 2010), and different TC detection criteria (Walsh et al., 2007). Gen-
eral horizontal scale of TC is ranging from 100 km to 1,000 km in nature; therefore, high

resolution model is necessary in order to address future change in TC climatology.

Although fine-resolution RCMs may lead to realistic TC structures and reliable future

projections in terms of TC intensity, they seem to be limited to discuss future changes



in TC genesis and TC tracks because the RCMs are subject to the lateral boundary
conditions and the modeled domain. The mechanisms of TC genesis are not closed in
an ocean basin as will be discussed in Section 1.2. Because the domain of TC tracks
ranges from tropics to mid-latitudes, it is preferable to cover wide range of domain, which
requires large computational resouces for RCMs. For the above reasons, high-resolution
global models is better to be used for investigating future changes in TC genesis and TC
tracks than RCMs. However, since high-resolution global model runs also remain very
expensive, most climate simulations have been done with coarser resolution (100-200-km
mesh; Knutson et al., 2010); thus, projecting future changes in TC activities is still a
challenging task. In contrast, a reliable future projection is highly demanded in order
to estimate and reduce future damages caused by climatological TC changes induced by

anthropogenic global warming.

1.2 Review of studies on tropical cyclone track changes

Although many modeling studies have explored future change in TC intensity or gen-
esis frequency (see Section 1.1), few have considered present-day variation and future
change in TC tracks. Based on observational studies, the TC activity in the WNP shows
prominent natural variations at various time scales. For example, the Madden-Julian Os-
cillation (MJO; Madden and Julian, 1972, 1994) has a strong influence on TC genesis and
occurrence at intraseasonal time scales (Camargo et al., 2009). TC activity also shows
interannual to interdecadal variations (Chan, 1985; Chan, 2000; Yumoto and Matsuura,
2001; Ho et al., 2004; Wu and Wang, 2004), which are strongly affected by various fac-
tors associated with low-frequency anomalous climate patterns, such as El Nino-Southern
Oscillation (ENSO) (Lander, 1994; Chen et al., 1998; Wang and Chan, 2002; Wu et al.,
2004; Camargo and Sobel, 2005), the stratospheric quasi-biennial oscillation (QBO; Chan,
1995; Ho et al., 2009), and the Pacific Decadal Oscillation (PDO) (Wang et al., 2010).



Ho et al. (2004) first reported that the frequency of TC occurrence showed a significant
decrease in the Philippine Sea in the periods 1980-2001 compared with 1951-1979. Wu
et al. (2005) compared TC frequency between 1965-1983 and 1984-2003 using observed
best-track data, revealing that the two prevailing TC tracks in the WNP had shifted sig-
nificantly westward; hence, the frequency of TC occurrence has increased over subtropical
East Asia and strongly decreased over the South China Sea. Changes in TC tracks dur-
ing the past decade have been attributed to westward extension of the subtropical high
(Zhou et al., 2009). Note that the observed TC-track data are insufficient to evaluate the
long-term trend because of the low quality of these data collected before the satellite era

(Landsea et al., 2006).

Also, in the NA, TC activities are largely subject to variations within interannual,
e.g., ENSO (Gray, 1984; Camargo et al., 2007a) and QBO (Gray, 1984; Elsner et al.,
1999) and interdecadal time scales (Landsea et al., 1992; Landsea et al., 1999). Vecchi
and Knutson (2008) reconstructed an observational TC dataset since the late 1800s, and
showed a decrease in TC activity in the western part of the NA, and an increase in the

eastern part over the past 100 years.

On the other hand, few modeling studies have discussed future changes in TC tracks.
Given the deficiencies of low-resolution global models in faithfully resolving TCs, Wu and
Wang (2004) attempted an indirect method for assessing the possible influence of global
climate change on TC tacks. The authors demonstrated that the main characteristics of
the current climatology of TC tracks can be derived using a trajectory model and the
mean TC motion velocity field, which comprises a large-scale steering flow and beta drift
(Wang et al., 1998). Based on this trajectory model and the changes in large-scale steer-
ing flows projected by Geophysical Fluid Dynamics Laboratory (GFDL) global warming
experiments (Special Report on Emission Scenarios (SRES) A2 and B2 scenarios), the

authors predicted that more TCs will take northward recurving tracks during the period



2030-2059. However, their trajectory model did not take into account future changes in

TC genesis locations and possible changes in the magnitude of beta drift.

Previous modeling studies that directly evaluated future changes in WNP TC tracks
have yielded diverse results. For example, Bengtsson et al. (2007) used the ECHAM5
global climate models with T213 (about 60-km grid size) and T63 (about 200-km grid
size) resolutions forced by the projected future SST of the SRES A1B scenario and re-
ported that TC track density will decrease in the overall region of the WNP except for the
castern WNP. In contrast, using a regional model (horizontal resolution of 0.5°) driven by
lateral boundary conditions produced by outputs of the National Center for Atmospheric
Research (NCAR) Community Climate System Model version 2 (CCSM2) under an ex-
tremely strong (6 x C'O;) forcing, Stowasser et al. (2007) projected that warming leads
to significantly more TCs in the South China Sea, but little change in TC occurrence
in other areas compared with the present-day experiment. Yokoi and Takayabu (2009)
investigated future changes in TC genesis frequency (TGF, see Section 3.1.4 for the defi-
nition) over the WNP using five CMIP3 (World Climate Research Programme’s Coupled
Model Inter-comparison Project phase 3) models with medium resolution (T63-T106).
Similar to the results obtained by McDonald et al. (2005), the authors reported that the
prevailing genesis region in the WNP shows significant southeastward shift, similar to the
observed during El Nino years. However, the CMIP3 output by the Program for Climate
Model Diagnosis and Inter-comparison (PCMDI) database (http://www-pcmdi.llnl.gov/)
has only daily averages, making it difficult to detect TC tracks, especially in mid-latitude

regions, which are characterized by rapid TC movement.

As to numerical studies regarding future TC tracks changes in the NA, Bengtsson
et al. (2007) showed TCF change using the T63 and T213 atmospheric global models.
Although the spatial pattern of future change in TCF is similar globally between two

resolutions, the pattern shows inconsistency in the NA as well as eastern Pacific. The



authors attributed this inconsistency to inadequate TC genesis in the T63 model. Chauvin
et al. (2006) also used higher resolution of 0.5° stretched global model in order to see
change in TC activity over the NA. The authors showed north-eastward shift of TC
activity in the future experiments. However, it is unknown what factor affected TC
activity changes, though the authors just showed similar change of detected TC activity

changes and Genesis Potential Index (GPI, explained later in Section 4.1.2).

Above all, reliability of the future change in TC tracks is now open to question because
of low resolution models, inconsistent results by model resolution, biases of TC genesis
and track, and sensitivity in prescribed SST anomaly spatial pattern. It is important to
investigate whether anthropogenic warming influences TC density over the NA and WNP,

since future changes in TC landfall frequency directly affects human life and socioeconomy.

1.3 Purpose and motivation of this study

Although the current generation of models lacks the horizontal resolution necessary to
resolve realistic TCs, recent advances in computational resources, such as the Earth
Simulator (ES), which is a parallel-vector supercomputer consisting of 5,120 processors
!(Habata et al., 2004) and had been recognized as the fastest computer in the world for
the period 2002 to 2004, enable us to project future climate with a high-resolution Atmo-
spheric General Circulation Model (AGCM). Using the ES, the Advanced Earth Science
and Technology Organization (AESTO), the Meteorological Research Institute (MRI),
and the Numerical Prediction Division of the Japan Meteorological Agency (JMA) have
developed a super high-resolution (TL959L60; triangular truncation 959 with the linear

Gaussian grid which is equivalent to 20-km mesh horizontally and 60 layers vertically)

L After the first replacement at March 2009, the number of processors decreased to 1,280 from 5,120,
while peak performance increased to 131 Tera FLoating point number Operations Per Second (TFLOPS)
from 40 TFLOPS.



AGCM (Mizuta et al., 2006; hereafter referred to as MRI/JMA-AGCM) to investigate
the effect of global warming on TCs (Oouchi et al., 2006), Baiu (Kusunoki et al., 2006),
and extreme indices (Kamiguchi et al., 2006; Uchiyama et al., 2006) in order to contribute

to IPCC ARA.

In particular, Oouchi et al. (2006) showed that the number of tropical cyclones is glob-
ally reduced and the number of strong tropical cyclones is increased in the warm-climate
environment more than in the present-day climate. The authors carefully evaluated the
reliability of their projection by comparing their present-day 10-year experiment with ob-
servations with respect to geographical distribution, frequency, and intensity. Although
the authors insist that their 20-km mesh AGCM is more excellent than other coarse model
in the intensity projections, there is no remark of evaluations that compare with other

resolutions and observations.

Even in the medium-range forecast, there is no research that statistically shows the
superiority of such a high-resolution global model from the viewpoint of the TC predic-
tion. Some studies have shown that the tropical storm structure was well simulated with
high-resolution AGCMs. For example, Ohfuchi et al. (2004) simulated tropical cyclones
as an initial value problem with a 10-km mesh AGCM, which was the highest-resolution
AGCM in the world when this study was launched. However, because their simulations
were not validated, it is uncertain whether or not their simulated tropical storms were
realistic. Shen et al. (2006) also simulated Hurricane Katrina with a 0.125° grid mesoscale-
resolving finite-volume AGCM. Although the authors showed that a high-resolution model
provides better intensity forecasts than low-resolution one, only one initial case was shown,
and other initial cases are unknown. Another issue that has yet to be clearly addressed is
the effect of model resolution on the climatological features of projected TCs. This lack
of information reflects the fact that high-resolution global model projections remain ex-

tremely expensive; consequently, most climate runs are performed with a relatively coarse



resolution (e.g., 100-200-km mesh). Therefore, it is important to evaluate predictions and

climate projections of TCs to determine superiority using such a high-resolution AGCM.

The present study investigates resolution-related differences at first. Particularly, this
study addresses a question “What is improved using a high-resolution model such as 20-km
mesh AGCM compared with other coarser resolution models in terms of TC prediction
and climate projections?” After the evaluation, this study investigates future changes
in TC tracks over NA and WNP projected by the 20-km mesh high-resolution AGCM.
The projections performed in this study are expected to be more reliable than those
reported by Oouchi et al. (2006) because this study employs more realistic features in the

experimental design (see Section 3.1.3 for details).

The remainder of the dissertation is organized as follows. Chapter 2 presents verifica-
tions of the performance of the 20-km mesh AGCM in simulating real targeted typhoons
with real initial conditions and compared the results with those obtained using a coarser-
resolution version of the model. Chapter 3 provides effect of model resolution on TC
climate projections using four resolutions, addressing some speriorities in TC climatology
with the 20-km mesh AGCM. Chapter 4 and 5 give future changes in TC tracks over the

NA and WNP, respectively. Chapter 6 summarizes the main conclusions.



Chapter 2

Verification of typhoon predictions

This chapter aims to statistically evaluate the predictability of tropical cyclone by the 20-
km mesh AGCM in terms of tracks, intensity, intensifying and decaying tendencies, and
inner-core structure of wind profile through medium-range forecasts. Twelve real TCs over
the WNP, namely, typhoons, were simulated with the 20-km mesh AGCM. They were
compared with the simulations produced by the 60-km mesh JMA former operational
global spectral model (hereafter referred to as “GSM”). Following sections describe the
forecast models (Section 2.1), initial conditions (Section 2.2), simulated typhoons (Section
2.3), best-track data (Section 2.4), method used to detect the typhoon position (Section
2.5), and main results (Section 2.6). A summary and concluding remarks follow in Section

2.7. Detailed contents are also available in Murakami et al. (2008).

2.1 Model Descriptions

The 20-km mesh AGCM has been developed by the JMA and the MRI for both weather
forecasting (JMA, 2007; Murakami and Matsumura, 2007) and climate research (Mizuta
et al., 2006; Kusunoki et al., 2006; Oouchi et al., 2006). Table 2.1 summarizes specifica-
tions of all models used in this study. Although the forecast models (Table 2.1a, as used
in this Chapter) are different from the climate models (Table 2.1b, as used in Chapters
3, 4, and 5) in the radiation and land-surface processes, they share most dynamical and

physical schemes.



The resolution of the 20-km mesh AGCM is TL959L60', namely, horizontal 20-km
mesh and 60 vertical layers. The model employs a sigma-pressure hybrid coordinate
as the vertical coordinate (Simmons and Burridge, 1981). The model top is placed at
approximately 0.1 hPa pressure level, whereas the lowest level is placed at 998.5 hPa
pressure level when the surface pressure is 1000 hPa. There are 13 vertical layers below

the 800 hPa pressure level and 29 layers over the 200 hPa pressure level.

The 20-km mesh AGCM adopts a semi-Lagrangian scheme (Yoshimura and Mat-
sumura, 2003) which enables integration with a longer time step without being con-
strained by the Courant-Fredrichs-Lewy (CFL) condition. In the semi-Lagrangian advec-
tion scheme, computation of the advection terms is split into the horizontal and vertical
directions and the both terms are computed separately. The flux in the vertical di-
rection is evaluated with a one-dimensional conservative semi-Lagrangian scheme, while
the horizontal advection is calculated with a conventional non-conservative 2-dimensional

semi-Lagrangian scheme.

As a cumulus convection scheme, which is important for typhoon formation, a prog-
nostic Arakawa-Shubert scheme (Arakawa and Schubert, 1974; Randall and Pan, 1993) is
implemented. For an economical computation, two simplifications are introduced. First,
the vertical profile of the upward mass flux 7 is assumed to be a linear function of height
z, as proposed by Moorthi and Suarez (1992), in the following way; n = 1 + A(z — 2),
where A denotes the entrainment rate and z;, is the cloud base height. Secondly, the mass
flux at the cloud base is determined by solving a prognostic equation (Randall and Pan,
1993) rather than by applying the quasi-equilibrium assumption. The cloud base level
is fixed near 900 hPa in the model. The moist static energy and other thermodynamic
properties of the upward mass flux at the cloud base are given by the grid-scale values at

the maximum moist static energy level below the cloud base.

Here TL refers to the linear conversion scheme between Gauss and spherical harmonics, T to the
quadratic one.
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Clouds are also prognostically determined in a similar fashion to that of Smith (1990),
in which the cloud amount and the cloud water content are estimated by a simple statis-
tical approach proposed by Sommeria and Deardorff (1977). In each grid box, the total
moisture (water vapor and cloud water) and the liquid water temperature are assumed
to vary within the grid box due to unresolved atmospheric fluctuations with a uniform

probability distribution.

In the radiation process, the radiative heating rate is computed as the convergence of

the net radiation fluxes F;

oT g OF
(m)md - o (2.1)

where ¢ is the acceleration of gravity. The solution of the radiative transfer equation is
computationally very expensive. In order to cut down on the computational costs, the
full radiation computations for long wave and short wave are only done every three hours
and hourly, respectively. In the GSM, the basic framework of the long-wave fluxes and
cooling rates computations follows Sugi et al. (1990). In the forecast model in the 20-km
mesh AGCM, a more accurate scheme is installed: Long-wave spectrum is divided into 9
bands and the radiation flux is calculated in each band separately. Considering a tradeoff
between accuracy and efficiency, gaseous transmittance is computed using three different
approaches, depending on the absorber and the spectral band. In order to take into ac-
count the Doppler absorption effect accurately, a table look-up method is used for spectral
band contributing cooling in the stratosphere. Short-wave scattering and absorption are
modeled by a two-stream formulation using the delta-Eddington approximation (Joseph
et al., 1976; Coakley et al., 1983). The spectrum is divided into 22 bands based on Frei-
denreich and Ramaswamy (1999), except that water vapor in a near-infrared region is
based on Briegleb (1992). On the other hand, the climate models use a different radiation
scheme from the forecast models. The climate models adopt a multi-parameter random
model for terrestrial radiation (Shibata and Aoki, 1989); a delta-two-stream approxima-

tion scheme for solar radiation (Shibata and Uchiyama, 1992).
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The surface turbulent fluxes are formulated as the bulk formulae following the Monin-
Obukhov similarity theory. The level 2 turbulence closure scheme of Mellor and Ya-
mada (1974) is used to represent the vertical diffusion of the momentum, heat, and mois-

ture. Based on the local-K theory, the turbulent transports are expressed as

ov
N = K, 2.2
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where s; (= C,T + gz — Lq.) is the liquid water static energy and ¢,(= ¢ + ¢.) the
total water content. Following the mixing-length theory, the diffusion coefficients can be
written as
ov
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where the mixing length [ is given according to Blackadar (1962),

kz

| = —————.
1+k32/l0

(2.7)

The asymptotic mixing length [y is determined from the sub-grid scale orographic vari-
ances and the planetary boundary layer depth. The gradient Richardson number R; is
defined after the method of Smith (1990),

2

: (2.8)
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where [, and BNQ are the buoyancy parameters in terms of the cloud-conserved quantities
sr, and g, respectively. The stability functions f,, and f;, are given by Mellor and
Yamada (1982).

The parameterization for the orographic gravity wave drag consists of two components;

one for long waves (wavelength > 100 km) and the other for short waves (wavelength =
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10 km). The long waves are assumed to propagate upward until reaching wave-breaking
levels mainly in the stratosphere and exert drag there (type A scheme), while short waves
are always regarded as trapped and dissipated within the troposphere (type B scheme).
Therefore the fundamental difference between the two schemes appears in the vertical
distribution of the momentum deposit. The type A scheme is based on Palmer et al. (1986)

with some modifications. Details are explained in Iwasaki et al. (1989).

A Simple Biosphere scheme (SiB) for a land surface model (Sellers et al., 1986; Sato
et al., 1989) is also implemented. The SiB model estimates temporal changes in various
land-surface properties such as vegetation, surface skin, snow, and soil. The SiB model
also calculates heat, water, and momentum exchange between different land-surface com-
positions and the lowest layer of the atmospheric model. Land-surface processes are
roughly divided into three groups that are individually related to canopy, snow, and soil.
For the climate models, an upgraded version of SiB model (Hirai et al., 2007) is installed.
The new version has improved treatment of soil and snow processes compared with the

conventional version.

The model is optimized for a vector machine such as ES (Katayama et al., 2003;
Katayama et al., 2004). Figure 2.1 shows a scalable performance of the 20-km mesh
AGCM on the ES?. The parallel efficiency is very good from 12 nodes to 60 nodes. The
computing efficiency with 60 nodes of the ES is about 35% of the peak performance. The

execution time of the 24-hours forecast is about 6 minutes using 60 nodes of the ES.

Typhoon simulations of the 20-km mesh AGCM are compared with those of the JMA
former operational GSM. Details on GSM are also available in JMA (2002). The dynamics
of GSM is an Eulerian form. The resolution of GSM is T213L40, namely, triangular
truncation 213 which is equivalent to about 60-km mesh horizontal grids and vertical

40 layers. Some physical processes in the forecast model of the 20-km mesh AGCM are

2This scalability test was implemented using former Earth Simulator computing system (i.e., ES1)
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slightly different from those of the GSM as shown above. In addition to the differences, the
20-km mesh AGCM has also adopted recent revisions in some physical processes shown
in Table 2.2. For the GSM simulations, outputs by the JMA operational routine are
used. Hence, the GSM only adopts the revisions in Table 2.2 at the time the typhoon was
predicted (e.g., the GSM does not adopt all the revisions for the 2002 typhoon simulation
cases, whereas the 20-km mesh AGCM adopts them all). However, as Mizuta et al. (2006)
pointed out, most of the settings in the physical parameterizations were tuned at the
original resolutions of 60-km mesh. Some parameters in some physical processes were
adjusted in their climate simulation for convenience, although they were not well verified.
It is also uncertain that these adjustments yield good results for a simulation in a forecast
mode. Therefore, these adjustments were not applied to the forecast simulations using

20-km mesh AGCM in this verification study?.

2.2 Initial condition

A medium-range forecast experiment is an initial condition problem. Therefore, using
appropriate initial data is necessary for medium-range forecasts to avoid a spin-up prob-
lem. Although it would appear to be better to use a data assimilation system for the
above reason, the high resolution of the 20-km mesh makes it difficult to construct a data
assimilation system because of lack of computer resources when this study was launched.
Hence, the initial condition was obtained by interpolation from the 60-km mesh JMA

Global Analyses (GANAL; JMA, 2002) to the 20-km mesh grids.

The typhoon structure in the original GANAL is changed into a somewhat blunt
structure compared with the realistic typhoon structure so that the 60-km mesh GSM

can resolve it. Therefore, a typhoon bogus insertion within the initial field (Iwasaki et al.,

3However, the adjustments were applied to climate projections in this study (see Section 3.1.1 for
details.
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1987; Ueno, 1995; JMA, 2002) was implemented to reproduce the suitable strength of
tropical cyclone-like vortices so that the 20-km mesh AGCM can resolve at the high
resolution. Figure 2.2 shows an example of the typhoon bogus implantation. Figure
2.2a displays the initial typhoon structure of an original GANAL. The central pressure is
992.19 hPa, which is much higher than the 960 hPa of the best-track data (the best-track
data used in this study will be described in Section 2.4). On the other hand, Figure
2.2b shows the initial field with the typhoon bogus for a 20-km mesh model. The central
pressure of the typhoon is 973.77 hPa, which is closer to the best-track data than the
original GANAL. Although the typhoon bogus creates typhoon vortex quite realistically,
the vortex does not seem to be exactly adjusted for the 20-km mesh AGCM. Kurihara
et al. (1993) and Bender et al. (1993) pointed out that an insufficient initial typhoon
vortex leads to a false spin-up for the first one or two days to adjust the initial typhoon
structure by a finer resolution model; similarly, forecast experiments with the typhoon
bogus in this study also showed a false spin-up in the early forecast stage, which was

remarkably observed with intensity.

However, some preliminary experiments confirmed that typhoon forecasts with the
bogus are superior to those without it in terms of intensity and position error. Hence, the
typhoon bogus was applied in this study. To avoid such a spin-up, Kurihara et al. (1993)
introduced an optimum initialization system to generate a vortex which is compatible
with the physics and the high-resolution model. However, improving the typhoon vortex
in the initial condition is beyond the scope of this study and will be a challenging task

for the future.

Nevertheless, noise in an initial field, which is mainly caused by interpolation errors,
cannot be negligible (see figure 14 in Murakami and Matsumura (2007)). In order to
remove the noise, the preliminary study (Murakami and Matsumura, 2007) succeeded in

developing an effective non-linear normal-mode initialization method for a high-resolution
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AGCM; thus, a medium-range forecast with the AGCM becomes feasible. Figure 2.3
shows the overall experimental configuration for the typhoon forecasts for the 20-km mesh
AGCM. The initial time of the forecast is 4 times a day (00, 06, 12, and 18 Universal Time
Coordinated (UTC). The initial data is obtained by interpolation from the 60-km mesh
GANAL, as mentioned above (see broken line in Figure 2.3). The time integration for
each forecast is carried out for 96 hours. A deterministic 6-hour forecast during the 96-
hour forecast was used for the incremental normal-mode initialization (Ballish et al., 1992;

Murakami and Matsumura, 2007) at the next initial time (see box marked as “Guess” in

Figure 2.3).

The output of simulations by the GSM is available by 90 hours. Basically, the output
of the JMA operational routine is available only for forecasts started on 00 UTC and 12
UTC. However, in order to gain further statistical confidence, forecasts started on 06 and
18 UTC under the same setting of a routine GSM are implemented. For a homogeneous

comparison with the 20-km mesh AGCM, simulations within 90 hours are evaluated.

2.3 Simulated typhoons

Twelve typhoons were selected for verification using the following subjective criteria while

considering the limitation of the computational resources given by the ES;

Hazardous typhoons which come close to or land on Japan,

Typhoons that recurve (or never recurve),

Recent typhoons from 2002 to 2005,

Typhoons whose track was well (or badly) predicted by the GSM.
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The list of selected typhoons and their experiment periods of initial time are summarized
in Table 2.3. Those forecast dates almost overlap with the period of tropical storms
analyzed (TS, when the maximum sustained wind is between 34 knots to 47 knots); severe
tropical storm (STS, between 48 knots to 63 knots); and typhoon (TY, over 64 knots)
as classified by WMO (2005). The characteristics of each typhoon are well described in
JMA (2001-2005).

2.4 Best-track data

The simulated track position and intensity are verified with the post-analyzed best-track
data distributed by the Regional Specialized Meteorological Center of Tokyo (RSMC-
Tokyo), which is managed by the JMA. The data set provides the central position, central
pressure, estimated 10 minute-averaged maximum sustained wind speed, and size (e.g., the
radius of 30 knots and 50 knots). They are estimated from observations, namely, aircraft,
satellite, surface, and upper air observations (Kamahori et al., 2006). In this study,
the central position, the central pressure, the maximum 10 minutes-averaged sustained
wind speed, and the radii of 30-knot and 50-knot winds in the data set are used as an
observation. The radius is analyzed from a center of typhoon in four directions, namely,
north, west, south, and east. When all directions of the radius are not missing, the average

value is used to compare with the results of simulations.

The best-track data of the simulated typhoons are shown in Figure 2.4. In general,
except for T0412 and T0513, most typhoons were generated on the south east of the
Pacific Ocean approximately between 5 N and 15 N where the SST is high. Then, they
moved northwestward while decreasing in central pressure and intensifying the maximum
wind. At the time of or just before the recurvature, they reached their peak intensity.

After recurvature, they changed their moving direction to northeastward with fast moving

17



velocity and proceeded to disappear.

2.5 Method to detect the position of a typhoon

The method for detecting the typhoon central position by simulations is the same as the
method proposed by Sakai and Yamaguchi (2005) except for the mean sea level pressure
(MSLP), for which outputs of 6-hour intervals are used. The method is as follows. At
an initial time, the nearest position of the minimum MSLP points from the best-track
position is defined as the central point of a typhoon. At 6 forecast hours, the minimum
MSLP point within 500 km from the central point at the initial time is defined as the
central point. After 12 forecast hours, the minimum MSLP point within 500 km from
the point of the linearly extrapolated point by the last 2 forecast positions is defined
as the central point. In the case of missing the minimum MSLP point, the tracking is

terminated.

Radii of 50-knot and 30-knot wind velocity (hereafter referred to as R50 and R30,
respectively) are also derived using 10-m wind components of the model output. The
radii are firstly sought for all four directions (i.e., north, east, south, and west) from the
center of a storm. When a grid value of 30-knot or 50-knot wind is detected for the first
time, it is considered as an inner-core side and ignored because radii of outer-core side
are focused here. When the radii are detected for the second time for all directions, they
are averaged and compared with the best-track data. If any one radius is not detected, it
must become a missing value. Here, in general, the wind speed is weaker on land than on
the ocean. This is true for both the observation and simulated results. However, when
a storm is close to land, the best-track data consider the land effect. Figure 2.5 shows
an example. The northern positions of the radii are different from each other. When the

above detecting algorithm is applied, the radius becomes small because the wind velocity
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on land is very weak. On the other hand, the radius obtained by the best-track data is
from farther to the north. If these differences are not taken into account, a small bias will
always be present. To prevent this error, a third point of radius should be considered.
However, in this study, the radius points on land were converted to missing data and not

used for the analysis; in other words, only radius points on the ocean are evaluated.

2.6 Results and discussions

2.6.1 Position errors

Figure 2.6 presents all the results of the simulated tracks for the whole of experimental
periods. When these results are viewed as a whole, most tracks by the 20-km mesh AGCM
are very similar to those by GSM. The westward movement in the early developing stage
of T0207, T0310, and T0421 was difficult to predict. The tracks by the 20-km mesh
AGCM also show a noticeable northward bias in the developing stage. Although the bias
of the 20-km mesh AGCM is slightly smaller than that of the GSM, it does not seem to
be significantly improved by the resolution increase. One of the possible reasons for the
northward bias is that the cumulus parameterization scheme in the GSM produces a cold
bias at the lower troposphere over the middle and low latitudes (Nakagawa, 2003). This
leads to a systematic negative error in geopotential height over the western portion of
the North Pacific high. It is indicated that the induced weak subtropical high causes a
northward bias. Figure 2.7 shows composite large-scale field for the T0207 cases which is
only averaged before the typhoon recurves (BR stage as explained later). It seems that the
center of subtropical high shifts westward in the analysis, whereas those by models locate
east of the analysis. The notable northward flow bias locates the edge of the subtropical
high. It is also fairly obvious that westerly wind bias is seen between 15 N and 20 N

latitude for both models. The strong westerly wind bias penetrates far east so that it
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interrupts westward moving of typhoon. They are caused by the wrong position or the
weakness of the subtropical high. There also exists cooling bias around the subtropical
high. The degree of the cold bias of the 20-km mesh AGCM is less than that of the
GSM, which results in smaller northward bias of the storm positions. Nakagawa (2003)
pointed out that the cooling bias was alleviated by introducing an improved cumulus
parameterization scheme (Table 2.2). The improved cumulus parameterization scheme is
not included in the GSM for the simulation of T0207, but it is in the 20-km mesh AGCM.

However, the northward bias was not dramatically improved by the 20-km mesh AGCM.

The other possible reason for the northward bias is the inappropriate initial data,
mainly due to the lack of observations in the tropical area. Tokuno and Ohhashi (2003)
conducted a forecast test with an assimilation using the QuikSCAT (Quick Scatterometer)
wind data for the T0207 typhoon case. The authors showed that the northward bias is
about 100 km reduced with the data. Although detail reasons for the improvement are
not clear, the authors stated that root mean square error of temperature and geopotential
height at 850 hPa level and temperature at 500 hPa level are decreased by the forecast
with the QuikSCAT. It is inferred that correcting the errors of the large-scale field is
mostly a key for improving northward bias. The GANAL, in which the current study was

originally used, was not created using the QuikSCAT data.

Although the wrong timing of the recurvature (T0418, T0421, T0423, and T0514)
is notable, the westward bias before the recurvature (T0421) is also remarkable in both
models, and the tracks by each model do not seem to be significantly different. Figure
2.8 is the same as Figure 2.7 but for the T0421 case. In this T0421 case, the GANAL
shows that the typhoon moves along the edge of subtropical high. Although the models
simulate the subtropical high comparatively well in the early forecast hours, they can not
simulate the westward propagation of the high-pressure system in the later forecast hours.

As a consequence, northwesterly wind goes into the edge so that it interrupts northward
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moving of typhoon. It is indicated together with the T0207 result that the error of the
large scale field as subtropical high leads either northward or southward position error of

typhoon systematically.

As for the cases of T0412 and T0513, which never experience recurvature, the track
error of the 20-km mesh AGCM is almost the same as the GSM or slightly decreased.
Because the large-scale field is not so different among models, it is indicated that if the
large scale field is almost the same, the position difference between the 20-km mesh model

and the 60-km mesh model is not so significant.

Figure 2.9 shows the statistics of the position error for all typhoon cases in which
various typhoon stages are classified. Here, (a) displays the position error of all typhoon
cases. All cases are classified according to the storm recurvature as (b) before recurvature
(BR); (c¢) during recurvature (DR); and (d) after recurvature (AR). These recurvature
stages are defined by the direction of typhoon motion. The BR is defined as the moving
direction of 180-320 degree of the clockwise angle from the north; DR, as 32010 degrees;
and AR, as 10-180 degrees. All cases are also classified according to the storm intensity,
namely, (e) TS, (f) STS, and (g) TY. In general, model differences regarding position error
at each forecast hour are not statistically significant because of large variance and lack
of sampling cases. The two-sided Student’s t-test shows at most 40 percent significance
for each hour between models. In spite of the small statistical significance of the model

difference, some features can be seen in the figure.

In the early forecast hours, the two models show almost the same track errors for
all stages. Approximately after 36 hours, the model difference becomes larger. When
typhoons are in the stage of BR and AR, the position error of the 20-km mesh AGCM is
less than that of the GSM. On the other hand, during the DR stages, the position error
of the 20-km mesh AGCM is larger than that of the GSM in the later forecast hours.
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Because the sampling number is small, it is insufficient to argue that the 20-km mesh
AGCM causes larger bias at the DR stage. However, a few cases of the systematic larger
error were seen in the T0514 simulations. Figure 2.10 shows an example. Both the 20-km
mesh AGCM and the GSM could not predict the recurvature. After 24 forecast-hour, the
bias of the 20-km mesh AGCM becomes larger. Because the large-scale field was not so
different between the models (data not shown), it is indicated that some structure errors of
the typhoon generate such bias. As seen in the Figure 2.10 case, the 20-km mesh AGCM
strengthens the typhoon too strong while the analysis does not strengthen. Although the
degree of the error by the GSM is less than that of the 20-km mesh AGCM, the difference
between models and best-track data is large comparatively. The GSM also shows false
intense tendency while the best-track data shows steady or slightly decay tendency. It is
natural to assume that if typhoon becomes strong, its moving direction becomes difficult
to be influenced by the large-scale flow. The reason of this false tendency during the
DR stage is uncertain at the moment. One of the possible reasons is that convection
in the models is too strong at the early forecast hours to adjust unstable initial field.
Then the latent heat release promotes updraft at the center. Once the updraft becomes
predominant, much more water vapor at lower levels may be collected at the center and
promotes latent heat release. If such a feedback is truly happens in the models, the
initial field structure is very critical for correct intensifying tendency. Although it is still
uncertain, the key for the precise position prediction of the DR stage might be to correct

intensity tendency or typhoon structure.

Evaluating the model difference of the position error by the intensity stages (Figure
2.9e—g) is difficult because most samples are in the TY stage and the sampling numbers
for TS and STS are very small. In the TY stage, however, there are small differences
of position error between models. Although the statistical significance is low, the 20-km

mesh AGCM simulates the typhoon positions as realistically as the GSM.
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Figure 2.11 shows a scatter diagram of the position error at 72 forecast hours decom-
posed into the along/across moving direction relative to the best-track storm position.
The ordinate represents the error along the direction the storm is moving, whereas the
abscissa represents the error across the direction the storm is moving. Here, three stages
are classified as Figure 2.9b-d, namely, (a)-(b) BR, (c)-(d) DR, and (e)-(f) AR. During
the BR stage, the positive errors of the across moving direction (i.e., northward bias)
are distinct. Although the positive errors would appear to be mainly due to the T0207
typhoon, as seen in Figure 2.6b, they are seen in almost every typhoon case. Note that
this northward bias in the BR stage is also seen in most operational global models in
the world (Wu et al., 2000; Sakai and Yamaguchi, 2005). Except for the positive errors,
the negative bias is also large in the both models. This bias was remarkable in the case
with T0421 as seen in Figure 2.6h. Overall, the forecasted central position is broadly
distributed around the analysis position and not so different among models. As for the
DR stage, there are fewer differences among models. When it comes to the AR stage,
negative errors along the storm moving direction (i.e., slow bias) are remarkable for both
models. Figure 2.12 shows the scatter diagram as same as the Figure 2.11 but for AR
stage for each forecast hour. The large slow bias after the recurvature is mainly notable
at the later forecast hours so that it is due to the model error rather than the initial
condition error. Figure 2.13 is the same as Figure 2.7 but for the all typhoon cases in
the AR stage. It is interested that the cold bias by the both models is seen around the
subtropical high and the strength is weaker than the analysis. There also exists warm
bias at the north flank of the jet stream around Japan. It is considered that decreasing
meridional temperature gradient results in weakening the jet stream by the thermal wind
relation. Although there is room for more work to clarify the reason for the warm bias,

the slow bias seems to be caused by the error of the weak jet stream.

Figure 2.14 also shows the distribution of the systematic bias of the mean position

(vector) and sea level pressure (contour) verified on two-degree grids for the 24 and 72
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forecast hours, in which all typhoon cases are averaged. When the biases of position are
viewed as a whole (the bias of the sea level pressure will be discussed in Section 2.6.2), the
bias in the 24 forecast hours is clearly less than that in 72 forecast hours. Furthermore,
both models show quite similar patterns of erroneous direction and magnitude at 24
forecast hours. There exists a general northward bias in the region south of 20 N and
between 125 E and 155 E at both of 24 and 72 forecast hours in both models. This
indicates that a typhoon tends to go northward before recurvature, as is already pointed
out in Figure 2.11. There also exists a large southward or southwestward bias in the region
north of 25 N. This indicates that the typhoon tends to move slowly after recurvature,

as is also pointed out in Figure 2.11.

Overall, both models simulate storm tracks quite similarly. Furthermore, they share
systematic northward and southward biases before recurvature and slow bias after re-
curvature. The fact that the difference of the simulated track between the 20-km mesh
AGCM and the GSM is small indicates that a refining resolution is not the only key to

reduce track errors.

2.6.2 Intensity verification

The typhoon intensity, namely, the central pressure and maximum sustained wind, is

compared between models.

Figure 2.15 and Figure 2.16 show the simulated central pressure and maximum sus-
tained wind, respectively. When viewed as a whole, the GSM predicts both the central
pressure and maximum wind too weakly, while the 20-km mesh AGCM predicts them
as strongly as, or stronger than, the best-track data. In particular, the variance of the
20-km mesh AGCM seems to be larger than that of the GSM. It is also notable that,

even in the decay stage of a typhoon, the 20-km mesh AGCM tends to increase the max-
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imum wind and decrease the central pressure in the early forecast time and then decrease
the maximum wind and increase the central pressure (see (d) T0314, (e) T0406, and (g)
T0421). This insufficient tendency is mainly due to the spin-up, as described in Section
2.2. However, except for the spin-up, the 20-km mesh AGCM seems to show quite a good
decaying tendency. The geographical error of central sea level pressure can be seen in
Figure 2.14. As a whole, the GSM shows a systematic positive bias both at (a) 24 and
(¢) 72 forecast hours, which is mainly due to the coarse resolution. However, the absolute
error value of the 20-km mesh AGCM (b and d) is relatively smaller than that of the
GSM. It is also noted that there is negative error by the 20-km mesh AGCM in the area,
in which the position error is relatively large around the typhoon genesis area (between
140 E and 160 E in longitude and between 0 and 15 N in latitude) and the typhoon de-
caying area (northern 30 N). Although this error is likely to be mainly due to the large
position error, the 20-km mesh AGCM yields an extremely low prediction of the central

sea level pressure.

Figure 2.17 shows the tendencies of central pressure. The tendencies are evaluated
by distinguishing three stages. One is the intense stage, in which the observed typhoon
records a 10 hPa decrease between 24 and 72 forecast hours. Another is the steady stage,
in which the observed typhoon records a decrease of between —10 hPa and 10 hPa. The
other is the decay stage, in which the analyzed typhoon records a 10 hPa increase. In the
intense stage, the GSM cannot simulate the typhoon deepening tendency. Most of the
simulated central pressure records more than 960 hPa. This is due to the coarse resolution.
The 20-km mesh AGCM, however, can simulate the deepening tendency better than the
GSM. Some simulations by the 20-km mesh AGCM also reach 920 hPa, which is close
to the analysis. (whether this close value is good or not for the 20-km mesh model will
be discussed later). However, it must be noted that there are some bad cases in the
20-km mesh AGCM in which the central pressure does not decrease as much as in the

analysis. Although the reason for the discrepancy is uncertain, Oouchi et al. (2006) and
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Knutson and Tuleya (2004) suggest that it may originate in the insufficient performance
of the physical scheme, including the cumulus parameterization. It may also be caused
by insufficient initial condition because most of the central pressure for these cases at
the 24 forecast hours (i.e., “A” in Figure 2.17a) is higher than that by the observation.
This insufficient typhoon structure may prevent a typhoon from intensifying. Also, in the
steady stage, the 20-km mesh AGCM shows decreasing sea level pressure too much more
than the observation. When this tendency is evaluated between 72 and 90 forecast hours
(data not shown), the erroneous tendency was not so strong as it is seen between 24 and
72 hours. Therefore, the insufficient typhoon structure in the initial field seems to cause
such a false tendency. Although further analysis is required, it is natural to assume that

the 20-km mesh AGCM has better potential than the GSM to simulate intense tendency.

For the cases of the decay stage, the 20-km mesh AGCM represents the declining
tendency better than the GSM. However, some simulations show lower central pressure
than the analysis at the 24 forecast hours. Those cases, in which the central pressure
records less than 910 hPa by the 20-km mesh AGCM, are due to spin-up. All of the cases
decrease the central pressure from the initial condition to 24 hours and then increase it
from 24 hours. Except for these cases, the 20-km mesh AGCM represents the decaying
tendency more adequately than the GSM. Figure 2.18 also shows the tendencies in the
maximum wind velocity. The basic features are almost the same as the result of central
pressure. It must be noted that the GSM cannot simulate an intensifying tendency that
exceeds 50 knot by analysis. The 20-km mesh AGCM, however, represents the tendency

more accurately than the GSM.

Overall, the 20-km mesh AGCM has better possibility than the GSM to simulates the

strength tendency.
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2.6.3 Typhoon structure

A comparison between the infrared image by a satellite and the expected image by sim-
ulated outputs helps to visually grasp the structure of a storm. Figure 2.19 is a compar-
ison of satellite infrared image by the GOES (Geostationary Operational Environment
Satellite)-9 and that by model simulations. The infrared image by the model simulations
is derived using a radiative transfer model based on a method in the GSM (Oowada,
2006). In this case, it is conspicuous that the typhoon structure by the GSM is very
vague (e.g., the eye is not resolved). On the other hand, the typhoon structure by the
20-km mesh AGCM is much finer than that by the GSM. For example, it is noted that
the typhoon eye is well resolved by the 20-km mesh AGCM. The central pressure was
955.0 hPa, 951.0 hPa, and 966.2 hPa for the observation, the 20-km mesh AGCM, and
the GSM, respectively. The eye wall is also more realistic than that by the GSM. It is
also remarkable that the cloud bands of the typhoon that run from northeast to south-
west are much clearer than those by the GSM. It is reasonable to suppose that the high
resolution enables it to represent the typhoon structure more realistically. However, when
it is compared with observation carefully, the central structure, including eye walls, by
the 20-km mesh AGCM seems to be too compact. The possible reason will be discussed

later with a radial profile verification.

The simulated mean R30 and R50 are compared with those of the best-track data.
Figure 2.20 shows the mean errors of R30 and R50. Generally, the differences between
models are small. The error of R50 is, notably, almost zero or small negative bias.
However, the negative bias of R30 is distinct. The negative bias means that strong
winds are simulated too close to the eye of the storm. Although the error difference
between the recurvature stages is small, the BR (c) stage shows relatively larger error
than other stages. It is also noted that the bias in the initial condition (forecast zero hour

in the Figure 2.20) is relatively large compared with other forecast hours. This indicates
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that there is considerable room to improve the initial condition for better experiments.
However, as the error of R30 is increased by the forecast hour, there are some deficiencies
in the model’s physical processes. As Mizuta et al. (2006) described, these errors can be

alleviated by some adjustments to the physical processes.

Figure 2.21 shows mean wind profile for each forecast time. It is noted that the
maximum wind by the 20-km mesh AGCM is located around less than 100 km from the
center of storms. However, it is located between 100 km and 200 km by the GSM. Because
the grid interval of GSM is 60 km, it seems to be unable to resolve such a sharp structure
of wind variation around the center of a storm. It is inferred from the R30, the R50, and
the maximum wind velocity by the best-track that the position of maximum wind velocity
is located less than 100 km from the center, which is close to the 20-km mesh AGCM
profile. It is also notable that wind structures are changed by forecast hour by the 20-km
mesh AGCM, whereas those by GSM are not changed. Although it is due to spin-up by
the insufficient initial structure, the degree of spin-up is approximately alleviated after 60

forecast hours.

In order to remove the spin-up deterioration, Figure 2.22 shows the same as Figure
2.21, but for averaged typhoons whose maximum velocity is more than 50 knot after 60
forecast hours. It is interested that the outer-core structure, which is more than 200 km
from the center, is almost the same between models. The difference is distinct in the
inner-core structure. This gives us justification for the assumption that high resolution is
required in order to evaluate typhoon strength, because high resolution makes it possible

to capture the inner-core structure realistically.

Although it appears that the 20-km mesh AGCM simulates exact structure as same as
the observation as it is seen in Figure 2.22, it is necessary to discuss how much resolution

is enough to resolve the inner-core structure. In other words, what is the best-fitted
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structure as its resolution? For example, one might think that the structure of the 20-km
mesh AGCM is too deep as its resolution. In fact, the R30 and R50 verifications show
that the structure of 20-km mesh AGCM is too more compact than GSM at later forecast
hours. The author supposes that 20-km mesh is not still enough to resolve the inner-core
structure so that wind profile should be underestimated when it is compared with the
observation. Therefore it is important to evaluate the best-fitted structure as the 20-km
mesh resolution. One of the hints to determine the best-fitted structure is the simulation
tests with different initial typhoon bogus structures. If a spin-up is occurred as seen in
20-km mesh AGCM case of Figure 2.21, the initial structure is not considered to be the
best fitted as the resolution. The initial structure of the GSM might be the best fitted as
60-km mesh because spin-up is not seen. One of the possible reasons of the too compact
structure might be due to the insufficient cumulus parameterization scheme (from personal
communication with a JMA model developer). Both the 20-km mesh AGCM and GSM
overestimate weak precipitation which is less than 15 mm/day around tropics (Kamiguchi
et al., 2006). It is indicated that shallow cumulus convection is easy to occur in the models.
When this is applied to typhoon, it is inferred that deep convection does not occur easily
at the outer-core side of the typhoon. As a result, shallower convection and water vapor
are collected in the vicinity of the typhoon center so that deep convection is too strong
around the center. For future work in order to clarify the structure error, the convection

distribution conducted by a cloud resolving model may be beneficial information.

2.7 Summary

Tropical storms over the western North Pacific (WNP) were simulated by the 20-km
mesh MRI/JMA-AGCM. The simulations were compared with the 60-km mesh GSM as
a coarse global model in order to evaluate differences in resolution. The verification was

conducted for twelve typhoon cases from 2002 to 2005.
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The difference in the position errors of typhoons between the 20-km mesh AGCM
and the GSM is very small, although the position error of the 20-km mesh AGCM seems
slightly small. The performance of the track forecast seems to depend mainly on the
large-scale flow, initial condition, and the physical process in the models rather than
on the resolution difference. The statistics of the position errors are also classified into
the different stages of a typhoon, namely, recurvature and intensity. The overall result
is that position errors are almost identical between models. The 20-km mesh AGCM
simulates the typhoon positions as realistically as the GSM. According to the analyses
of the northward bias in the T0207 cases and the southward bias in the T0421 cases,
schematic errors in the large-scale field, which is associated with the erroneous strength
of the sub-tropical high, were found. Also, the position errors of the 20-km mesh AGCM
are slightly larger than those of the GSM during the recurvature stage. This mainly comes
from the erroneous intensifying tendency because of initial spin-up problem rather than
from the model bias itself. The position errors are also analyzed by along/across moving
direction relative to the best-track position. As a result, both models show a northward
bias before the recurvature stage and a slow bias after the recurvature stage. Because
there are almost the same systematic errors of large-scale field for both models, they are
mainly caused by error of the physical process. As a whole, these results indicate that

refining the resolution is not the only key to reduce position errors.

However, there are significant differences in intensity (maximum sustained wind and
central pressure) predictions, mainly due to the resolution difference. As a whole, the
GSM simulates both the central pressure and maximum wind too week, whereas the 20-
km mesh AGCM simulates them quite realistically but somewhat too strong. It is also
remarkable that the 20-km mesh AGCM can simulate the intense or decay tendency much
more realistically than the GSM. These results indicate that the 20-km mesh AGCM has

better predictability on the intensity of tropical cyclones than the GSM.
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The typhoon structure was also compared from the view point of the radius of 30-knot
and 50-knot winds. Although both models show a similar bias, there was a negative bias
in 30-knot radius, namely, the typhoon structure of the wind was too compact. However,
when the composite structure of the wind profile was compared, that of inner core by
the 20-km mesh AGCM shows comparatively realistic structure, which has the sharp
increasing of wind velocity within 100 km in the radius. This drastic transformation of

structure seems to be unable to be resolved by the GSM.

On the basis of these results, it can be concluded that the 20-km mesh AGCM simu-
lates typhoons more realistically than the GSM in terms of intensity and inner structure.
However, as the statistical significance remains low because of limited computer resources,
further cases should be implemented for a future study. It is also necessary to verify other
tropical cyclones over other oceans. The systematic errors, which are common in both
models, namely, north bias, slow bias, and a structure of strong wind that is too compact,
seem to be due to a physical process or initial conditions. It is also important to evaluate
the suitable typhoon structure as the model resolution. In other words, it is insufficient
to modify the typhoon structure of the model just close to that of observation; other-
wise the model shows false intensity tendency and deteriorate typhoon position forecast.
Further investigations and improvements with regard to these issues will be necessary for

producing further reliable climate simulations and medium-range forecasts.
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Table 2.1: Specifications of the models used in this study.

(a) Forecast Models |

(b) Climate Models

Name

GSM

20 km-mesh AGCM

60
mesh
AGCM

km-

120
mesh
AGCM

km-

180
mesh
AGCM

km-

Truncation
Wave
Number

T213

TL959

TL319

TL159

TL95

Horizontal
Grids
Number

640 x 320

1920 x 960

640 x 320

320 x 160

192 x 96

Grid
Spacing
in Degree

0.5625

0.1875

0.5625

1.1250

1.875

Vertical
Layers

40

60

Model
Top

0.4 hPa

0.1 hPa

Advection
Scheme

Eulerian
Form

Semi-Lagrangian Scheme (Yoshimura and Matsumura,

2003)

Cumulus
Convec-
tion

Prognostic Arakawa-Schubert (Randall and Pan, 1993)

Cloud
Process

Prognostic Cloud Water Content (Smith, 1990)

Radiation
Process

NPD/JMA

(JMA,
2002)

NPD/JMA
(JMA,
2007)

Shibata and Aoki
Uchiyama (1992)

(1989),

Shibata and

Boundary
Layer
Scheme

Mellor-Yamada Level 2 (Mellor and Yamada, 1974)

Gravity
Wave
Drag

Iwasaki et al. (1989)

Land
Surface
Model

Simple

Model (SiB version L1;
Sato et al., 1989)

Biosphere

Upgraded Simple Biosphere Model (SiB version
0109; Hirai et al., 2007)

Chapter
in Use

2

3, 4, and
5
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Table 2.2: List of the recent major revisions in the physical processes for the 20-km mesh
AGCM.
Date Upgrade Reference

28 May 2003 Improved cumulus convection Nakagawa (2003)
scheme including the entrainment
and detrainment effects between
the cloud top and the cloud base
in convective downdraft.

29 Jul 2004 A simple parameterization scheme Kawai and Inoue (2006)
for marine stratocumulus.

29 Jul 2004 Improved cloud water/ice scheme. Kawai (2003)

02 Dec 2004 A new long-wave radiation Murai and Yabu (2005)
scheme.

Table 2.3: List of all simulated typhoons.

Typhoon Name | Typhoon Number | Number of Cases Dates of Forecast
Chataan T0206 48 Jun 29, 2002 — Jul 11, 2002
Halong T0207 38 Jul 07, 2002 — Jul 16, 2002

Etau T0310 25 Aug 03, 2003 — Aug 09, 2003
Maemi T0314 32 Sep 06, 2003 — Sep 13, 2003
Dianmu T0406 34 Jun 13, 2004 — Jun 21, 2004
Meranti T0412 20 Aug 04, 2004 — Aug 09, 2004
Songda T0418 45 Aug 27, 2004 — Sep 07, 2004
Meari T0421 37 Sep 20, 2004 — Sep 29, 2004
Ma-on T0422 23 Oct 04, 2004 — Oct 09, 2004
Tokage T0423 33 Oct 12, 2004 — Oct 20, 2004
Talim T0513 17 Aug 29, 2005 — Sep 02, 2005

Nabi T0514 41 Aug 29, 2005 — Sep 08, 2005
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Figure 2.1: Scalability performance of the 20-km mesh AGCM on the Earth Simulator.
The model resolution is TLI59L60.
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Figure 2.2: (a) The original GANAL. (b) The 20-km mesh initial field with the typhoon
bogus. The central sea level pressure of the original GANAL is 992.19 hPa, whereas that
of the 20km-mesh initial field is 973.77 hPa. The best-track data shows 960 hPa at the
same time of 18UTC on August 5 of 2003.
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Figure 2.3: The boxes “60km GANAL”, “20km Anal”, “Guess”, and “Init” correspond to
the original 60-km mesh analysis, interpolated analysis, first-guess, and initialized data,
respectively. The broken line is the interpolation and the typhoon bogus. The thin arrows
are deterministic forecasts, and the thick three-pronged arrows are the new initialization
scheme.

— Forecast (TL959L60 ; 20km mesh)
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Figure 2.4: Best-track data by the RSMC-Tokyo Typhoon Center for (a)T0206, (b)T0207,
(c)T0310, (d)T0314, (e)T0406, (f)T0412, (g)T0418, (h)T0421, (i)T0422, (j)T0423,
(k)T0513, and (1)T0514. An open circle and a closed circle are the positions at 00 UTC
and 12 UTC, respectively. The numbers along the tracks show the date at 00 UTC. The
numbers of the right side of each panel describe the date, central sea level pressure (hPa),
and maximum sustained wind (knot) from left, respectively.
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Figure 2.5: Land effect on detecting radius of 50 knot (R50) and 30 knot (R30). Position
of R50 and R30 (a) by the best-track data and (b) by the 20-km mesh AGCM. The winds
arrows in (a) are by the Automated Meteorological Data Acquisition System (AMeDAS;
one wing is equal to 10 knots). The black circles show the positions of R30, whereas the
white triangles show the positions of R50.
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The left and right panels of each typhoon show
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the results according to the 20-km mesh AGCM and the GSM, respectively. The gray
lines are according to the models. The black lines are according to the best-track data.

Figure 2.6: Simulated typhoon tracks.
The numerical annotations denote dates.
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Figure 2.7: Composite large-scale field for the T0207 which is averaged before the typhoon

recurves. The left panels are averaged analysis field. The contour lines show geopotential

height at 500hPa (Z500).
the GSM. The contour lines are Z500, the vectors show WIND bias against analysis, and

(WIND). The middle panels are by the 20-km mesh AGCM, and the right panels are by
the colors show temperature bias at 850 hPa level.
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Figure 2.9: Simulated position error (km). (a) is the position error for all cases. All
cases are classified according to the moving direction as (b) before the recurvature (BR);
(¢) during the recurvature (DR); and (d) after the recurvature (AR). All cases are also
classified according to intensity as (e) TS; (f) STS; and (g) TY. The open-circle plots
show the error by the 20-km mesh AGCM, and the cross plots show the error by the

GSM. The sampling number is shown in the histogram.
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Figure 2.10: An example of position error in the DR stage of T0514 case. (a)the typhoon

position, (b) the central pressure, and (c¢) the maximum wind. The black-solid lines are

by the 20-km mesh AGCM, the black-broken lines are by the GSM, and the gray lines

are by the best-track. The initial time is 18UTC on September 5 of 2005.
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Figure 2.11: Simulated central typhoon position along/across the moving direction relative
to the storm position of analysis. The typhoon positions at 72 forecast hours are plotted
for (a)—(b) as before the recurvature (BR), (¢)-(d) during the recurvature (DR), and (e)-
(f) after the recurvature (AR) stage. (a), (c), and (e) are according to the 20-km mesh
AGCM; (b), (d), and (f) are according to the GSM. The abscissa and ordinate represent
the error of the across moving direction and the along moving direction, respectively.
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Figure 2.12: Same as Figure 2.11 but for AR stage for each forecast hour.
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Figure 2.13: Same as Figure 2.7 but for the all typhoon cases in the AR stage.
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Figure 2.15: Simulated typhoon central pressure by each model. For each typhoon, the
left panel shows the central pressure (hPa) by the 20-km mesh AGCM, whereas the right
panel shows that by the GSM. The gray and black lines display the central pressure
simulated by the model and best-track data, respectively. The numerical annotations of
the abscissa denote the date.
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Figure 2.16: Same as Figure 2.15 but for the maximum sustained wind [knots]. The unit
of the wind velocity that corresponds to ms™! is shown in right ordinate.
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Figure 2.17: Tendency of the central pressure. The unit is hPa. The ordinate is the
simulated central pressure, whereas the abscissa is the corresponding central pressure of
the best-track data. “A” denotes the central pressure at 24 forecast hours. “B” denotes
that at 72 forecast hours. Three stages are defined as follows: (a) and (b): the intense
stage, in which the observed typhoon records a 10 hPa decrease; (c¢) and (d): the steady
stage, showing between a —10 hPa and 10 hPa decrease; (e) and (f):
showing a 10 hPa increase. (a), (c), and (e) are according to the 20-km mesh AGCM.

(b), (d), and (f) are according to the GSM.
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Figure 2.18: Same as Figure 2.17 but for the maximum wind velocity. The unit is the
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increase; (e) and (f): the decay stage, showing a 10-knot decrease.
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Figure 2.19: Comparison of infrared images. Top left: image by the GOES-9. Top right:
image by the 20-km mesh AGCM. Bottom: image by the GSM. The typhoon of the image
is the T0310. The date is 00 UTC August 06, 2003. The simulated forecast hour is 36.
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Figure 2.20: Mean errors of (a) R30 and (b) R50. (c) and (d) are the same as (a) and
(b) but before the recurvature; (e) and (f) are during the recurvature; (g) and (h) are
after the recurvature. The legends are the same as for Figure 2.9. The abscissa shows the
forecast hour. The ordinate shows the mean error [km].
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Figure 2.21: Mean wind profile for each forecast time. The abscissa shows the distance
from the storm center. The ordinate shows the averaged wind velocity [knot]. The colored
solid lines show model results. (a) is by the 20-km mesh AGCM, and (b) is by the GSM.
The circle (triangle) plots show the best-track 30 (50) knot radius, which were averaged
by the corresponding forecast time. The colored broken lines show the maximum wind
velocity by the best-track. (radius is unknown)
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Figure 2.22: Mean wind profile of storms whose wind velocity is more than 50knot after
60 forecast hours. The abscissa shows the distance from the storm center. The ordinate
shows the averaged wind velocity [knot]. The solid line shows by the 20-km mesh AGCM.
The dotted line shows by the GSM. The circle (triangle) plot shows the best-track 30 (50)
knot radius, which was averaged by the corresponding time. The long broken line shows
the maximum wind velocity by the best-track. (radius is unknown)
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Chapter 3

Effect of model resolution on
tropical cyclone climate projections

While past studies have conducted climate projections using state-of-the-art models (Knut-
son et al., 2010), one issue that has yet to be clearly addressed is the effect of model
resolution on the climatological features of projected TCs. This lack of information re-
flects the fact that high-resolution global model projections remain extremely expensive;
consequently, most climate runs are performed with a relatively coarse resolution (e.g.,
100-200-km mesh). This chapter reveals resolution-related differences in the projected
features of TC climatology (e.g., TC intensity, temporal variations in TC genesis number,
and the spatial pattern of TC genesis frequency (TGF)) using four resolutions, ranging
from TL95 (180-km mesh) to TL9I59 (20-km mesh). Section 3.1 presents model descrip-
tions, analysis methodology, and observations used in this study. Section 3.2 provides the
results, and Section 3.3 summarizes the main conclusions. Details are also available in

Murakami and Sugi (2010).

3.1 Methodology
3.1.1 Model descriptions

Table 3.1 lists the models considered in this study. Models (a)—(d) are the MRI/JMA-
AGCMs, one of which is the same model as that used in Oouchi et al. (2006), but with
model resolutions of (a) TLI59 (20-km mesh), (b) TL319 (60-km mesh), (c¢) TL159 (120-
km mesh), and (d) TL95 (180-km mesh).
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Details of the model descriptions are available in Section 2.1. As reported in Mizuta
et al. (2006), the climate model also applied several sets of adjustments for the TL959

projections as described below.

1. Evaporation effect is reduced by 10% in the TL959 model compared with other

coarser models.

2. Assumed sub-grid variance of water vapor is set to be 10% smaller in the cloud

scheme in the TL959 model than that used in other coarser models.

3. The amount of detrainment of cloud water at the top of the cumulus convection, as
well as transformation speed from cloud water to precipitation in the cloud scheme,

is reduced in the TL959 model.

4. The vertical transport of horizontal momentum in the convection scheme is reduced

by 60%, resulting in more realistic organization of tropical cyclones.

5. The surface roughness length over the ocean is set larger in order to enhance thermal

interaction between sea surface and boundary layer.

6. The gravity wave drag coefficient for short waves is increased in order to control

excessive developments of extratropical cyclones.

Among the above adjustments, the reduction of vertical transport of horizontal momen-
tum (No. 4 in the list) appears to affect directly tropical cyclone structure. This treat-
ment was applied because a convective-scale pressure gradient force was not included
in the convection scheme, causing excess of momentum transport and underestimate of
tropical cyclone intensity. Since this adjustment assumes independent of resolution, it
may be justified to apply it to other coarser resolutions. Therefore, this study applies the

reduction of momentum effect to all resolutions. Other adjustments are only applied to
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the TL959 model. In other words, this study uses the same physical processes and ad-
justment parameters for TL95, TL159, and TL319 projections; however, all adjustments
were applied for TL959 projections, indicating TL.959 has effects of both high resolution

and parameter adjustments when compared with other resolutions.

3.1.2 Observations

The Japanese 25-year Re-Analysis (JRA-25) dataset (Onogi et al., 2007) was used for a
test case employing the TC direct detection method described in Section 3.1.4 and latter
for GPI analysis in Section 4.1.2. The JRA-25 reanalysis system was constructed based
on the former global operational forecast and assimilation system at JMA. The system
consists of a three-dimensional variational data assimilation (3DVAR) and a spectral
forecast model with a resolution of T106L40 (triangular truncation at wave number 106
in the horizontal and 40 vertical layers). The data available period is from 1979 to 2004.
One of the advantages of the JRA-25 is that it adopted TC retrieved (TCR) data in
the assimilation process (Hatsushika et al., 2006). The TCR data provide an artificial
three-dimensional TC structure constructed using information from the best-track data,
such as position, motion, maximum surface winds, and the radii of 30- and 50-knot wind
speeds. The TCR was then treated as observational data in the assimilation process. This

approach yields both realistic environmental flows around a TC and TC structure.

The global TC dataset, obtained from the Web site of Unisys Corporation (Unisys,
2010), was used to evaluate present-day TC projections. The dataset consists of best-track
data compiled by the National Hurricane Center (NHC) and Joint Typhoon Warning
Center (JTWC), and contains historical TC information regarding the center location,
intensity (maximum 1l-minute surface wind speed), and sea level pressure at 6-hourly
intervals from 1851 to 2009. This study uses only the TCs with tropical storm intensity

or stronger (i.e., TCs that possess 1-min sustained surface wind of 35 knot or greater).
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3.1.3 Prescribed external boundary forcings

Each resolution was employed for a pair of integrations: a present-day projection (1979—
2003) with prescribed observed SST and sea ice concentrations (SICs) and a global-
warming projection (2075-2099) with prescribed future SST based on an ensemble mean
of 18 IPCC-AR4 (IPCC, 2007) models projected under the IPCC SRES A1B. The multi-
year climate projections were performed based on the so-called time slice experiments
(Bengtsson et al., 1996), in which SST, SIC, and greenhouse gases are given as external

forcings.

Figure 3.1 shows how to prescribe SST and SIC in this study. Details are also available
in Mizuta et al. (2008). For the present-day simulation, observed SST and SIC were
prescribed, with the monthly-mean data being interpolated to daily values. For the future
projection, future SST and SIC were created using the ensemble mean of 18 IPCC-AR4
models as listed in Table 3.2. First, observed SST and SIC were decomposed into a trend
(PDTR) component and an interannual variation (PDIV) for the 25 years from 1979 to
2003. Second, the same decomposition was applied to the ensemble mean of the AR4
models, thereby obtaining the future trend (GWTR) and interannual variation (GWIV)
for the 25 years from 2075 to 2099. The average values of SST and SIC for each period were
also computed, yielding the future change (GWDT). Finally, future forcing conditions
were reconstructed as a recomposition of GWDT, GWTR, and PDIV. Here, the amplitude
and phase of the interannual variations are assumed to be conserved in the future setting.
This study does not use the raw time series of the multi-model ensemble mean because
the averaging smoothes out year-to-year variability of SST and excludes ENSO. Figure
3.2 shows climatological mean of prescribed SST for (a) the present-day, (b) the future
projection, and (c) the future changes. The future increases in SST are characterized as
(i) relatively larger in the Northern Hemisphere than the Southern Hemisphere and (ii)

relatively larger in the Arabian Sea, the tropical central Pacific, the subtropics of the
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central Pacific, and the Inter-Tropical Convergence Zone (ITCZ) of the eastern North

Atlantic than other regions.

The annual concentrations of greenhouse gases (COy, C'Hy, and N>O) were derived
from observed values for the present-day projection, and from the A1B IPCC emission
scenario (IPCC, 2007) for the future projection. For aerosols, the climatological monthly
mean values were calculated from the global chemical transport model (Tanaka et al.,

2003). The same aerosols were also used for the future projection.

The projections performed in this study are expected to be more reliable than those
reported by Oouchi et al. (2006) because this study employs more realistic features in
the experimental design. For example, the future projection is prescribed by an 18-model
ensemble mean of future SST change, whereas Oouchi et al. (2006) used SST projected
by a single model; in addition, the model simulations cover a 25-year period and include
interannual variations in the SST forcing field, whereas Oouchi et al. (2006) covered 10-

year periods using climatological mean SST.

3.1.4 TC detection method and definition of TGF

Model-generated TCs were detected directly using globally uniform criteria similar to

those reported in Oouchi et al. (2006), as follows.

1. The magnitude of the maximum relative vorticity at 850 hPa ((g50) exceeds a thresh-

old that depends on the resolution (see Table 3.1).

2. The temperature structure aloft has a marked warm core, such that the sum of
the temperature deviations at the 300, 500, and 700 hPa vertical levels exceeds 1.0

K (0.7 K for JRA-25). The temperature deviation for each level was computed
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by subtracting the maximum temperature from the mean temperature over the

surrounding 10° x 10° grid box.

3. The maximum wind speed at the 850 hPa vertical level is higher than that at 300

hPa (to exclude extra-tropical cyclones).

4. The genesis position, defined as the first position at which conditions (1)—(3) are

satisfied, is over the ocean.

5. The duration exceeds 36 hours. To prevent double TC counts arising from detection
and termination during a single time step, termination during a single time step is

allowed.

The resolution-dependent value of (g59 ensures the observed global-mean annual TC num-
ber (i.e., 84.8 for the period 1979-2003) which is attained in the present-day simulation,
for each resolution. To show the sensitivity of the value of the criterion (g50 to detected
TC number, Figure 3.3 shows the accumulated global TC number for each value of (g5
applied to the TL959 present-day simulation. Although the TL959 model underestimates

observed intensity, the shape of curves are reasonably projected.

The TC genesis locations were counted for each 5° x 5° grid area over the global
domain. The total counts were defined as Tropical cyclone Genesis Frequency (TGF) in
this study. Figure 3.4 shows the TGF obtained from the best-track data, along with the
result obtained by applying the above detection method to JRA-25 data. The detection
method performs reasonably well in identifying observed TCs. The Taylor skill score I
(i.e., the combination of the error and spatial correlation; Taylor, 2001) for evaluating the
spatial distributions of TGF shows a high value of 0.96 (Table 3.1). The robustness of the
present results, regardless of the defined grid box size, was experimentally confirmed using
different grid box sizes (e.g., 2.5° x 2.5° or 10° x 10° ; data not shown). A TC detection

method using the objective resolution-dependent criteria proposed by Walsh et al. (2007)
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were also experimentally applied, resulting in robust conclusions (data not shown). Nine
ocean basins were considered for verifications: global (GL), Northern Hemisphere (NH),
Southern Hemisphere (SH), North Indian Ocean (NIO), Western North Pacific (WNP),
Eastern North Pacific (ENP), North Atlantic (NA), South Indian Ocean (SIO), and South

Pacific Ocean (SPO) (see Figure 3.4 for region boundaries).

3.2 Results and discussion

3.2.1 Effect of model resolution on projected TC intensity

Figure 3.5 shows the relationship between maximum wind velocity (MWYV) and sea level
pressure (SLP) for all detected TCs. Overall, TC intensity shows a dependency on hori-
zontal resolution, although all resolutions more or less reproduce the observed relationship.
Because JRA-25 (Fig. 3.5b) uses TL159 as the resolution in its assimilation process, the
MWV-SLP relationship is similar to that obtained by TL159 (Fig. 3.5e). The regression
lines for all resolutions are located below the green dashed regression line obtained for
the best-track data. This discrepancy is mainly due to the differences in the definition of
MWS; i.e., the best-track applies 1-minute sustained MWS (see Section 3.1.2), whereas
the model applies time-step mean MWS (e.g., 10 min for T1.959). However, the modeled
relationships appear to be in good agreement with the observed regression line proposed
by Atkinson and Holiday (1977; pink curves in Fig. 3.5). It is also evident that TL.959
performs best in reproducing the observed intense TCs, although it still underestimates

extremely intense TCs, such as those with MWV > 60 ms~! and SLP < 920 hPa.

For the future projections, all resolutions except for TL95 show an increase in mean TC
intensity. However, in terms of the probability density of life-cycle maximum surface wind

speed (Fig. 3.6), resolutions of TL319 and finer show a significant increase in the range of
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intense TCs, whereas resolutions of TL159 and coarser show no such significant increase.
Previous studies that used a global model with a horizontal resolution of T106 (roughly
equivalent to TL159 in the present study) reported no coherent changes in intense TCs in
global warming experiments (Bengtsson et al., 1996; Sugi et al., 2002; Yoshimura et al.,
2006; Gualdi et al., 2008). Moreover, Bengtsson et al. (2007) compared a global model
with resolutions of T63 (192 x 96 grid) and T213 (640 x 320 grid), which are roughly
equivalent to TL95 and TL319 in the present study, respectively. The authors reported
that T213 showed a future increase in the frequency of intense TCs, whereas T63 did
not. The authors also performed an additional experiment using a T319 (about 40-km
mesh) model, which showed a clear increase in intense TCs in the future projection. Zhao
et al. (2009) reported a significant increase in relatively intense TCs using a global model
with 60-km grid spacing, which is equivalent to TL319 in the present study. Overall,
60-km mesh may be a critical resolution in projecting future increases in intense TCs.
The view is supported by a recent report by Knutson et al. (2010). Although the physical
reason for this critical resolution remains unknown, the authors also reported that high-
resolution models commonly showed increased rainfall in the inner-core region, within 100
km of the TC center. Figure 3.7 shows TC composite structures projected by the TL959
model when TCs are at their maximum surface-wind velocity. For both the precipitation
and surface-wind velocity fields, marked increases appear in the inner-core region. These
results indicate that the accurate simulation of inner-core structure (e.g., eye walls) may

be a key factor in simulating future increases in the frequency of intense TCs.

3.2.2 Effect of resolution on projected TC genesis number

Table 3.3 shows the percentage of model biases in annual mean TC genesis number for
different basins. It must be noted that the basin-scale TC number is more or less inde-

pendent of model resolution; e.g., all resolutions commonly underestimate TC numbers

in NH, WNP and NA, and overestimate TC numbers in SH, ENP, and SIO. Overall,
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it appears that the inter-basin balance in TC genesis number is not determined by the
resolution, but by other parameters such as model physics. However, a comparison of
inter-annual variations with observations reveals that finer resolutions show relatively
higher skills (Table 3.4); e.g., TLI59 shows statistically high correlation coefficients for
four of the basins. The resolution dependency is clearer in the case of seasonal variations

(Table 3.5)".

Table 3.6 lists the percentage change in annual mean TC genesis number compared
with the present-day projection. All resolutions except for TL95 share similarities in
future changes; e.g., significant reductions in GL, NH, SH, WNP, ENP, SIO, and SPO,
and generally an increase in NA. Although the relatively fine resolutions (TL959 and
TL319) show similar future changes at hemispheric scales (GL, NH, and SH), they are

inconsistent in several sub-basins in terms of both the sign and magnitude of change.

3.2.3 Effect of resolution on the projected spatial distributions
of TC genesis frequency

Figure 3.8a—d shows the spatial distributions of model biases in TGF for the present-
day simulation for each resolution. All the resolutions show similarities in their biases:
underestimates in the Bay of Bengal, WNP, coastal ENP, mid-latitudes of NA, and central
SIO, and overestimates in the Arabian Sea, South China Sea (SCS), central ENP, Inter-
Tropical Convergence Zone (ITCZ) in NA between 10 N and 20 N, African coastal SIO,
and northeast Australia. When verified against observations, the Taylor skill score I
(Table 3.1) shows similar values for the different resolutions. Table 3.7 lists the inter-
resolution correlations for the spatial patterns of bias for the global domain, revealing

correlation coefficients greater than 0.6, indicating that the model biases are common to

IThe correlation coefficients in Table 3.5 were computed by comparing climatological monthly mean
of observed and modeled TC numbers for the 25 years.
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the various resolutions.

Figure 3.8e~h shows similar future changes in TGF among the different resolutions,
with general increases in TGF for the Arabian Sea, Bay of Bengal, southeastern quadrant
of WNP, and the ITCZ in NA; decreases are seen in SCS, central SIO, and northeast
Australia. Table 3.8 indicates that each resolution, except for TL95, shows a positive
correlation with the other resolutions in terms of future change in TGF, although the
correlation coefficients are smaller than those for bias (Table 3.7). Moreover, similar
resolutions show relatively strong correlations (e.g., TL959 and TL319, TL319 and TL159,
and TL159 and TL95) compared with other resolution combinations, indicating that
similar resolutions tend to show comparable spatial changes in TGF. Overall, future
changes in TGF are independent of resolution; instead, they appear to be sensitive to

model physics and the spatial pattern of prescribed SST (Sugi et al., 2009).

3.3 Summary

This chapter investigated the effect of model resolution on projected TC climatology,
temporal variations in TC genesis, and future changes using four different resolutions,
ranging from TL95 (180-km mesh) to TL959 (20-km mesh). The finest resolution (TL959)
showed the highest skills in terms of mean TC intensity, and inter-annual and seasonal
variations in TC genesis number, indicating that a high resolution is generally desirable
for accurate projections of TC intensity and temporal variations in TC genesis. However,
TL959 contains parameter tunings in the physical processes, indicating both effects of
high-resolution and turning. Even if TL959 is removed from the comparisons, TL319 still

shows the highest skills among coarser models, indicating high resolution is still preferable.

Regarding future changes in TC intensity, resolutions of TL319 (60-km mesh) and
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finer projected a significant future increase in the frequency of intense TCs; this signif-
icant increase was not projected by resolutions coarser than TL319. Comparisons with
other studies that employed global models reveal that TL319 may be a critical resolu-
tion in terms of projecting future increases in the frequency of intense TCs. Biases in
basin-scale annual mean TC genesis number and the spatial distributions of TC genesis
frequency (TGF) were not critically dependent on resolution, indicating the influence of
other parameters such as model physics. Moreover, the nature of future changes is similar
among the various resolutions except for TL95, indicating that future changes in climato-
logical mean features projected by a high-resolution model could also be obtained using

coarser resolutions.

In summary, the use of a higher-resolution model is generally desirable for accurate
climate projections, although in the present study, future changes and present-day cli-
matology in TGF showed little dependence on resolution, except for TL95. This finding
indicates the potential validity of using a model with relatively coarse resolution. For
example, ensemble realizations may be useful in minimizing uncertainties in future pro-
jections that are difficult to perform with a higher-resolution model due to the large
demand on computational resources. A model with coarse resolution may also be useful
in a model-development process in improving the TGF climatology for better climate

projections that would later be performed using a higher-resolution model.
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Table 3.1: Main features of the models considered in this study, including the threshold
value of the relative vorticity criterion ((gs50) and the Taylor skill score I of tropical cyclone
genesis frequency (TGF) against best-track data.

Model/Reanalysis name Abbreviation | Resolution | (gs0 (x107°s~ 1) | Taylor
(km) skill

score [
(a) JIMA/MRI 20km TL959 20 x 20 31.28 0.87
(b) JMA/MRI 60km TL319 60 x 60 11.43 0.82
(¢) JMA/MRI 120km TL159 120 x 120 8.33 0.87
(d) JMA/MRI 180km TL95 180 x 180 7.68 0.80
(e) Japanese Re-Analysis JRA-25 140 x 140 0.62 0.96

Linear trend in CGCMs (2075-2099, GWTR) +
Inter-annual variation in CGCMs (GWIV) +
Future change by CGCMs (GWDT)

Inter-annual variation in HadISST (PDIV)
CGCMs W
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CGCMs C20C N

Linear trend in HadISST (PDTR) +

Experiments N
—2000
( ) 1979 2003 2075 2099
Present-day climate Future climate
Prescribed future lower
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Figure 3.1: Schematic diagram of prescribed lower boundary conditions for the future
simulation. The abbreviations are as follows: SST (Sea Surface Temperature), HadISST
(Hadley Center observational SST), PDTR (trend in the present-day SST), PDIV (inter-
annual variation in the present-day SST), GWTR (trend in the ensemble mean of future
SSTs), GWIV (inter-annual variation in the ensemble mean of future SSTs), GWDT
(averaged future change in the ensemble mean of SSTs), CGCM (Coupled General Cir-
culation Model), and C20C (Climate of the Twentieth Century).
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Table 3.2: CMIP3 models used for future prescribed lower boundary conditions

CMIP3 1.D. Model Name Institute

BCCR BCM2 0 The Bergen Climate Model | Bjerknes Centre for Climate Re-
version 2 search, Norway

CGCMS3.1 T47 The third version of the Canadian | Canadian Centre for Climate

CGCM3.1 T63 Centre for Climate Modelling and | Modeling & Analysis, Canada
Analysis (CCCma) Coupled Global
Climate Model

CNRM CM3 The Centre National de Recherches | Météo-France/Centre National de
Meteorologiques Coupled global | Recherches Météorologiques, France
climate Model, version 3

CSIRO Mk3.0 The CSIRO Mark 3 climate | CSIRO Atmospheric Research,
model Australia

GFDL CM2.0 The Geophysical Fluid Dynamics | Geophysical Fluid Dynamics

GFDL CM2.1 Laboratory Coupled Model version | Laboratory/NOAA/U.S. Dept. of
2.0 (2.1) Commerce, United States

GISS AOM The NASA/GISS Atmosphere- | Goddard Institute for Space Studies,
Ocean Model National Aeronautics and Space Ad-

ministration, United States

INM CM3.0 The Institute for Numerical Math- | Institute for Numerical Mathe-
ematics (INM) Coupled Model ver- | matics, Russia
sion 3.0

IPSL CM4 The ocean-atmosphere coupled | Institut Pierre Simon Laplace,

model-LInstitut Pierre-Simon
Laplace Coupled Model, version 4

France

MIROC3.2 hires
MIROC3.2 medres

The high (mid) resolution Model for
Interdisciplinary Research on
Climate version 3.2

Center for Climate System Research
(University of Tokyo), National Institute for
Environmental Studies, and Frontier
Research Center for Global Change
(JAMSTEC), Japan

MIUB ECHO-G The Meteorological Institute of the | Meteorological Institute of the University of
University of Bonn Germany global Bonn, Meteorological Research Institute of
climate model version ECHO-G KMA, and Model and Data Group, Germany

v and Korea

MPI ECHAMS5 The fifth-generation atmospheric | Max Planck Institute for Mete-
general circulation model and the | orology, Germany
Max- Planck-Institute ocean model
(ECHAM5/MPIOM)

MRI CGCM2.3 The Meteorological Research Insti- | Meteorological Research Insti-

tute (MRI)-coupled atmospheric-
ocean general circulation model
version 2.3.2

tute, Japan

NCAR CCSM3.0

The Community Climate Sys-
tem Model version 3

National Center for Atmo-
spheric Research, United States

UKMO HadCM3

The Met Office’s Third Hadley
Center Coupled Ocean-Atmosphere
GCM

UKMO HadGeml1

The Hadley Center Global Envi-
ronmental Model version 1

Hadley Centre for Climate
Prediction and Research/Met
Office, United Kingdom
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Table 3.3: Model biases in annual mean TC genesis number for each basin. The unit
is percentage change compared with observations. Blue (red) numbers indicate that the
negative (positive) bias is statistically significant at the 95% level (two-sided Student’s

t-test).
GL | NH | SH | NIO | WNP | ENP | NA | SIO | SPO
TL959 | 0.0 | —10.0 | 22.5 | =10.5 | —40.5 | 55.2 | =38.4 | 20.4 | 20.9
TL319 | 0.0 | 29 | 6.3 | 123 | -57.4 | 104.7 | -45.6 | 7.5 | 0.8
TL159 | 0.0 | =59 | 13.3 | 23.7 | —47.4 | 69.2 | =35.7 | 12.3 | 11.0
TL9S | 0.0 | 159 | 35.7 | 27.2 | -35.8 | 32,9 | 63.1 | 4.8 | 73.6

Table 3.4: Correlation coefficients for the inter-annual TC genesis number for each basin
compared with observations. Red numbers indicate that the positive correlation coefficient
is statistically significant at the 95% level (significance test for Pearson’s product-moment

correlation).
GL | NH | SH | NIO | WNP | ENP | NA SIO | SPO
TL959 | 0.28 | 0.11 | 0.53 | 0.14 0.60 | -0.33| 042 | 048 | 0.17
TL319 | 0.26 | 0.21 | 0.04 | 0.06 0.58 | -0.22 | 0.56 | 0.18 | —0.06
TL159 | 0.17 | 0.23 | 0.22 | -0.04 | 0.44 | -0.04 | 0.24 | 0.25 | -0.13
TL95 | 0.31 ] 0.36 | 0.30 | 0.03 0.33 | -0.07 | —=0.01 | -0.10 | 0.10

Table 3.5: As for Table 3.4, but for seasonal TC genesis number.

GL | NH | SH | NIO | WNP | ENP | NA | SIO | SPO
TL959 [ 0.8210.93 099 | 0.91 | 0.86 | 0.83 | 0.99 | 0.95 | 0.98
TL319 | 0.69 | 0.87 | 0.98 | 0.89 | 0.91 | 0.54 | 0.99 | 0.96 | 0.96
TL159 | 0.56 | 0.80 | 0.98 | 0.66 | 0.91 | 0.39 | 0.97 | 0.98 | 0.96
TL95 | 0.16 | 0.20 | 0.82 | 0.35 | —0.11 | 0.07 | 0.83 | 0.44 | 0.87

Table 3.6: As for Table 3.3, but for future changes in TC genesis number compared with
the present-day projection.

GL NH SH | NIO | WNP | ENP | NA | SIO | SPO
TL959 | -15.8 | -15.5 | -16.4 | -11.8 | 26.8 | 145 | 5.6 | 4.8 | 349
TL319 | -18.8 | -189 | -185 | 180 | -11.7 | -30.5 | 4.2 | 89 | 33.7
TL159 | 29.0 | 21.5 | 43.0 | 2.8 | -26.0 | -24.7 | -14.2 | -32.7 | -62.8
TL9S | 1.2 | 86 | -148 | 221 | 185 | 17.3 | 56.7 | -17.0 | -14.3
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Table 3.7: Inter-resolution correlation coefficients for biases of tropical cyclone genesis
frequency (TGF). Red numbers indicate that the positive correlation coefficient is sta-
tistically significant at the 95% level (significance test for Pearson’s product-moment

correlation).

TL959 TL319 TL159 | TL95
TL959 0.80 0.74 0.63
TL319 0.87 0.61
TL159 0.63

Table 3.8: As for Table 3.7, but for future changes in TGF

TL959 TL319 TL159 | TL95
TL959 0.31 0.20 0.02
TL319 0.37 0.00
TL159 0.11
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Figure 3.2: Climatological mean of prescribed SST [C] for (a) the present-day run, (b)
the future run, and (c) the future changes. The SSTs cooler than 20 Care filtered out in

(a) and (b).
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Figure 3.5: Maximum wind velocity (MWV, unit: ms~!) versus sea level pressure (SLP,
unit: hPa) for (a) best-track data, (b) JRA-25, (c) TL959, (d) TL319, (e) TL159, and (f)
TL95. The green, blue, and red lines are linear regression lines for the best track, present-
day, and future projection data, respectively. The pink curve is the observed regression
line proposed by Atkinson and Holiday (1977). Also listed in each panel are the values of
mean MWS, SLP, and the multiple regression coefficient (MRC).
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Figure 3.6: Probability density of life-cycle maximum surface wind speed [ms~!] for the
global domain for observations (1979-2003, green lines), present-day projections (1979-
2003, blue lines), and future projections (2075-2099, red lines) for resolutions of (a) TL959,
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Figure 3.7: Azimuthal mean of (a) precipitation [mm/day] and (b) maximum surface
wind [knot] for global TCs at their maximum intensity. The blue (red) line shows the
present-day (global warming) simulation projected by TL959 (20-km mesh) MRI/JMA
AGCM. The black line shows the ratio of future change [%]. Sampling number is 2,086
(1,667) for the present-day (future) projection.
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Chapter 4

Projected future change in North
Atlantic tropical cyclone tracks

This chapter investigates future changes in TC activity, especially changes in TC tracks

using a 20-km-mesh AGCM. The geographic focus is North Atlantic (NA).

The model, simulation settings, and observational datasets used in this chapter are
exactly same as those described in Section 3.1. The observed SST was prescribed in the
present-day run (1979-2003), while the ensemble mean of 18 IPCC-AR4 models under
the IPCC SRES A1B was prescribed in the future run (2075-2099) (See Fig. 3.2c for the

future changes in the climatological mean SST).

Section 4.1 outlines the analytical methods, including TC detection and the GPI.
Section 4.2 provides details on model performance in the present-day simulation. Section
4.3 describes the simulation results in terms of future changes in TCs, and Section 4.4
examines the reasons for the predicted future changes. Finally, Section 4.5 provides a

summary of the main findings. Details are also available in Murakami and Wang (2010).

4.1 Analysis methods for projected output
4.1.1 Detection method for tropical cyclones

TC-detection method adopted in this section is a modified version of that used by Oouchi

et al. (2006), who employed six criteria to identify TCs in order to match the simulated
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annual mean number of global TC genesis with observations. However, the simulated TC
numbers in each ocean basin do not agree with observations. The present-day simulation
performed by Oouchi et al. (2006) shows that the TC number was markedly underesti-
mated in the WNP, somewhat underestimated in the NA, and significantly overestimated
in the South Indian Ocean. Given that this section focuses on changes in TC tracks over
the NA, the detection criteria were modified to ensure that the simulated annual number
and duration of TCs resemble the observed counterparts. The modified detection criteria

are as follows:

1. Across the latitudinal belt of 45 S—45 N, the grid point of the candidate TC-center
is defined as that where the minimum surface pressure is at least 2 hPa lower than

the averaged surface pressure over the surrounding 7° x 7° grid box.

2. The magnitude of the maximum relative vorticity at 850 hPa exceeds 3.0 x 107> s~ !

(original value: 3.5 x 107 s71).
3. The maximum wind speed at 850 hPa exceeds 14.0 ms™! (original value: 15.0 ms™').

4. The temperature structures aloft show a marked warm core: the sum of the tem-

perature deviations at 300, 500, and 700 hPa exceeds 1.2 K (original value: 2 K).

5. The maximum wind speed at 850 hPa (WS850) exceeds that at 300 hPa (WS300) at
the first detection (i.e., generation time) of a TC. After generation, WS850 increased
by 2.5 ms~! should be greater than WS300 (this latter condition was not required

in the original detection).

6. The duration of a TC exceeds 36 hours.

Conditions (1) and (6) are the same as the original conditions employed by Oouchi
et al. (2006), whereas conditions (2)—(5) have been modified. The latter part of con-

dition (5) results in a greater number of TC occurrence at mid-latitudes. This criterion is
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added because a comparison of simulated TC tracks with observed track data reveals that
the model underestimates the number of TC tracks at mid-latitudes in the case that this
relaxation is not employed. It might be argued that this relaxation would increase the
number of extra-tropical cyclones; however, this condition is only valid for TCs generated
at low latitudes. In other words, this study only selects those cyclones with transient
characteristics that were generated at low latitudes. This study included these transi-
tional TCs because evaluation of their future changes is important when estimating the

future socioeconomic costs arising from TC-related damage.

The model TC positions were counted for every 2.0° x 2.0° grid point over the NA re-
gion (0-45 N, 110 W-0, excluding the Pacific) every 6 hours. The total count was defined
as the frequency of TC occurrence, which indicates the probability of a TC occurring in
a certain grid point. When the counting is only applied to genesis location (i.e., when
initially identified according to the detection method), the total number of TCs is defined
as the frequency of TC genesis. Because TCs in the NA are generated mainly during
the boreal summer (July—October; JASO), this study primarily focuses on changes in TC

tracks during these months.

4.1.2 Genesis Potential Index (GPI)

To determine the factors responsible for genesis location changes, we used the Genesis
Potential Index (GPI) originally developed by Emanuel and Nolan (2004), motivated by
the work of Gray (1979). Although the GPI was developed using a statistical fitting
procedure, based only on climatological seasonal and spatial variations in TC genesis,
it shows some skill in reproducing inter-annual variations in the observed frequency and
location of TC genesis for several basins (Camargo et al., 2007a). GPI values increase

when large-scale conditions are favorable for TC genesis, and decrease when conditions
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are unfavorable. The formulation of the original GPI is as follows:

H 3 3
GPI = |10°9]> (};0> (‘?(;) (140.1V,)72, (4.1)

where 7 is the absolute vorticity (s7!) at 850 hPa, RH is the relative humidity (%) at
700 hPa, Vs is the maximum potential intensity (MPI; ms™!) of Emanuel (1995), and
V, is the magnitude of the vertical wind shear (ms™!) between 850 and 200 hPa. Among
these factors, only vertical wind shear is negatively correlated with the GPI. The relative
humidity and maximum potential intensity are considered as thermo-dynamical factors.
The MPI is an empirical value, and is determined by the vertical structure of temperature
and moisture, and SST. The definition of MPI is based on Emanuel (1995), but as modified
by Bister and Emanuel (1998):

Q_CkTs

* b
Voo = G 7 (CAPE" — CAPE’), (4.2)

where C}, is the exchange coefficient for enthalpy, C'p is the drag coefficient, T} is the SST
(K), and Tj is the mean outflow temperature (K). The quantity CAPE* is the value of
convective available potential energy (CAPE) of air lifted from saturation at sea level,
with reference to the environmental sounding, and C APE? is that of the boundary layer
air. Both quantities are evaluated near the radius of maximum wind which is iteratively
determined assuming the wind field is balanced by the radial pressure gradient in the eye
region.!

Camargo et al. (2007a) calculated the GPI using reanalysis data, showing good agree-
ment between observational data and the climatology and ENSO-related variability in
GPI. Camargo et al. (2007b) applied the GPI to model outputs. The GPI is not only
used to provide supplemental information regarding TC genesis estimated from model
simulations, but also to clarify the most influential factor in the case of GPI variation due

to ENSO or the case of differences identified when comparing different models.

'A  program source code for computing the MPI is available online at
http://texmex.mit.edu/pub/emanuel/ TCMAX/
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When the original GPI was applied to JRA-25 data, significant discrepancies between
the GPI (Fig. 4.1a) and the observed distribution of TC genesis (Fig. 4.1c) were found.
First, the original GPI underestimates the frequency of genesis in the Inter-Tropical Con-
vergence Zone (ITCZ) between 7N and 15 N. Second, the GPI underestimates the fre-

quency of TC genesis in the eastern Pacific.

It is expected that TC generation is strongly related to large-scale mean vertical
motion. Indeed, the regions with a high frequency of TC genesis correspond to areas
with large upward motion. It is possible that upward motion was not fully taken into
account in the original GPI, although the relative humidity term may reflect it to some
degree. In the present study, the original GPI was modified by explicitly incorporating

the following vertical motion term:

s (RHN? (Voo \® o (—w+0.1
arr=otal () () (0 (7). (43)

where w is the vertical wind velocity (Pa-s~!) at 500 hPa. Figure 4.1b shows the modified
GPI, which yielded improved results in general, including higher values over the eastern
Pacific and the Atlantic ITCZ region. However, the modified GPI remains inconsistent
with observations of TC genesis around the Florida Peninsula and off coast of west Africa.
This inconsistency also appears when the modified GPI is applied to model output, as
shown later in Fig. 4.8. Although further improvement of the GPI may be needed,
the modified GPI shows future change in detected TC genesis more clearly than did the

original GPI.

No other study has applied GPI analysis to such a high-resolution simulation. A con-
cern might naturally arise, that the vertical motion field induced by TCs may contribute
to the seasonal mean field. Although the degree to which TCs affect climatological mean
vertical motion remains unclear, it is conceivable that the influence is rather limited,
given the fact that on average only 9 storms occur during the 4-month peak season. On

the other hand, the incorporation of vertical motion into the GPI provides additional
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information regarding the physical mechanism for future change in TC genesis.

4.2 Evaluation of the present-day simulation

4.2.1 TC tracks and frequency of occurrence

To evaluate the TC climatology and variations simulated in the present-day (hereafter
referred to as “PD”) run, this study compared the results with observations. Figure 4.2a
and b (Fig. 4.2c and d) show JASO TC tracks (frequency of occurrence) observed and
simulated in the PD run, respectively. The difference between the observed and simulated
(PD run) frequency of occurrence is shown in Fig. 4.2e. Overall, the simulated TC tracks
and frequency of occurrence are similar to the corresponding observations; however, the
PD run overestimates the frequency of occurrence in tropical regions (south of 25 N), and
underestimates the frequency north of 25 N. The underestimation mainly reflects a lack of
cyclogenesis within mid-latitude regions in the PD run. The PD run also underestimates
TC genesis over the Gulf of Mexico and the frequency of TCs moving northward from this

region, and overestimates the frequency of occurrence in the region offshore from West

Africa.

4.2.2 Inter-annual and seasonal variability in TC genesis

Because the prescribed SST and SIC vary from year to year, it is expected to see a cor-
responding inter-annual variation in TC genesis in the PD run. Figure 4.3a compares
the simulated and observed yearly number of TC genesis. The average numbers of TC
genesis are 10.5 (observed) and 8.7 (PD run), meaning that the total number of TCs is
underestimated. The recently observed upward trend in TC genesis, which is conspicuous

from the mid-1990s, is insufficiently reproduced in the PD run. The coefficient of correla-
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tion between the PD run and observations is 0.46, which is statistically significant at the
95% level. Therefore, to some degree, the PD run reproduces the observed year-to-year
variation in TC genesis number. However, this correlation is weaker than that reported in
other studies. For example, ensemble simulations conducted by LaRow et al. (2008) using
a global spectral model at a resolution of T1261.27 (Gaussian grid spacing of 0.94°) yielded
a correlation coefficient of 0.78. Ensemble simulations conducted by Zhao et al. (2009)
with a global atmospheric model with a 50-km mesh horizontal grid spacing yielded a
correlation coefficient of 0.83. However, the results in the present study are derived from
a single run and if the correlation is computed only for the last 15 (10) years of the

experiment, the correlation coefficient would increases to 0.65 (0.73).

Figure 4.3b shows seasonal variations in TC genesis. As in nature, the simulated TC
genesis shows a rapid increase from June to July, peak in September, and a decrease
toward the northern winter. This pattern of variation is well simulated in the PD run.
Although LaRow et al. (2008) accurately reproduced the inter-annual variation in TC
number, their seasonal cycle of TC number was not well simulated in the NA. In contrast,
the experiment by Zhao et al. (2009) performed very well in reproducing both inter-annual
variations and the seasonal cycle of TC number. These results, in combination with the
present findings, suggest that model performance in simulating of inter-annual variations

may be weakly related to performance in simulating the seasonal cycle.

4.2.3 Change in TC activity induced by ENSO

It is clear from Fig. 4.3a that the simulated TC number (PD run) is strongly affected by
El Nifio-Southern Oscillation (ENSO). For example, TC genesis shows a marked decline
during El Nino years (1982, 1986, 1987, 1997, and 2002), consistent with the finding of
Gray (1984), who attributed this decrease to enhanced vertical shear of zonal wind over

the Gulf of Mexico and Caribbean Sea. In La Nifia years (e.g., 1988, 1995, 1998, and 1999),
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TC genesis increases due to decreased vertical wind shear; however, this increase is poorly
captured by the PD run. This deficiency in TC genesis is generally caused by a number of
errors, such as those in the simulated large-scale environment field, and deficiencies in the
model’s teleconnection linking ENSO and Atlantic atmospheric anomalies. In addition,
the integration in this present study is a single run. Use of ensemble simulation may get

better results.

To clarify whether the 20-km mesh AGCM employed in the present study contains
large-scale errors, the modified GPI was applied to the PD run; it was also applied to
the JRA-25 large-scale field to evaluate the influence of the ENSO signal on TC genesis.
Figure 4.4 shows GPI anomalies and the locations of TC genesis in July—October (JASO)
for each ENSO developing year. Here, El Nino (La Nina) years are defined as 1982,
1986, 1987, 1991, 1997, and 2002 (1988, 1995, 1998, and 1999), following Camargo and
Sobel (2005). For JRA-25 and best-track data (Fig. 4.4a and b), marked differences are
seen in both GPI and genesis locations. There exists a negative (positive) anomaly in GPI
values and frequency of genesis during El Nino (La Nina) years in the main developing
regions (MDR, 10-20 N, 30-80 ‘W). This contrast in the GPI field between El Nino and
La Nina years at lower latitudes (south of 20 N) is reflected in the PD run (Fig. 4.4c
and d), although the GPI signal is different from observations in areas offshore from West
Africa in La Nina years. This finding indicates that 20-km mesh AGCM, at least to some
extent, simulates differences in the large-scale field between El Nino and La Nina years,
which affects TC genesis. The locations of TC genesis in the PD run also differ between
the two ENSO phases, although the difference is weaker than that observed. There also
exists an inconsistency between the GPI and detected TCs in the PD run. For example,
many TCs are generated in the region offshore from West Africa during El Nino years,
whereas the corresponding GPI values are small. This overestimation is unrelated to

large-scale field errors, although the exact reasons remain to be investigated.
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4.3 Projected future change in TC tracks, frequency,
and inter-annual variation

Figure 4.5a and b (Fig. 4.5¢ and d) shows JASO TC tracks (frequency of occurrence)
simulated in the PD and future global-warming (hereafter referred to as “GW?”) runs,
respectively. The difference in frequency of occurrence between the two runs is shown in
Fig. 4.5e. Compared with the PD run, substantial changes are apparent in the GW run,
including an increase in the frequency of TC occurrence over the tropical eastern North
Atlantic (hereafter ENA), and the northwestern North Atlantic (hereafter NWNA; around
32-45 N, 55-80 ‘W), and a decrease in the frequency over the tropical WNA (including the
Caribbean Sea and Gulf of Mexico). This result indicates a decrease in the frequency of
TCs that affect the North American continent south of approximately 32 N and the West
Indies. To ensure the physical significance and robustness of the shifts in TC tracks, this
study implemented two additional analyses with different TC criteria: one used relatively
constrained criteria (compared with the one used in the present study), as employed by
Oouchi et al. (2006); and the other used less constrained criteria. These two new sets
of detection criteria result in very similar future change in TC tracks (data not shown),
thereby demonstrating that the projected future change is independent of the TC criteria

employed.

The dotted line in Fig. 4.3a and b shows inter-annual and seasonal variability for the
future run, respectively. The annual mean number of TC genesis is 9.2, slightly higher
than that in the PD run, although the difference is not statistically significant at the
95% level. Oouchi et al. (2006) also showed increasing TC number over the NA in their
future experiment. A resent study by Sugi et al. (2009), using the same MRI/JMA-
AGCM but with different resolutions, showed that future change in TC number within
a specific ocean basin is strongly controlled by the distribution of relative SST changes

rather than the absolute value of local SST. A similar finding was reported by Vecchi and
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Soden (2007a). Sugi et al. (2009) also reported an experiment that showed decreasing
TC number over the NA with a relatively small future SST change in the NA. However,
Knutson et al. (2008) and Zhao et al. (2009) reported decreasing TC number in their
future experiment, when SST is prescribed by the same CMIP3 ensemble mean. Overall,
the nature of future change in TC number in the NA remains uncertain, as also concluded

by Emanuel et al. (2008).

Although the two runs prescribe similar inter-annual variations in SST and SIC (See
Section 3.1.3), the inter-annual variation in the GW run (Fig. 4.3a) differs from that in the
PD run. This discrepancy is more apparent in the first 20 years for the simulations. The
inter-annual variation in TC number in the GW run is strongly affected by the specified
ENSO (dotted line in Fig. 4.3a). For example, local minima occur in El Nifio years (e.g.,
2082, 2083, 2087, 2093, and 2098). Interestingly, the local maxima in La Nina years are
more clearly resolved than those in the PD run (e.g., 2084, 2094, and 2095). The seasonal
variation in TC frequency (Fig. 4.3b) is similar to that in the PD run, indicating no

future change in seasonal distribution.

4.4 Reasons for future change

4.4.1 Reason for future change in TC tracks

The projected change in frequency of TC occurrence is thought to result from changes in
steering flows or genesis locations. To help assess which of these two factors is more influ-
ential, JASO mean steering flows are shown in Fig. 4.6. Here, steering flows are defined
as the pressure-weighted mean flow from 850 to 300 hPa, as suggested by Holland (1993).
Overall, TC tracks (Fig. 4.5a and b) follow a combination of the steering flows and beta

drift. The beta drift arises from interaction between the gradient of earth’s vorticity
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and the primary TC circulation, which is generally westward and poleward (Wang et al.,
1998). Tracks are followed by westward steering flows around the region offshore from
West Africa, north-westward steering flows over the Caribbean Sea and Gulf of Mexico,
and north-eastward flows along the area offshore from North America. However, the PD
and GW runs show only a small difference in steering flows (Fig. 4.6¢), indicating that
this is not a primary reason for the predicted change in frequency of TC occurrence. Fur-
thermore, Fig. 4.7 shows a comparison of climatological mean TC translation vectors.
The mean TC translation vectors are calculated at every 2.5° x 2.5° grid point based on
all the TCs that passed across each point. The TC translation vectors are similar between
the PD and GW runs, indicating that each TC moves in a similar direction for both runs

for a given genesis location.

In contrast, there exist marked differences in genesis locations between the PD and
GW runs. Figure 4.8a and b shows the frequency of TC genesis during the peak cyclone
season (JASO) for the PD and GW runs, respectively. The future change is shown in
Fig. 4.8c. It is clear that the genesis locations shift eastward from the PD to GW runs,
resulting in a large increase in TC genesis in the ENA and a decrease in the WNA. There
is also an increasing signal in the NWNA. The increase in the frequency of TC genesis in
the ENA indicates that many TCs experience early recurvature and then move northward,
whereas the decrease in the WNA indicates a smaller risk of TCs approaching the coast
of southeast United States. These changes appear to be consistent with the predicted
change in frequency of TC occurrence (Fig. 4.5), thereby indicating that the change of

TC frequency is caused mainly by the change in genesis locations.

4.4.2 Reasons for future change in genesis locations

This study investigates the reason for changes in genesis locations based on an analysis

using the modified GPI. Figure 4.8d and e shows the GPI in JASO for PD and GW
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runs. When these data are compared with the frequency of genesis (Fig. 4.8a and b), the
GPI performs reasonably well in capturing the distributions of detected genesis, although
it shows large values in the area around the Florida Peninsula, where TC genesis does
not occur. When future changes in the GPI (Fig. 4.8f) are compared with those of TC
genesis frequency (Fig. 4.8c), the GPI change largely captures the change in TC genesis
frequency. For example, contrasting changes in the frequency of genesis are found across
the longitude 50 ‘W, with an increase in the ENA and a decrease in the WNA. The GPI

change also shows an increasing change in the NWNA.

The GPI can be used to determine which of the factors contributes most to its future
change. Here, this study assigns the future value to one of the five GPI elements in Eq.4.3;
the other elements are kept at present-day values, as used in the PD run. The “virtual”
GPI value is then subtracted from the present-day GPI value. In the case of a large
difference, the assigned GPI element is considered an influential factor in terms of GPI
change. Figure 4.9 shows the various GPIs in which individual factors are varied. Here,
the logarithm of each GPI is considered because summation of the logarithm changes in
virtual GPIs (Fig. 4.9b—f) is equivalent to the total change in logarithm GPI between
the present and future (Fig. 4.9a) (equivalent to the fractional change used in Vecchi and

Soden (2007c)).

Figure 4.10 also shows selected area means of future change in GPI and virtual GPIs
for July—October and each month. It is notable that changes in the maximum potential
intensity and omega terms make a dominant contribution to the increase in GPI within
the ENA (Fig. 4.10b). The vertical shear term also contributes to the future increase in
GPI to some degree, but the vorticity term makes only a minor contribution in the ENA
(Fig. 4.10b). In contrast to the ENA, the relative humidity and omega terms make the
largest contribution to the decrease in GPI within the WNA (Fig. 4.10a). The dominant

contributions of these terms are robust for the entire peak season (Fig. 4.10a). The
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increase in GPI in the NWNA is due to an increase in maximum potential intensity (Figs.
4.9d and 4.10c) and in part to an increase in the vertical shear term (Figs. 4.9c¢ and

4.10¢).

Although many studies have reported that vertical shear is crucial for future change in
TC genesis over the WNA (e.g., Knutson et al., 2008; Vecchi and Soden, 2007c), the GPI
analysis performed in the present study reveals that vertical shear has relatively small
influence on the future change in GPI in the WNA. However, this does not necessarily
mean that signals of circulation change projected by our simulations are markedly differ-
ent from those reported in other studies. For example, the spatial distribution of future
change in the vertical shear of horizontal wind (Fig. 4.11) is somewhat similar to that
reported by Vecchi and Soden (2007c) (see their fig. 1b), indicating that the vertical
shear also contributes, at least to some extent, to future change in TC genesis in our pro-
jections. Vecchi and Soden (2007b) also examined the response of tropical atmospheric
circulation to global warming experiments using projections by the IPCC AR4 models.
The authors reported that in all models, the strength of atmospheric overturning circu-
lation decreases as the climate warms. Similarly, our projection resulted in a consistent
future change: a weakening in overturning circulation of about 10-12% in the GW run.
Vecchi and Soden (2007b) also reported that the weakening occurs preferentially in the
zonally asymmetric (i.e., Walker) rather than zonal-mean (i.e., Hadley) component of the
tropical circulation. This change is also found in our projections, whereby, weakening was
more pronounced in the zonally asymmetric component than in the zonally symmetric

component.

As shown above, the GPI change in the ENA is mainly due to change in large-scale
vertical motion and maximum potential intensity, which appear to be related to enhanced
convective activity in the ITCZ. Figure 4.12 shows changes in the July—October mean

vertical velocity at 500 hPa and relative humidity at 600 hPa in the NA. It is clear that
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upward motions are enhanced in the ENA, as is relative humidity. These changes are
consistent with a predicted increase in precipitation (Fig. 4.13). Overall, these favorable
environmental conditions for convective activity promote TC genesis near the eastern
Atlantic ITCZ. In contrast to the findings for ENA, the WNA features a decrease in
upward motion (Fig. 4.12¢), and reduced relative humidity (Fig. 4.12f) and precipitation
(Fig. 4.13c).

The increase in convective activity in the ENA appears to be related to the prescribed
future SST distribution. Figure 4.14 shows the distribution of forced SST and the differ-
ence between present and future values. The magnitude of increase in SST over the NA
ranges from 1.8 to 2.8 K; however, the SST changes are spatially variable, with a relatively
large increase in the ENA and NWNA, and a relatively small increase in the WNA. Note
that precipitation is reduced in the WNA (Fig. 4.13c) despite the local increase in SST
(Fig. 4.14c). This finding indicates that the increase in vertical motion in the eastern
MDR region acts to enhance zonal circulation, which in turn results in the suppression of
convective activity over the WNA. The enhanced Pacific ITCZ precipitation along 5-10 N
(Fig. 4.12c and Fig. 4.13c) can also reduce the ascent over the Caribbean Sea. In other
words, the distribution of the SST anomaly is important not only for local TC genesis,

but also for remote TC genesis in the NA.

The projected future change in NA SST is a robust signal. Figure 4.15 shows future
change in SST relative to the tropical mean for 18 individual CMIP3 models. These
models are used for computing the prescribed SST change and trend in the GW run. It is
notable that most of the CMIP3 models show a larger SST increase in the ENA than in the
WNA indicating that the east-west contrast in SST change is robust across the models.
The MRI/JMA-AGCM shows a higher frequency of TC genesis in the ENA, resulting in an
increased TC number at the basin scale and increased TC frequency in the ENA. Although

modeling studies have reported conflicting results regarding the future TC number, an
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eastward shift of frequency of TC occurrence is probably robust if a model is forced by
a prescribed SST change with an east-west contrast in the tropical NA. For example,
Knutson et al. (2008) used a similar pattern of SST increase in a future simulation (see
their fig. S2a) and obtained a decreased in the number of TC tracks in the WNA and
an increase in the ENA (see their fig. 2). Interestingly, Vecchi and Knutson (2008)
reconstructed an observational TC dataset since the late 1800s, and showed a similar
trend with an east-west contrast in TC occurrence pattern. This consistency among
different studies indicates the likelihood that a signal of climate change induced by global

warming might have already appeared.

4.5 Summary

This study conducted a pair of 25-year climate simulations for the present day (1979-
2003, PD) and the last quarter of the 21st century (2075-2099, GW), based on the A1B
scenario using the MRI/JMA 20-km-mesh high-resolution atmospheric general circulation
model. The analysis focused on tropical cyclone (TC) activity, especially TC tracks,
over the NA. The PD simulation demonstrates that the MRI/JMA-AGCM simulated a
reasonably realistic climatology and variations in TC activity over the NA (Fig. 4.2).
The observed spatial distribution of the frequency of TC occurrence during July—October
(JASO) was largely captured by the PD simulation, although overestimating TC frequency
in tropical regions south of 25 N and underestimating the frequency north of 25 N. The
underestimation is mainly due to a lack of cyclogenesis in mid-latitude regions. The
correlation coefficient in inter-annual variation of the TC frequency between observations
and the PD run was 0.46, which is statistically significant at the 95% level (Fig. 4.3). The
simulated seasonal variation in TC counts is also realistic, although the TC genesis number
is slightly underestimated for the entire year. To better understand climate control of

TC genesis, the original GPI produced by Emanuel and Nolan (2004) was modified by
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incorporating variations in environmental vertical motion. Overall, the modified GPI
showed an improved representation of TC genesis climatology over the NA (Fig. 4.1).
However, the modified GPI is still inconsistent with the observed TC genesis around the

Florida Peninsula.

Concerning future change, the basin-wide TC frequency shows a slight increase in
the GW run, but the increase was not statistically significant. The change in frequency
of TC occurrence was spatially inhomogeneous, with a marked decrease in the WNA,
including the Gulf of Mexico and Caribbean Sea, and an increase in the ENA and NWNA
(Fig. 4.5). In theory, there are two possible explanations of the predicted changes in
frequency of TC occurrence: changes in large-scale steering flow patterns and changes in
TC genesis locations. A comparison of steering flow between the PD and GW runs reveals
no significant change (Fig.4.6). Furthermore, mean TC translation vectors are similar
between the two runs (Fig. 4.7). On the other hand, a significant change in the locations
of TC genesis was found between the PD and GW runs (Fig. 4.8), which is the major
reason for the predicted future change in frequency of TC occurrence. The signal of shift in
TC locations is well captured by the projected GPI change (Fig. 4.8). Therefore, the GPI
can be used to determine the main environmental factors responsible for future change in
TC genesis. The main factors contributing to the predicted future increase in TC genesis
in the ENA were changes in maximum potential intensity and vertical motion, which are
related to the enhanced convective activity in the eastern Atlantic ITCZ (Fig. 4.10). The
factors responsible for the increase in TC genesis in the NWNA were maximum potential
intensity and reduced vertical shear. The former appears to be related to a relatively large
local increase in SST compared with other regions in the NA, whereas the latter seems to
be due to decreased westerly wind in the middle troposphere, which is a similar to a signal
during El Nino years to that reported by Vecchi and Soden (2007b). The decrease in TC
genesis in the WNA was mainly related to decreases in relative humidity and ascending

motion. Although the prescribed sea surface temperature (SST) showed an increase in
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the WNA, convective activity decreased, indicating that the effect of remote dynamical
forcing exceeds the effect of local thermo-dynamical forcing. In other words, the increase
in convective activity in the ENA or in the eastern Pacific was sufficiently large to result
in a subsidence anomaly over the WNA | which suppressed convective activity and lead to

decreased TC genesis.

Overall, present study suggests that the spatial pattern of the frequency of TC oc-
currence will show marked changes in the future, including a decrease in TC activity in
the WNA and increases in the ENA and NWNA. However, it must be considered the
fact that these changes are affected by marked model biases. To achieve more reliable
future projections, these biases should be minimized. In addition, TC genesis appears
to be sensitive to the spatial distribution of SST anomalies, and models with different
physics probably respond differently to the SST increase. Although many CMIP3 models
show a consistent spatial pattern of SST future change, it would be necessary to perform
experiments with various spatial patterns of SST anomalies and model physics in order

to reduce the degree of uncertainty in future projections.
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(c) Frequency of Genesis (Best Track JASO)
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Figure 4.1: July-October (JASO) mean of (a) original Genesis Potential Index (GPI), (b)
modified GPI, and (c¢) frequency of tropical cyclone genesis based on best-track data in
the North Atlantic. The GPI data were calculated using JRA-25 reanalysis data for the
period 1979-2003.
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Figure 4.2: Total tropical cyclone tracks (a—b) and frequency of occurrence (c—e) during
July-October (JASO) from 1979 to 2003 in the North Atlantic. (a) and (c) are observed
data, while (b) and (d) are data from the present-day (PD) run. The difference in fre-
quency of occurrence between the present-day (PD) run and observations is shown in (e).
Black dots in (a)—(b) show TC-genesis locations.

97



(a) Interannual Variability of TC Genesis Number
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Figure 4.3: (a) Yearly and (b) seasonal variability in the number of generated tropical
cyclones, based on observations (1979-2003; histogram), the present-day run (PD; 1979
2003; solid black line), and the global-warming run (GW; 2075-2099; dotted black line).
The coefficient of correlation for yearly TC number between the PD run and observation
is 0.46, which is statistically significant at the 95% level. The average annual numbers
of TCs are 10.5 (observed), 8.7 (PD run), and 9.2 (GW run). The symbols “E” (“L”)
in (a) indicate El Nino (La Nina) years, whereas star marks in (b) indicate statistically
significance for the difference between the GW and PD runs at the 95% level. The error
bars in (b) show two-sided 95% confidence interval for each GW (dashed) and PD (solid)
run.
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(c) El Nino Years (AGCM, JASO)
(d) La Nina Years (AGCM, JASO)
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Figure 4.4: Locations of TC genesis (squares) and GPI anomalies (contours) for the period
July—October (JASO) during El Nifio years (a and c¢) and La Nina years (b and d). Gray
shading indicates a positive anomaly in GPI. (a) and (b) are for the GPI calculated from
JRA-25 reanalysis and best-track data. (c) and (d) are for the PD run. El Nino (La Nina)
years are defined as 1982, 1986, 1987, 1991, 1997, and 2002 (1988, 1995, 1998, and 1999).
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Figure 4.5: As for Fig. 4.2, but for comparisons between the present-day (PD) and the
global warming (GW) runs. The dashed regions in (e) highlight an east-west contrast in
future change of TC occurrence pattern.
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Figure 4.6: Simulated large-scale steering flows (ms~!) for the peak cyclone season of

July-October (JASO) for (a) the present-day (PD) run, (b) the global warming (GW)

run, and (c) the difference between the GW and PD runs.
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(a) Mean TC Translation (PD JASO)
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Figure 4.7: Simulated mean TC translation vectors and magnitudes (ms™!) for the peak
cyclone season of July—October (JASO) for (a) the present-day (PD) run, (b) the global
warming (GW) run, and (c) the difference between the GW and PD runs. More than
seven storms per each grid are required for the plots.
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(a) Frequency of Genesis (PD JASO)

(d) GPI (PD JASO)
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Figure 4.8: Simulated frequency of tropical cyclone genesis for the peak cyclone season of
July—October (JASO) for (a) the present-day (PD) run, (b) the global warming (GW) run,
and (c) the difference between the GW and PD runs. (d)—(f) are the same as (a)—(c), but
for the Genesis Potential Index (GPI). Rectangles show regions (Eastern North Atlantic
(ENA), Western North Atlantic (WNA), and Northwestern North Atlantic (NWNA))
with pronounced changes in TC genesis (see text).
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Figure 4.9: Future change in the Genesis Potential Index (GPI) during July—October
(JASO) over the North Atlantic for (a) non-varying GPI (i.e., difference in GPI between
the global warming (GW) and present-day (PD) runs), and for GPI changes obtained by
varying (b) vorticity, (c) relative humidity, (d) maximum potential intensity, (e) vertical
shear, and (f) omega, where in each case the other variables were those of the PD run.
Gray shading indicates positive values. Rectangles show regions (Eastern North Atlantic
(ENA), Western North Atlantic (WNA), and Northwestern North Atlantic (NWNA))
with pronounced changes in TC genesis (see text).
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Figure 4.10: Area mean of future change in the Genesis Potential Index (GPI) during
July—October (JASO) and each month for (a) western North Atlantic (WNA), (b) eastern
North Atlantic (ENA), and (c) northwestern North Atlantic (NWNA). The non-varying
GPI (black) is the difference in GPIs between the global warming (GW) and present-day
(PD) runs. The varying GPIs (colors) are the virtual GPIs obtained by varying relative
humidity (green), vertical shear (yellow), vorticity (red), maximum potential intensity
(pink), and omega (blue), where in each case the other variables were those of the PD

run. 105



-09-08-0.7-06-05-04-0.3-0.2 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
Wind Shear Change (m/s/K)

N\
O
n
<
el
a
o

I
=
O
N\~
o
o
c
o
<
@)
| -
o
o
<
n
o
c
=
o
o
2
| -
o
>
o
a
<
o |
o
~
I
o
a
<
o
0
el

=

=

L) L v

zZ =z =z =z =z zZ zZ= zZ < Ne—
S UL O B S B o ;v w o
<t M M AN N - - -

Figure 4.11: Simulated change in July—October (JASO) 850-200 hPa vertical wind shear
(shaded, ms™'C° warming). Contours show the absolute value of the vertical wind shear
(ms™!) simulated by the PD run. The figure corresponds to fig. la of Vecchi and So-
den (2007c). Rectangles show regions (Eastern North Atlantic (ENA), Western North
Atlantic (WNA), and Northwestern North Atlantic (NWNA)) with pronounced changes
in TC genesis (see text).
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Figure 4.12: Vertical velocity at 500 hPa (a—c) and relative humidity at 600 hPa (d—f)
for the peak cyclone season of July—October (JASO) for (a, d) the present-day (PD) run,
(b, e) the global warming (GW) run, and (c, f) the difference between the GW and PD
runs. Gray shading in (a)—(c) and (f) indicates positive values. Rectangles show regions
(Eastern North Atlantic (ENA), Western North Atlantic (WNA), and Northwestern North
Atlantic (NWNA)) with pronounced changes in TC genesis (see text).
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Figure 4.13: Seasonal mean precipitation [mm/day]| for the peak cyclone season of July—
October (JASO) for (a) the present-day (PD) run, (b) the global warming (GW) run, and
(c) the difference between the GW and PD runs. Gray shading in (c) indicates positive
values. Rectangles show regions (Fastern North Atlantic (ENA), Western North Atlantic
(WNA), and Northwestern North Atlantic (NWNA)) with pronounced changes in TC
genesis (see text).
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Figure 4.14: Seasonal mean of prescribed SST [ C] for the peak cyclone season of July—
October (JASO) for (a) the present-day (PD) run, (b) the global warming (GW) run,
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(NWNA)) with pronounced changes in TC genesis (see text).
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Chapter 5

Projected future change in western
North Pacific tropical cyclone tracks

This chapter investigates future changes in TC activity, especially changes in TC tracks

using a 20-km-mesh AGCM. The geographic focus is western North Pacific (WNP).

The model, simulation settings, and observational datasets used in this section are
exactly same as those described in Chapter 4. The observed SST was prescribed in the
present-day run (1979-2003), while the ensemble mean of 18 IPCC-AR4 models under
the IPCC SRES A1B was prescribed in the future run (2075-2099) (See Fig. 3.2c for the

future changes in the climatological mean SST).

The remainder of this chapter is organised as follows. Section 5.1 and 5.2 provide a
brief description of the analytical methods. Section 5.3 assesses the model performance in
the present-day simulation against observed best tracks. Section 5.4 presents the projected
future changes in TC genesis number, TC tracks, and TC frequency of occurrence (TCF).
In Section 5.5, the causes of future changes in TC tracks and TCF are investigated in
terms of changes in steering flows, TC translation vectors, TC genesis locations, and TC
genesis frequency (TGF). It was found that the change in TC genesis is a critical factor
in understanding the changes in TCF and TC tracks. In Section 5.6, the mechanisms
responsible for the changes in TC genesis locations are further elucidated with reference to
the modified Genesis Potential Index (GPI). Finally, a summary of the results is provided

in Section 5.7. Details are also available in Murakami et al. (2010).
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5.1 Detection method for tropical cyclones

The globally uniform TC-detection method proposed by Oouchi et al. (2006) results in a
marked underestimate of TC genesis number in the WNP (by about 35%) in the present-
day (PD) simulation. To better match the simulated annual number and duration of
TCs with observed counterparts in the WNP, a set of modified TC detection criteria was
developed for the WNP (see below). To facilitate comparison, the threshold values used

in Section 4.1.1 (for the NA) are listed in parentheses.

1. Across the 45545 N latitudinal belt, candidate grid points for TC centers are
defined as those for which the minimum surface pressure is at least 2.0 hPa lower

than the average surface pressure over the surrounding 7° x 7° grid box.

2. The magnitude of the maximum relative vorticity at the 850 hPa vertical level

exceeds 2.0 X 1075571 (3.0 x 107°s~! in NA).

3. The maximum wind speed at the 850 hPa vertical level exceeds 10.0 ms™' (14.0
ms~! in NA).

4. The temperature structure aloft has a marked warm core, such that the sum of
the temperature deviations at 300, 500, and 700 hPa exceeds 1.0 K (1.2 K in NA).
The temperature deviation for each level is computed by subtracting the maximum

temperature from the mean temperature over the surrounding 10° x 10° grid box.

5. The maximum wind speed at the 850 hPa vertical level (WS850) is higher than
that at the 300 hPa (WS300) at the first detection time. After the first detection,
this criterion is no longer applied (in NA, WS850 plus 2.5 ms~! was required to be

greater than WS300 following generation).

6. The duration exceeds 36 hours.
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Note that the threshold values (2), (3), and (4) are lower than those used in Section 4.1.1.
This is necessary because modeled convective activity in the WNP is less intense than

that in other basins (Oouchi et al., 2006).

The TC positions were counted for each 2.5° x 2.5° grid area over the WNP region
(0-45 N, 100-180 E) at 6-hour intervals. The total count for each grid area was defined
as the TCF. The first detected position was defined as the location of TC genesis, and the
TGF at each grid was counted in the same way as that for TCF. Because the computed
TGF fields are noisy, TGF is smoothed using 9-point moving average weighted by the
distance from the center of the grid. Because TCs in the WNP are generated mainly
during the peak season in the boreal summer (July—October; JASO), this study focuses
on changes in TC tracks, TCF, and TGF during these months.

5.2 Statistical significance tests

Tests of statistical significance, for evaluating the difference (i.e., increase or decrease)
between mean values, were conducted using Welch’s t¢-test, which assumes two samples
with possibly unequal variances. This study also considers adjustments of sample sizes
(or freedom) by autocorrelations in time series. A standard statistical test depends on the
assumption of random samples. However, if a time series of length N is autocorrelated,
the number of independent samples (i.e., the effective sample size) is fewer than N. Here,
an effective sample size is derived by the following equation (WMO, 1966):

1—7”1

N' =N :
1+T1

(5.1)

where N’ is the effective sample size, N is the sample size, and 7, is the lag-1 (i.e., 1-
year) autocorrelation coefficient. For example, if the sample size is 25 years and the lag-1

autocorrelation is 0.5, the adjusted sample size is reduced to 8 years.
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5.3 Evaluation of the present-day simulation

5.3.1 TC tracks and frequency of occurrence

The observed and simulated TC tracks and TCF during the peak season of July—October
are compared in Fig. 5.1. Overall, TCF is reasonably well simulated in the PD run (Fig.
5.1c and d), showing a maximum northeast of the Philippines (20 N, 125 E). However,
biases are apparent in Fig. 5.1le. For example, TCF is severely underestimated in the
southern Philippine Sea (10-17 N, 122-150 E) and in the northeast South China Sea
(1525 N, 115-122 E), implying that fewer TCs move westward and penetrate into the
South China Sea. In addition, TCF is overestimated in the southwest South China Sea
(7-17'N, 112-115 E). These biases indicate that some of the westward-moving TCs were
erroneously recurved northward before they penetrate into the South China Sea. The low
TCF in the southern Philippine Sea is mainly (partly) due to the biases in July (August)
(data not shown). The biases were associated with the biases in the mean large-scale flow;
specifically, due to the monsoon trough being located farther eastward in July, resulting
in strong low-level westerly winds over the South China Sea. The overestimated TCF in
the southwestern South China Sea is mainly (partly) apparent in October (September),
reflecting overestimated TC genesis in autumn (data not shown). A marked positive bias
in TCF is also seen in the eastern quadrant of the WNP (10-27 N, 152-180 E), again

reflecting an overestimation of TC genesis.

5.3.2 Interannual and seasonal variability in TC genesis

Figure 5.2a compares the observed and simulated TC genesis numbers counted for each
calendar year. The observed and simulated annual (peak-season) basin averaged TC

numbers are 26.6 (18.4) and 25.0 (17.2), respectively. Figure 5.2a shows that some of the
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local maxima and minima are in good agreement between the PD run (solid black line) and
observations (histogram). The correlation coefficient of interannual variations between the
two is 0.55 (0.71) for the annual (peak-season) T'C number, which is statistically significant
at the 99% confidence level (based on the significant test for Pearson’s product-moment

correlation).

Figure 5.2b shows seasonal variations in TC genesis number. This annual variation is
reasonably well simulated in the PD run, except that the simulated distribution of TC

number is higher later in the season.

5.3.3 Variations in TC genesis influenced by ENSO

ENSO is one of the primary drivers of interannual variations in TCs. Figure 5.3 shows
anomalies of TGF along with the modified GPI anomalies in the peak season for con-
trasting warm and cold phases of ENSO. Here, we computed the observed JASO mean
Nino-3.4 (5S-5 N, 120-170 ‘W) SST for each year from 1965 and 2003. Following Wang
and Chan (2002), an El Nifio (La Nina) year is defined as a year in which the SST anomaly
exceeds (is less than) 0.4 (-0.4) of the standard deviation computed during the period.
According to this criterion, El Nino (La Nina) years occurred in 1982, 1986, 1987, 1991,
1994, 1997, and 2002 (1983, 1984, 1985, 1988, 1995, 1998, 1999, and 2000).

The observations (Fig. 5.3a) reveal a marked southeast-northwest contrast in both
TGF and GPI, as respectively reported in Wang and Chan (2002) and Camargo et al. (2007a).
In the PD run (Fig. 5.3b), the contrasting features are faithfully reproduced. The spatial
correlation between observations and the PD run is 0.67 (0.36) for GPI (TGF), indicating
that the variance in TC genesis locations induced by ENSO is reasonably well reproduced.
The spatial correlation between the GPI and TGF anomalies is 0.46 (0.47) for observa-

tions (the PD run). Moreover, the correlation coefficient between the annual mean TC
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number (solid line in Fig. 5.2a) and the annual mean basin GPI (data not shown) is
0.44, indicating that the modified version of GPI performs reasonably well in capturing
interannual variations in TC genesis (the correlation coefficient obtained for the original
version of GPI (i.e., GPI defined by Eq. 4.1) is 0.30). The reasonable agreement ob-
tained between observations and the PD simulation adds confidence to the reliability of

the model’s future projections.

5.4 Projected future changes

5.4.1 Tropical cyclone genesis number

The dotted lines in Fig. 5.2a and b show interannual and seasonal variability in total TC
number in the WNP basin for the GW run, respectively. The annual total number of TCs
is 19.3 for the GW run, which represents a reduction of 22.7% compared with the PD
run. This difference is statistically significant at the 99% level. Note however, that this
reduction occurs only in the late TC season (September—December; Fig. 5.2b). Recall
also that the model simulation of the PD climate is less realistic in the later part of the
season. This decrease is in contrast to the result for the NA, as reported in Section 4.3, for
which the TC number shows a slight increase in the GW run (although not statistically
significant). The interannual variation in TC genesis number in the GW run is slightly
different from that in the PD run (the correlation coefficient between the two runs is 0.20,
which is not statistically significant), although the two runs share the same interannual

variation in SST forcing.
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5.4.2 Frequency and tracks

Figure 5.4 compares TC tracks and TCF between the PD and GW runs for the peak
season of July-October, revealing marked differences (Fig. 5.4e), including a region of
decrease (outlined by the blue dashed line in Fig. 5.4e) and a region of increase (dashed
red line) immediately east of the belt of decrease. This finding indicates that a larger
number of northward recurving TCs would tend to travel along a path farther to the east
than they do in the present day, resulting in a decrease in the number of TCs making
landfall over or passing close to Korea and Japan. There also exists a region of increased
TCF in eastern China (dashed green line) and region of decreased TCF (dashed orange
line) in the South China Sea, although there exists a TCF bias in the South China Sea
(Fig. 5.1e). TCF also shows a decrease in the far-eastern WNP (dashed yellow line),
which is marked by a positive TCF bias (Fig. 5.1e).

The basin-scale total frequency of TC occurrence is predicted to decrease in the future
for every month except August. The percentage decrease for the peak season (all seasons)
is 7.7% (22.6%) The decrease in total frequency is smaller than the 13.2% decrease in the
total TC genesis number during the peak season. This finding indicates that the mean
TC life-span will increase in the future, apparently because more TCs will tend to travel
over the warm open ocean of the far-east WNP, thereby reducing their chance of making

landfall and enhancing their chance of intensifying (Chan and Liu, 2004).

5.4.3 TCs approaching land

The evaluation of future change in the frequency of TC landfall is important for estimating
storm-related socioeconomic losses in the future. Figure 5.5 shows observed TCs within

the coastal regions of East Asia (within 200 km of the outer edge of the model’s land-
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surface grid) for nine sub-regions (East Japan, West Japan, Korea, North China, Central
China, South China, Southeast Asia, Taiwan, and the Philippines). Note that overlaps
exist among these regions. The same results as those described below were also obtained
using 300 km of the outer edge (data not shown). Table 5.1 lists the statistics regarding
projected accumulated storm days (i.e., the TC frequency derived from 6-hourly data
divided by four) for periods when TCs are located in the coastal domains during the peak
season of July—October. Most coastal regions show reasonable agreement between the PD
run and observations, although considerable discrepancies exist in Southeast Asia and the
Philippines, consistent with the error map of TCF (Fig. 5.1e). In terms of future changes,
the largest significant reduction (by 44%) is seen over Southeast Asia. The numbers of
storm days also decrease (by 9-25%) in East Japan, West Japan, Korea, South China,
and the Philippines, although the future changes are not statistically significant. Increases
(by 34-58%, although not statistically significant) are seen in North and Central China,

consistent with the spatial pattern of future change in TCF (Fig. 5.4e).

When the instantaneous maximum surface wind velocities for TCs are averaged (Ta-
ble 5.2), all coastal regions show an increasing intensity (by 1-8%), indicating that TC
events become increasingly severe in the future, regardless of any change in TC frequency.
Because the model underestimates the intensity compared with observations (Murakami

and Sugi, 2010), the degree of intensification remains uncertain.

Table 5.3 lists the future change in mean TC number of landfalls for the peak season,
which differs from the frequency of TCs (Table 5.1). For the future changes, all regions
show somewhat similar changes to those in Table 5.1, except that these changes are

statistically insignificant.
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5.5 Reasons for future change in TC frequency

5.5.1 Changes in large-scale flows and TC genesis frequency

The changes in TCF can be explained largely in terms of the TC genesis locations and
motions, The latter is in turn affected by changes in large-scale steering flows. Here, this
study compares the climatological mean of TC translation vectors between the PD and
GW runs. The mean TC translation vectors are computed at every 2.5° x 2.5° grid point
based on all TCs that passed across each point. July—October mean motion vectors and
future change are shown in Fig. 5.6. Note that more than 15 storms are required to draw a
motion vector in a grid. The mean vector norm is respectively 3.67 and 3.42 ms~! for the
PD run (Fig. 5.6a) and GW run (Fig. 5.6b), indicating, on average, a slightly reduced
TC motion speed in the future. Moreover, the future change (Fig. 5.6¢) in the mean
zonal (meridional) component is respectively 0.36 (-0.06) ms~! and 0.65 (-0.11) ms™! for
the entire basin and regions south of 20 N, indicating a significant future “slow-down” in
the westward translation speed. This reduced speed is especially pronounced in tropical

regions around 135 E and east of 150 E.

The vectors in Fig. 5.7 show future changes in simulated mass-weighted large-scale
steering flows between the 850 and 300 hPa vertical levels. Overall, the projected future
changes in large-scale steering flows are markedly different from those reported by Wu and
Wang (2004), who reported that easterly (westerly) anomalies dominated in the tropics
(mid-latitudes). In the future projection, the easterly flows are significantly weakened
south of 20 N and east of 130 E, which is consistent with the changes in TC translation
vectors shown in Fig. 5.6. The red (blue) contours in Fig. 5.7 show departures of seasonal
mean geopotential height at 500 hPa from the global mean for the GW (PD) run. The
western Pacific subtropical high retreats eastward in the GW run compared with the PD

run, causing anomalous cyclonic steering flows over the WNP. Interestingly, the projected
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westerly changes in steering flows in the lower latitudes are similar to observed changes
between periods 1951-1979 and 1980-2001 (Ho et al., 2004), despite a difference in the
shift of subtropical high. However, an observed period of 50 years may be too short to

distinguish global-warming trend and natural variability.

Figure 5.8a shows projected future changes in TGF during the peak season. Overall,
the spatial distributions of seasonal mean changes in TGF (Fig. 5.8) show a strong
connection with those in TCF (Fig. 5.4e), especially over the South China Sea and
Philippine Sea, suggesting a close linkage between TGF and TCF.

5.5.2 TCF changes projected by a trajectory model

Changes in steering flows and TC genesis locations affect future changes in TCF pattern.
To clarify the relative roles of these factors in determining TCF changes, this study applied
a simple trajectory model proposed by Wu and Wang (2004). In this model, a TC is
treated as a point vortex that moves according to climatological mean TC translation
vectors, given its genesis location. TC tracking is performed every 6 hour. The search for
movement direction and speed is halted over the grid point of an undefined TC translation
vector in the case that the number of TCs sampled is less than 15. Figure 5.9a shows
TCF changes projected by the trajectory model. Overall, the spatial patterns of the TCF
changes are similar to those yielded by direct TC detection (Fig. 5.4e).

Based on the above result, this study performed two parametric experiments. The first
was designed to access the impact of TC translation vectors on TCF changes, in which
the same TC genesis locations were used but TC translation vectors south of 20 N were
different between the present and future runs (Fig. 5.9b). Overall, the experiment shows
a considerable east-west contrast in the TCF. The second experiment was designed to

assess the impact of TC genesis locations on TCF changes, in which different TC genesis
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locations were used but the TC translation vectors were the same between the present and
future runs (Fig. 5.9¢). An east-west contrast in TCF changes is apparent, especially at
lower latitudes south of 25 N. Overall, it can be concluded that basin-wide TCF changes
were affected by both changes in steering flows and TC genesis locations. Steering-flow
changes at lower latitudes appear to hinder westward TC motions, resulting indirectly
in TCF changes north of 25 N. In contrast, the changes in TC genesis locations had a
strong, direct affect on TCF spatial patterns. In the following section, the mechanisms of

changes in TC genesis are focused.

5.6 Mechanisms of the future changes in TC genesis

This section investigates the mechanisms of future changes in TC genesis, based on a
modified version of the GPI. As discussed in Section 4.1.2 that the existence of TCs may
directly affect the seasonal mean of vertical velocity and other terms in the GPI in case of
a TC-resolving model. The vertical velocity term in the GPI is associated with existence
of deep convection in the model; therefore, when there are many TCs on a grid in a
month, there will be a signal in the vertical velocity. In this case, the GPI is more a
diagnostic of existing TCs than a predictor of TC genesis potential. In the NA study,
the author assumed that the impact of TC existence on mean state may be small given
the fact that on average only 9 TCs occurring during the 4-month peak season. However,
in the WNP, given the fact that on average 20 TCs occurring during the 4-month peak
season, it is possible that the computed GPI reflects the existing TCs. In this study, the
monthly mean fields were reconstructed by filtering out the grid where there are some
TCs in a month. Because the conclusions described below are not much different between
the non-filtered and filtered GPI (data not shown) so that the discussions below are based

on the results obtained by the non-filtered GPI.
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Figure 5.8b shows future changes in GPI. A comparison with the future changes in
TGF (Fig. 5.8a) indicates that the GPI performs well in reflecting the changes (the
spatial correlation is 0.55); however, the GPI changes do not perfectly agree with the
TGF changes at north of 22.5°N. Although there is room for further improvement in
GPI analysis, the GPI can be used to identify those GPI elements that make the greatest

contribution to future change.

Figure 5.10 shows the total future change in the GPI during the peak season of July—
October (Fig. 5.10a), as well as GPI changes obtained by varying each individual GPI
element (Fig. 5.10b-f). Note that the summation of changes in the variational GPIs is

generally equivalent to the total GPI change (Murakami and Wang, 2010).

The MPI (Fig. 5.10d) is one of the factors causing an increase in GPI for the entire
WNP. Here, this study investigates which elements in Eq.4.2, defined in Section 4.1.2,
were responsible for the future increase in MPI, and found that among the MPI elements,
CAPE* was the largest contributor to the increase in MPI (data not shown). The CAPE*
is determined mainly by SST, indicating that an increase in SST is primarily responsible
for the increase in MPI. In general, the effects of relative humidity (Fig. 5.10c) and
MPI (Fig. 5.10d) tend to cancel each other out, meaning that thermodynamic changes
have less influence on TGF changes. Similarly, Chan and Liu (2004) and Chan (2009)
reported that because thermo-dynamical conditions for TC genesis are largely satisfied
in the tropical WNP, dynamical variations are more important in explaining variations
in TC genesis. The sign of GPI contribution is different among the GPI elements, e.g.,
vertical shear and potential intensity act to increase GPI, whereas relative humidity and
vertical motion work to decrease it. The reduction in the basin-scale TC genesis number
seems to reflect a reduction in large-scale ascending motion accompanied by a reduction in
relative humidity. The changes in mid-tropospheric relative humidity and vertical motions

seem to be related each other, with regions of anomalous descent (ascent) showing relative

122



drying (moistening)-a relationship consistent with anomalous advection of drier (moister)

air from above (below) (Vecchi and Soden, 2007c).

Vecchi and Soden (2007b) reported that in most IPCC AR4 models, tropical over-
turning circulation decreases as the climate warms. Furthermore, the authors noted that
the weakening is more dominant in the zonally asymmetric (i.e., Walker) component than
in the zonal-mean (i.e., Hadley) component of the tropical circulation. The projections
in this study are consistent with these findings, as the author found a weakening in over-
turning circulation (by about 10-12%) toward the end of the 21st century and a more
pronounced weakening in the zonally asymmetric component. The decrease in ascending
branch of tropical overturning circulation, accompanied by the decrease in relative hu-
midity, appears to be the main reason for a reduction in total TC formations in the WNP,

despite local increases in SST (Sugi and Yoshimura, 2004).

For western WNP (WWNP; as outlined in Fig. 5.10), the genesis potential shows a
marked decrease, due mainly to decrease in vorticity and vertical motions accompanied
by reduced relative humidity. In contrast, an increase in genesis potential occurs in south-
eastern WNP (SEWNP:; as outlined in Fig. 5.10) despite the unfavorable environment
for the entire WNP, due to increased low-level vorticity (Fig. 5.10b) and reduced vertical
wind shear (Fig. 5.10e).

This study examined the causes of these dynamical changes in this region. Figure
5.11a-b shows the July-October mean spatial distributions of the streamline at 850 hPa
(red lines) and vertical motion at the 500 hPa (blue shading), as well as future changes
(Fig. 5.11c). Figure 5.11d also shows future changes in relative vorticity at 850 hPa
(shading) and vertical wind shear (contours) between 850 and 200 hPa. Future changes
in vertical motions (Fig. 5.11c) involve enhanced upward motion north of the equator in

the central and eastern Pacific (region E in Fig. 5.11c¢). West of the enhanced upward
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motion, low-level cross-equatorial flows are intensified in the western Pacific (region F).
Moreover, low-level cyclonic vorticity (vertical wind shear) is increased (reduced) in the
southeastern quadrant of the WNP (region G in Fig. 5.11d). These dynamical changes
appear to result from a Rossby wave response induced by equatorially antisymmetric
heating (as indicated by upward motion) (Gill, 1980); i.e., anomalous cyclonic circulation
and northward cross-equatorial flows occur west of the heated regions. The Rossby wave
response generates anomalous lower-level positive vorticity, extending the monsoon trough
eastward. As evidence of this process, the monsoon trough in the WNP in the GW run
(C-D in Fig. 5.11b) extends farther east than that in the PD run (A-B in Fig. 5.11a).
Because the monsoon trough generally accompanied by weak vertical wind shear (region
G in Fig. 5.11d; Gray, 1968; Chia and Ropelewski, 2002; Sun and Ding, 2002), eastward
extension of the monsoon trough affects the southeastern quadrant of the WNP basin by
providing a favorable dynamical environment for TC generation. In the western WNP, a
negative tendency in relative vorticity can be also seen (Fig. 5.11d), although this makes
a minor contribution to the decrease in genesis potential (Fig. 5.10c). This anomalous
negative vorticity may also result from a dynamical response induced by a reduction in

diabatic heating in southeastern Philippine Sea (region F, Fig. 5.11c).

The response of the heating over the equatorial central Pacific appears to be strongly
related to the prescribed future anomaly in SST (Fig. 5.12a). Over the Pacific, future
changes in SST show strong warming in the equatorial central Pacific and subtropical
North Pacific, whereas relatively weak warming occurs in the subtropical South Pacific.
The resulting thermal contrast between the South and North Pacific results in enhanced
cross-equatorial flows in the western Pacific. In addition, the distribution of tropical
precipitation changes (Fig. 5.12b) is strongly correlated with the distribution of trop-
ical SST changes (Fig. 5.12a). This conclusion has also been reported by Vecchi and
Soden (2007a), Sugi et al. (2009), Xie et al. (2010), and Murakami and Wang (2010),

indicating that the spatial distribution of tropical SST changes may be a key factor in
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determining future changes in TGF.

5.7 Summary

The present-day (PD) simulation demonstrates that the 20-km-mesh MRI/JMA AGCM
performed reasonably well in simulating the climatological mean, seasonal cycle and in-
terannual variations of TC activity over the western North Pacific (WNP). Variations in
the spatial distribution of TC genesis between El Nino years and La Nina years were well
simulated in the southeastern quadrant of the WNP, revealing an increase (decrease) in
Genesis Potential Index (GPI) and detected TC generation during El Nino (La Nina)

years.

Concerning future change, the basin-wide TC genesis number (total frequency of oc-
currence) shows a 13.2% (7.7%) decrease in the GW simulation for the peak season (July—
October) and a 22.7% (22.6%) decrease for all seasons (statistically significant at the 95%
level). Seasonal variation in TC genesis number showed no significant future change

except for a decrease in autumn and early winter.

Future changes in TC frequency of occurrence (TCF) showed spatial variations. An
overall belt of decrease extends from the central WNP (15 N, 140 E) to the east of Taiwan
(25'N, 125 E). An belt of substantial increase is seen immediately east of the decreasing
belt. These changes indicate that most future TCs will tend to travel along a more east-
ward course than that of the present day. Consequently, the frequency of TCs decreased
in coastal regions, showing a significant reduction in Southeast Asia (by 44%), and re-
ductions (by 9%-25%) in the Philippines, East Japan, West Japan, Korea, and South
China. However, the frequency of TCs increased (by 34-58%) in Central-North Chinese

coastal region due to a local increase in TC genesis. Future changes in the number of TC
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landfalls were not statistically significant.

The cause of the changes in the TCF is investigated in terms of changes in steering
flows and genesis locations. A comparison of steering flows between the PD and GW
simulations revealed no significant change north of 20 N; but significant westerly flow
anomalies were found in the southeastern quadrant of the WNP. Experiments using a
trajectory model revealed that significant changes in the steering flows south of 20 N may
directly restrict westward motion of TCs, resulting in changes in TCF. The inhibition
of westward TC motion in the tropical WNP also had an indirect effect on TCF north
of 25 N. The author found a marked change in the locations of TC genesis between the
PD and GW simulations: TC genesis decreases in the western WNP but increases in the

southeastern WNP, consistent with the future change in TCF.

The physical causes of the basin-wide decrease in TC genesis frequency (TGF) and
change in genesis locations were further elucidated with reference to the modified version of
GPI. The main reason for the decrease in the basin-wide TGF appeared to be weakening of
the ascending branch of tropical overturning circulation and reduced tropospheric relative
humidity. In turn, these changes are linked to a weakening of the Walker circulation, which
is more evident in autumn and early winter. The main factors contributing to the more
localized projected future increase in TC genesis in the southeastern WNP are increased

lower-level vorticity and reduced vertical wind shear.

The dynamical effects favorable for the increase in TGF in the southeastern WNP
appear to have resulted from heating responses in the tropical central Pacific, which
act to enhance lower-level vorticity, reduce vertical wind shear, and induce northward
cross-equatorial flows. The increased heating over the equatorial central Pacific generally
overlaps with the relative SST increase in the future. The enhancement of cross-equatorial

flows is also due to inter-hemispheric contrast in the future SST relative changes. These
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findings suggest that the mean rising motion tends to decrease throughout the entire WNP
in the future global-warmed environment, resulting in a reduced basin-wide frequency of
TC genesis. However, even under such unfavorable conditions of the background vertical
motions, favorable conditions for TC genesis may arise via the dynamic effects of changes
in large-scale flow in the southeastern quadrant of the WNP. Regions of relatively high
SST are important not only in terms of their effect on local TC genesis, but also in their
effect on large-scale flows , which in turn has a dynamic effect on the environment of TC

genesis and TC motions in the WNP.

The projected results are somewhat different from the observed trend in the past
decade and the result of past numerical studies when compared with future changes
in large-scale flows and TC tracks. For more reliable future projections, multi-decadal
ensemble realizations are recommended. The present results suggest that future changes
in TC climatology are relatively sensitive to the spatial pattern of relative SST change.
This finding indicates that it would be worthwhile to explore the degree of uncertainty in
future TC projections by prescribing an SST pattern based on both multi-model ensembles

and on results obtained using a range of individual models.
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Table 5.1: Accumulated tropical cyclone storm days in nine coastal regions during the
July-October season. The off-shore edges of the coastal regions are defined as being
200 km from the coast line. (a) Observations (1979-2003), (b) present-day run (PD,
1979-2003), (c) global-warming run (GW, 2075-2099), (d) future change, and (e) level of
statistical significance of the future change (levels less than 90% are not shown).

(e)
Level of
statistical
significance
(a) (b) () of the
Obs PD GW (d) future
(1979-2003) | (1979-2003) | (2075-2099) | GW - PD change
East Japan 44.0 65.5 53.8 1.3 (-17.3%) -
West Japan 124.0 119.0 95.5 -23.5 (-19.7%) -
Korea 31.3 34.3 25.8 —8.5 (—24.8%) -
North China 15.0 185 24.8 6.3 (+33.8%) -
Central China 53.0 32.5 51.3 +18.8 (+57.7%) -
South China 194.0 147.3 134.0 -13.3 (-9.0%) -
Taiwan 70.0 55.5 59.5 +4.0 (+7.2%) -
Southeast Asia 40.5 94.8 53.5 —41.3 (-43.5%) 99%
Philippines 145.0 66.8 51.3 ~15.5 (-23.2%) -

Table 5.2: As for Table 5.1, but for the average instantaneous maximum wind velocity
(ms™)

(e)
Level of
statistical
significance
(a) (b) (c) of the
Obs PD CW (d) future
(1979-2003) | (1979-2003) | (2075-2099) | GW — PD change
East Japan 27.9 20.9 22.4 +1.5 (+7.4%) 95%
West Japan 35.9 23.4 25.1 +1.7 (+7.2%) 95%
Korea 28.0 20.0 20.4 0.4 (+1.8%) -
North China 24.8 15.2 15.8 +0.7 (+4.4%) -
Central China 29.0 17.4 17.6 +0.2 (+1.1%) -
South China 28.8 16.5 17.8 +1.2 (+7.4%) 99%
Taiwan 35.6 20.1 20.3 0.2 (+1.0%) -
Southeast Asia 27.5 16.6 17.5 +1.0 (+5.8%) 90%
Philippines 24.5 17.7 19.2 1.5 (+8.7%) 95%
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Table 5.3: As for Table 5.1, but for July—October mean number of landfalling tropical
cyclones.

(e)
Level of
statistical
significance
(a) (b) (c) of the
Obs PD GW (d) future
(1979-2003) (197972003) (207572099) GW - PD change
East Japan 0.60 0.44 0.44 +0.00 (0.0%) -
West Japan 1.24 0.64 0.60 —0.04 (—-6.3%) -
Korea 0.76 0.32 0.28 —-0.04 (-12.5%) -
North China 0.12 0.12 0.12 10.00 (0.0%) -
Central China 0.72 0.36 0.44 +0.08 (+22.2%) -
South China 4.40 1.64 1.68 +0.04 (+2.4%) -
Taiwan 1.16 0.36 0.48 +0.12 (+33.3%) -
Southeast Asia 0.52 0.80 0.52 -0.28 (-35.0%) -
Philippines 1.96 0.40 0.36 —0.04 (*10.0%) —
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Figure 5.1: Total tropical cyclone (TC) tracks (a—b) and TC frequency of occurrence (c—e)
during July—October (JASO) from 1979 to 2003 in the western North Pacific. (a) and
(c) show observed data, while (b) and (d) show data from the present-day run (PD). The
difference in frequency of TC occurrence between the PD run and observations is shown
n (e). Black dots in (a) and (b) show TC-genesis locations. Green circles in (e) indicate
that the difference is statistically significant at the 90% level.
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. (@) Interannual Variability of TC Genesis Number
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Figure 5.2: (a) Yearly and (b) seasonal variability in the number of generated tropical
cyclones, based on observations (1979-2003; histogram), the present-day run (PD; 1979
2003; solid black line), and the global-warming run (GW; 2075-2099; dotted black line).
The correlation coefficient for yearly TC number between the PD run and observations is
0.55, which is statistically significant at the 95% level. The average TC frequencies are
26.6 (observed), 25.0 (PD run), and 19.3 (GW run). The letter “E” (“L”) in (a) indicates
an El Nino (La Nina) year, and stars at the base of (b) indicate a statistically significant
difference between the GW and PD runs at the 95% level. The error bars in (b) show
two-sided 95% confidence interval for each GW (dashed) and PD (solid) run.
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(a) GPl and TGF Anomalies by Observations (El Nino — La Nina)
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Figure 5.3: Mean differences in TC genesis frequency (TGF; contours) and Genesis Po-
tential Index (GPI; hatching) between El Nino and La Nina years during the period of
July—October (JASO) obtained from (a) the best-track data and (b) the present-day run.
Unit is one standard deviation normalized by spatial variation. The observed GPI was
computed from JRA-25 reanalysis dataset (Onogi et al., 2007). El Nifio (La Nina) years
are defined as 1982, 1986, 1987, 1991, 1994, 1997, and 2002 (1983, 1984, 1985, 1988, 1989,
1995, 1998, 1999, and 2000)
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Figure 5.4: As for Fig. 5.1, but for (a, c¢) the present-day run (PD), (b, d) the global-
warming run (GW), and (e) the difference between the runs (GW minus PD). The dashed
regions in (e) are explained in the text. Accumulated storm days and their future change
are noted at the bottom of (c)-(e).
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Figure 5.5: Observed TCs in the nine coastal regions during July—October (JASO) of
1979-2003, as derived from 6-hourly data. Red dots show the locations of TCs.
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(o) Mean TC Translohon (PD, JASO)
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Figure 5.6: Simulated mean TC translation vectors and magnitudes (ms~
TC season of July—October (JASO) for (a) the present-day run (PD), (b) the global-
warming run (GW), and (c) the difference between the GW and PD runs. Data are only
shown for grid with more than 15 storms.
difference of either the zonal or meridional component is statistically significant at the
90% level. Color shading in (c) indicates difference in the zonal vector component.
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Figure 5.7: Simulated future changes in mass-weighted flows (vectors, ms™') and depar-
tures of mean geopotential height at 500 hPa (colored contours, gpm) for the peak season
of July-October (JASO) in the western North Pacific. Black hatching indicates that the
vector differences of both the zonal and meridional component are not statistically signif-
icant at the 90% level. The departure of geopotential height is computed as the difference
from global mean for the PD (blue contours) and GW (red contours) runs. Only positive
departures are shown, with interval of 10 gpm. The global mean of geopotential height is
5,852 (5,916) gpm for the PD (GW) run.
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40N (a) TC Genesis Frequency (GW — PD, JASO)
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Figure 5.8: (a) Future change in the averaged genesis frequency of tropical cyclones
for July-October (JASO) in the western North Pacific (WNP). (b) As for (a), but for
future change in Genesis Potential Index (GPI). The GPI is filtered out where both
present and future climatological mean TGFs are zero. Unit is one standard deviation
normalized by spatial variations. Black hatching indicates that the decrease or increase is
not statistically significant at the 90% level. Outlined regions are western WNP (WWNP)
and southeastern WNP (SEWNP) which show marked future changes.
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Figure 5.9: (a) Future change in tropical cyclone frequency (TCF) projected by the tra-
jectory model which used different TC translation vectors and genesis locations obtained
from the PD and GW runs. (b) the same as in (a) but only different TC translation
vectors south of 20 N were used to assess the impact of the translation vectors; and (c)
the same as in (a) but only different TC genesis locations were used to assess the impact
of TC genesis location. The dashed areas indicate significant changes in TCF shown in
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(a) GPI (GW) — GPI (PD) - (b) GPI (GW) — GPI (PD) (Varying Vorticity)
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Figure 5.10: Future change in the Genesis Potential Index (GPI) during July—October
(JASO) over the western North Pacific (WNP) for (a) the difference in GPI between the
global-warming (GW) and present-day (PD) runs, and for GPI changes induced by each
individual factor: (b) vorticity, (c) relative humidity, (d) maximum potential intensity, (e)
vertical wind shear, and (f) vertical motion. Black hatching indicates that the decrease

or increase is not statistically significant at the 90% level. Outlined regions are western
WNP (WWNP) and southeastern WNP (SEWNP) which show marked future changes.
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(a) Omega at 500 hPa [x1072 Pas™, shading] and streamline at 850 hPa (PD, JASO)
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(b) Omega at 500 hPa [x107% Pas™, shading] and streamline at 850 hPa (GW, JASO)
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(c) Future changes in omega at 500 hPa [x1072 Pas™'] and streamline at 850 hPa (GW — PD, JASO)
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(d) Future change in relative vorticity at the 850 hPa vertical level [x10™ s7', shading]

40N and vertical wind shear between the 850 and 200 hPa vertical levels [ms™, contours] (GW — PD, JASO) s —
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Figure 5.11: July—October (JASO) mean of omega (i.e., vertical wind velocity) at 500 hPa
[1072Pa - s71, contours] and streamline at the 850 hPa for (a) the present-day run (PD),
(b) the global warming run (GW), and (c) the difference between the GW and PD runs.
Dashed contours show positive omega (i.e., descending motion), whereas solid contours
with blue shading show negative omega (i.e., ascending motion). (d) shows future changes
in relative vorticity at the 850 hPa [107%s7! shading] and vertical wind shear between
the 850 and 200 hPa [ms™!, contours]. Dashed (Solid) contours in (d) indicate reducing
(increasing) vertical wind shear. Regions outlines by blue lines with symbols are described
in the text.
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Figure 5.12: (a) Future change in seasonal mean prescribed SST [ C] relative to global
tropics (20 S—20 N) for the peak cyclone season of July—October (JASO). (b) As for
(a), but for precipitation [mm/day]. The tropical mean of SST is 26.9 (29.0) C for the
present-day (global-warming) run, whereas that of precipitation is 4.61 (4.95) mm/day.
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Chapter 6

Conclusions

This study investigated performance of medium-range predictions, present-day climate
projections, and possible future changes regarding tropical cyclones (TCs) using the Mete-
orological Research Institute (MRI)/Japan Meteorological Agency (JMA) 20-km mesh su-
per high-resolution Atmospheric General Circulation Model (MRI/JMA-AGCM), whose
horizontal resolution is so far the highest among state-of-the-art climate models in the

world.

Comparisons with coarser resolution models revealed marked superiority for the 20-
km mesh AGCM. Twelve tropical storms between 2002 and 2005 over the western North
Pacific (WNP), namely, typhoons, were simulated through medium-range forecast exper-
iments with the 20-km mesh AGCM. These simulations were compared with the 60-km
mesh JMA Global Spectral Model (GSM) to evaluate differences in resolution. They
are verified with the best-track data as observations. The verification was conducted in
terms of estimating error of position, intensifying tendency, radius of 50 knot, 30 knot,
and composite wind profile. As a result, the 20-km mesh AGCM showed slightly smaller
position error than the GSM. Moreover, much improvement was seen in the intensity
prediction. The 20-km mesh AGCM outstandingly can both decrease the central sea level
pressure and increase maximum wind velocity, while the GSM can not simulate them
because of low resolution. The 20-km mesh AGCM also shows better intensifying and
decaying tendency than the GSM. The verifications of 50 knot and 30 knot radii, and the
composite wind profile indicate that the typhoon structure by the 20-km mesh AGCM is
quite realistic. Moreover, the 20-km mesh AGCM expresses the drastic transformation of

inner-core wind profile within 100 km from the typhoon center more realistically than the
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GSM. These results indicate that a high resolution global model, such as 20-km mesh, is

vital when discussing the intensity and wind profile of tropical storms.

The effect of model resolution on projected climatological features of TCs was also
investigated via 25-year present-day and future global warming projections using the
MRI/JMA-AGCM with four resolutions ranging from TL95 (180-km mesh) to TL959 (20-
km mesh). The finest resolution (TL959) showed the highest skills in terms of TC intensity
and interannual and seasonal variations in TC genesis number. Resolutions of TL319 (60-
km mesh) and finer showed a significant future increase in the frequency of intense TCs,
whereas resolutions coarser than TL319 showed no such change, indicating that TL319
is the critical resolution in projecting future change in the frequency of intense TCs.
Overall, high model resolution is preferable for realistic and reliable climate projections.
Resolutions of TL159 (120-km mesh) and finer showed similar skills, biases, and future
changes in the spatial pattern of TC genesis frequency (TGF) and TC genesis number,
indicating the potential use of lower model resolutions for minimizing uncertainties in

future changes in the mean state of TGF and TC genesis number.

Based on above promising results yielded by the 20-km mesh AGCM, possible future
changes in TC activity over the North Atlantic (NA) and WNP were investigated by
comparison of simulations of the present-day climate and future change under the A1B
emission scenario using the 20-km mesh AGCM. Two suites of 25-year simulations were
conducted for the present-day (1979-2003) and future (2075-2099) climate. For the future
projection, the model is driven by the sea surface temperature (SST) that includes a trend
projected by most recent Intergovernmental Panel for Climate Change (IPCC) multi-

model ensemble and a year-to-year variation derived from the present-day climate.

As to NA projections, the present-day simulation reproduces many essential features

of observed climatology and inter-annual variability in TC frequency of occurrence and
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tracks. A major finding is that the future change of total TC counts in the NA is sta-
tistically insignificant, but the frequency of TC occurrence will decrease in the tropical
western NA (WNA) and increase in the tropical eastern NA (ENA) and northwestern
NA (NWNA). The projected change in TC tracks suggests a reduced probability of TC
landfall over southeast US and an increased influence of TCs on northeast US. The track
changes are not due to changes of large-scale steering flows; instead, they are due to
changes in TC genesis locations. The increase in TC genesis in ENA arises from increas-
ing background ascending motion and convective available potential energy. In contrast,
the reduced TC genesis in the WNA is attributed to decreases in midtropospheric rela-
tive humidity and ascending motion caused by remotely forced anomalous descent. This
finding indicates that the impact of remote dynamical forcing is greater than that of local
thermo-dynamical forcing in the WNA. The increased frequency of TC occurrence in the
NWNA is attributed to reduced vertical wind shear and the pronounced local warming of
the ocean surface. These TC changes appear to be most sensitive to future change in the
spatial distribution of rising SST. Given that most IPCC models project a larger increase
in SST in the ENA than in the WNA| the projected eastward shift in TC genesis is likely

to be robust.

Regarding WNP projections, the present-day simulation yielded reasonable climatol-
ogy and interannual variability regarding TC genesis frequency and tracks. The future
projection indicates (a) a significant reduction (by about 23%) in both TC genesis num-
ber and frequency of occurrence, which occurs primarily during the late part of the year
(September to December); (b) an eastward shift in the positions of the two prevailing
northward recurving TC tracks during the peak TC season (July—October); and (c) a
significant reduction (by 44%) in TC frequency approaching coastal regions of Southeast
Asia. The changes of TC tracks and occurrence frequency in the coastal regions are
partially due to changes in large-scale steering flows which hinder westward TC motion

at lower latitudes, but mainly due to changes in TC-genesis locations: Fewer TCs will
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form in the western portion of the basin (west of 145 E), whereas more storms will form
in the southeastern quadrant of the WNP (10-20 N, 145-160 E). Analysis of a Genesis
Potential Index reveals that the reduced TC genesis in the western WNP is mainly due to
in situ weakening of large-scale ascent and decreasing mid-tropospheric relative humid-
ity, which are associated with enhanced descent of the tropical overturning circulation,
especially the Walker circulation. The analysis also indicates that enhanced TC genesis
in the southeastern WNP is due to increased low-level cyclonic vorticity and reduced ver-
tical wind shear. These favorable dynamical conditions are associated with the reinforced
cross-equatorial flows in the western Pacific that are induced by differential warming rates
in the two hemispheres (the Northern Hemisphere warms faster than the Southern Hemi-
sphere). These changes appear to be critically dependent on the spatial pattern of future

sea surface temperature.

Although above results seem to be considerably reliable because of the high resolu-
tion, it must be cautious that they are just one example of future projections using one
model and one lower boundary condition. The author recently investigated that the dif-
ferent cumulus parameterizations yielded the different future changes in TC number in
some ocean basins. Resent studies reported by Sugi et al. (2009) and Zhao et al. (2009)
also suggest that the different SST forcings resulted in the different future changes in
TC genesis number in some ocean basins. These results suggest that there still remains
uncertainty regarding future changes in TC climatology in an ocean basin. In order to
reduce the uncertainties, it is necessary to conduct multi-physics and multi-SST ensemble
projections using high resolution models. In case of different results among the projec-
tions, it is important to interpret what causes the differences. This leads to new insight
of physical mechanisms of TC genesis and the future changes which are so far considered

as challenging tasks.
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