Changes in redox potential of a nickel-pincer complex bearing reactive secondary thioamide units: Changes caused by deprotonation/protonation reactions on addition of NEt3 and DBU

Teratani Takuya, Koizumi Take-aki, Takakazu Yamamoto, Kanbara Takaki

Inorganic Chemistry Communications

Volume 14
Number 6
Page range 836-838
Year 2011-06

Copyright (C) 2011 Elsevier B.V. NOTICE: this is the author's version of a work that was accepted for publication in Inorganic Chemistry Communications. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in PUBLICATION, Volume 14, Issue 6, June 2011 doi:10.1016/j.inoche.2011.03.001

URL http://hdl.handle.net/2241/113519

doi: 10.1016/j.inoche.2011.03.001
Changes in redox potential of a nickel-pincer complex bearing reactive secondary thioamide units: Changes caused by deprotonation/protonation reactions on addition of NEt₃ and DBU

Takuya Teratani, Take-aki Koizumi, Takakazu Yamamoto, and Takaki Kanbara

Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8573, Japan
Fax: +81-45-924-5976; Tel: +81-45-924-5222; E-mail: tkoizumi@res.titech.ac.jp

Received XX XXXXX 2010, Accepted XX XXXXX 2011

ABSTRACT
Shifts of Ni(II)/Ni(III) redox potentials of a nickel-pincer complex, [Ni(SCS)Br] (SCS = 2,6-bis(benzylaminothiocarbonyl)phenyl), on addition of bases have been investigated. The complex showed two-step shifts of the Ni(II)/Ni(III) redox potential, and the shifts are associated to two-step deprotonation of the SCS ligand on addition of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). DBU led to a negative shift of the Ni(II)/Ni(III) redox potential by approximately 500 mV.

Keywords: Nickel; Pincer complex; Secondary thioamide; Electrochemistry; UV-vis
In recent years, there have been significant interests in metal-thioamide complexes [1]. In particular, transition metal complexes bearing secondary thioamides have been the subject of recent interest [2]. Several transition metal pincer complexes having reactive secondary thioamide unit(s) (-C(=S)-NH-) in the pincer ligand have been reported as exemplified by the complex shown in Scheme 1 [3].

![Scheme 1. Structure of [Ni(SCS)Br].](image)

Deprotonation of the thioamide unit gives an anionic thioamidate unit, \(-\text{C(=S)-NH-} \rightarrow \text{C(=S)-N^- + H}^+\), which results in an increase in the electron-donating ability of the pincer ligand to the metal center; the oxidation potential of the complex is thought to be shifted to a lower potential by the deprotonation. Actually such an interesting shift in the oxidation potential by addition of base to pincer complexes have been reported for several transition metal complexes [4], however, there has not been such a report for Ni complexes to our knowledge. In this paper, we report the control of the oxidation potential of the secondary thioamide-containing nickel pincer complex, [Ni(SCS)Br] (cf. Scheme 1), by addition of bases.

[Ni(SCS)Br] was prepared as reported previously [3a]. Fig. 1 displays the cyclic voltammogram (CV) of [Ni(SCS)Br] in DMF. As shown in Fig. 1, [Ni(SCS)Br] shows
reversible redox wave at $E_{1/2} = +0.156$ V (vs. Fe$^+/Fe$), which is assigned to an Ni(II)/Ni(III) redox process. The $E_{1/2(Ni(II)/Ni(III))}$ is comparable to that of a previously reported Ni-pincer complex, [Ni(NCN)Br] (NCN = C$_6$H$_3$(CH$_2$NMe$_2$)$_2$-o,o'; $E_{1/2(Ni(II)/Ni(III))} = +0.15$ V (vs. SCE)) [5]. The strong electron-donating ability of the pincer ligand seems to give such a lower Ni(II)/Ni(III) potential than that of usual Ni(II) complexes; for instance, $E_{1/2(Ni(II)/Ni(III))}$ of [Ni(bpy)$_3$]$^{2+}$ (bpy = 2,2'-bipyridyl) is observed at 1.66 V vs. SCE (or 1.13 V vs. Fe$^+/Fe$) [6]. The second oxidation peak (shoulder) at $E_{pa} = +0.854$ V may involve oxidation of the SCS ligand.

Effects of the added base on the electrochemical processes were investigated using NEt$_3$ and DBU as a base. Fig. 2 shows changes in the CV curve of [Ni(SCS)Br] on addition of NEt$_3$ in DMF. As shown in Fig. 2, the most part of the original Ni(II)/Ni(III) redox wave of [Ni(SCS)Br] disappears on addition of NEt$_3$, and a new redox wave appears at $E_{1/2} = -0.08$ V vs. Fe$^+/Fe$. When methanesulfonic acid (MSA) is added to the [Ni(SCS)Br]-NEt$_3$ solution, the redox wave of original [Ni(SCS)Br] is recovered completely. These results suggest that the redox potential of [Ni(SCS)Br] can be controlled by deprotonation/protonation reactions of the thioamide unit.

![Scheme 2. Deprotonation-protonation reactions of [Ni(SCS)Br].](image)
NEt₃ is a moderately strong base (pKₐ of NEt₃·H⁺ = 18.8 in MeCN [7]), and NEt₃ is thought to give only a one-proton lost complex [Ni(SCS)Br(-H⁺)]. When a strong organic base, DBU (pKₐ of DBU·H⁺ = 24.3 in MeCN [7]), was added to [Ni(SCS)Br], \(E_{1/2(\text{Ni(II)/Ni(III)})} \) showed second-step shifts to a negative potential. Fig. 3 exhibits CV curves of [Ni(SCS)Br] on addition of DBU. Addition of DBU apparently leads to decrease in the original redox wave at \(E_{1/2} = +0.156 \) V with appearance of new redox couples at \(E_{1/2} = -0.08 \) V and -0.34 V vs. Fe⁺/Fe. After the addition of 10 mol/[Ni(SCS)Br] of DBU, only one redox couple at \(E_{1/2} = -0.34 \) V is observed. When MSA was added to the DBU-treated solution, the redox potential of Ni(II)/Ni(III) was recovered completely. As shown in Scheme 2, the shift of \(E_{1/2(\text{Ni(II)/Ni(III)})} \) of [Ni(SCS)Br] by addition of DBU is thought to be brought by the two-step deprotonation on the SCS pincer ligand.

As described above, the deprotonation/protonation reactions take place reversibly, suggesting that the main framework of [Ni(SCS)Br] is stable. The obtained results indicate that \(E_{1/2(\text{Ni(II)/Ni(III)})} \) of the Ni complex can be changed by a such a large degree of approximately 500 mV by addition of a base and an acid. There have been no precedents for controlling the redox potential of secondary thioamide-coordinated Ni complexes the acid-base reaction to our knowledge.

The acid-base reaction of [Ni(SCS)Br] was also followed by UV-vis spectroscopy. Fig. 4 shows changes of UV-vis spectrum of [Ni(SCS)Br] on addition of DBU. The absorption bands at \(\lambda_{\text{max}} = 448 \) and 503 nm decrease with an increase in the amount of DBU, whereas the absorption bands at \(\lambda_{\text{max}} = 346 \) and 402 nm increase and an isosbestic point is observed at 415 nm. The UV-peaks at 448, 503, 346, and 402 nm are most probably assigned to a metal-to-ligand charge transfer (MLCT) band in view of there
moderately large ε values. If the UV-vis peaks can be assigned to the MLCT band, the deprotonation by DBU will decrease the electron-accepting ability of the pincer ligand, in agreement with the UV-vis shift to a shorter wavelength. When 2 mol/[Ni(SCS)Br] of MSA was added to the solution, the spectrum is recovered completely. From the above shown CV and UV-vis results, $pK_a(1)$ for the first dissociation step of the N-H proton in the SCS ligand is thought to be comparable or somewhat smaller than that of NEt$_3$·H$^+$ (18.8), and $pK_a(2)$ for the second dissociation step is thought to be positioned between those of NEt$_3$·H$^+$ (18.8) and DBU·H$^+$ (24.3); however, more accurate pK_a values have not been estimated.

In summary, electrochemical behavior of the Ni-pincer complex containing secondary thioamide units, [Ni(SCS)Br], has been elucidated. The two –C(=S)-NH- groups in [Ni(SCS)Br] are thought to undergo reversible deprotonation/protonation reactions on addition of a base and an acid. By the deprotonation of the N-H group, the Ni(II)/Ni(III) redox potential of the Ni center shifted to a lower potential by 240 – 500 mV from that of original [Ni(SCS)Br]. These interesting electrochemical properties of the Ni complex are expected to contribute to design of catalytic systems using Ni complexes [8].

Acknowledgements

We gratefully acknowledge Dr. Ayako Taketoshi and Mr. Shota Aiki of University of Tsukuba for measurement of CV.
References

(d) R. W. Kluiber, Inorg. Chem. 4 (1965) 829;

Figure Captions

Figure 1. Cyclic voltammogram of [Ni(SCS)Br] (1.0 mM) in DMF containing 0.1 M [(n-Bu)₄N][PF₆] under N₂ at sweep rate of 100 mV s⁻¹. The irreversible reduction peaks at $E_{pc} = -1.20$ and -1.97 V are assigned to SCS-ligand⁺/⁻ and SCS-ligand⁻/⁺ reductions, respectively.

Figure 2. Effects of NEt₃ on cyclic voltammogram of [Ni(SCS)Br] (1 mM) in DMF containing [(n-Bu)₄N][PF₆] (0.1 M) under N₂ at sweep rate of 100 mV s⁻¹. The amount of NEt₃, (a) 0, (b) 2.5, (c) 5.0, (d) 7.5, and (e) 10.0 mol per 1 mol of [Ni(SCS)Br].

Figure 3. Effects of DBU on cyclic voltammogram of [Ni(SCS)Br] (1 mM) in DMF containing [(n-Bu)₄N][PF₆] (0.1 M) under N₂ at sweep rate of 100 mV s⁻¹. The amount of DBU, (a) 0, (b) 2.5, (c) 5.0, (d) 7.5, and (e) 10.0 mol per 1 mol of [Ni(SCS)Br].

Figure 4. Changes in the absorption spectrum of [Ni(SCS)Br] (spectrum (a)) caused by addition of DBU ((b) 0.5, (c) 1.0, (d) 1.5, and (e) 2.0 mol/[Ni(SCS)Br]) in MeCN under N₂. The inset shows expanded charts. [Ni(SCS)Br] = 2.0 x 10⁻⁴ M.
Figure 1. Cyclic voltammogram of [Ni(SCS)Br] (1.0 mM) in DMF containing 0.1 M [(n-Bu)₄N][PF₆] under N₂ at sweep rate of 100 mV s⁻¹. The irreversible reduction peak at $E_{pc} = -1.20$ V is assigned to the SCS-ligand⁺/⁻ reduction.
Figure 2. Effects of NEt₃ on cyclic voltammogram of [Ni(SCS)Br] (1 mM) in DMF containing [(n-Bu)₄N][PF₆] (0.1 M) under N₂ at sweep rate of 100 mV s⁻¹. The amount of NEt₃, (a) 0, (b) 2.5, (c) 5.0, (d) 7.5, and (e) 10.0 mol per 1 mol of [Ni(SCS)Br].
Figure 3. Effects of DBU on cyclic voltammogram of [Ni(SCS)Br] (1 mM) in DMF containing [(n-Bu)₄N][PF₆] (0.1 M) under N₂ at sweep rate of 100 mV s⁻¹. The amount of DBU, (a) 0, (b) 2.5, (c) 5.0, (d) 7.5, and (e) 10.0 mol per 1 mol of [Ni(SCS)Br].
Figure 4. Changes in the absorption spectrum of [Ni(SCS)Br] (spectrum (a)) caused by addition of DBU ((b) 0.5, (c) 1.0, (d) 1.5, and (e) 2.0 mol equiv) in MeCN under N₂. The inset shows expanded charts. [Ni(SCS)Br] = 2 x 10⁻⁴ M. In the concentration regions of [Ni(SCS)Br] of DBU in MeCN, only the first deprotonation reaction to give [Ni(SCS)Br(-H⁺)] (cf. Scheme 2) is considered to occur.