Development of a magnetic resonance microscope using a high Tc bulk superconducting magnet

<table>
<thead>
<tr>
<th>著者別名</th>
<th>寺田 康彦 & 巨瀨 勝美</th>
</tr>
</thead>
<tbody>
<tr>
<td>応用物理学</td>
<td>応用物理学</td>
</tr>
<tr>
<td>98</td>
<td>23</td>
</tr>
<tr>
<td>2011-06</td>
<td>234101</td>
</tr>
<tr>
<td>ジャーナル</td>
<td>応用物理学レターズ</td>
</tr>
<tr>
<td>Copyright 2011 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The article appeared in Appl. Phys. Lett. 98, 234101 and may be found at http://apl.aip.org/resource/1/applab/v98/i23/p234101_s1</td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2241/113515</td>
</tr>
<tr>
<td>doi</td>
<td>10.1063/1.3598440</td>
</tr>
</tbody>
</table>
Development of a magnetic resonance microscope using a high T_c bulk superconducting magnet

Kyohei Ogawa,1 Takashi Nakamura,2 Yasuhiro Terada,1 Katsumi Kose,1,a1 and Tomoyuki Haishi1,3

1Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573, Japan
2RIKEN, Wako 351-0198, Japan
3MRTechnology, Tsukuba 305-0047, Japan

(Received 16 March 2011; accepted 16 May 2011; published online 9 June 2011)

We have developed the first magnetic resonance (MR) microscope using a high critical-temperature superconducting bulk magnet. The bulk magnet comprises six annular bulk superconductors (60 mm outer diameter, 28 mm inner diameter, 20 mm high) made of c-axis oriented single-domain EuBa$_2$Cu$_3$O$_y$ crystals. The magnet was energized using a superconducting NMR magnet operating at 4.7 T. The inhomogeneity of the trapped magnetic field measured with MR imaging was 3.1 ppm (rms) in the 66.2×9.1 mm cylindrical region. Three-dimensional MR images of a chemically fixed mouse embryo acquired with voxels of (50 μm)3 demonstrated the potential of our system. © 2011 American Institute of Physics. [doi:10.1063/1.3598440]

The magnetic resonance (MR) microscope is a magnetic resonance imaging (MRI) system that achieves a spatial resolution of <100 μm for small animals and intact specimens.1–3 Until now, MR microscopes have been constructed using superconducting4 and permanent magnets.3 These have both advantages and disadvantages. Superconducting magnets for MR microscopes provide high and very stable magnetic fields (up to about 19 T),4 but require large installation spaces and cryogen refill (liquid He and N$_2$). Permanent magnets for such instruments require neither cryogens nor large installation spaces, but the field strength is limited up to about 2 T.6

In 2007, a novel magnet for nuclear magnetic resonance (NMR) using a high critical-temperature (T_c) superconducting (HTS) bulk material was reported by Nakamura et al.7 This magnet has overcome the above disadvantages in MR microscope magnets as it provides a high and stable magnetic field, but requires neither cryogen refill nor a large installation space. In this study, we developed the first MR microscope using a HTS bulk magnet and evaluated its possibility for small animal MRI systems.

Figure 1 shows an overview of the MR microscope. The system consists of a superconducting bulk magnet, a gradient coil set, a radio frequency (rf) probe, and an MRI console. As shown in Fig. 2, the bulk magnet comprised vertically stacked six annular bulk superconductors (outer diameter =60 mm, inner diameter=28 mm, height=20 mm) made of c-axis oriented single-domain EuBa$_2$Cu$_3$O$_y$ crystals with a superconducting transition temperature of 93 K.8 The bore size and the vertical height of the annular bulk magnets were carefully determined using a finite element method calculation to obtain a homogeneous magnetic field around the center of the magnet. The bulk superconductors were reinforced to protect them from break caused by the huge electromagnetic hoop stress during the field cooling process using aluminum rings (thickness=5 mm), stored in a cryostat (outer diameter=88 mm, room temperature bore diameter =20 mm) made of Al alloy, and cooled using a pulse tube refrigerator.

The gradient coil set was wound on an acrylic pipe (outer diameter=16.8 mm, inner diameter=14.8 mm) using 0.3 mm diameter polyurethane-coated Cu wire. The axial gradient coil was a Maxwell pair coil and the transverse gradient coils were Golay coils. Efficiencies of the Gx, Gy, and Gz coils were 81 mT/m/A, 93 mT/m/A, and 106 mT/m/A, respectively. The rf coil was a single-turn saddle-shaped coil wound on an acrylic pipe (outer diameter =12 mm, inner diameter=9 mm) using 0.1-mm-thick Cu foil. The rf probe was tuned to 200.0 MHz using two variable capacitors and one fixed. A cylindrical rf shield made of 0.1-mm-thick Cu foil was inserted between the gradient and the rf coils to block any rf coupling between them. The gradient set and the rf probe were inserted into the room temperature bore of the bulk magnet and connected to the MRI console (MRTechnology, Tsukuba, Japan).

FIG. 1. (Color) The MR microscope developed in this study. The superconducting bulk magnet is seen in the center of the figure. The conventional superconducting NMR magnet used for energizing the bulk magnet is seen behind the bulk magnet.

aElectronic mail: kose@bk.tsukuba.ac.jp.
The spatial distribution of the magnetic field in the bore of the bulk magnet was measured in the central 6.0 mm × 12.8 mm cylindrical region using a conventional phase-shift method and NiSO₄-doped water in an 8-mm-diameter NMR sample tube. A water phantom with seven capillaries and a chemically fixed mouse embryo (Jcl:ICR strain, 14 days postconception) stored in NiSO₄-doped water were measured using three-dimensional (3D) spin-echo sequences to evaluate the performance of the MR microscope.

Figure 3 shows the spatial distribution and a histogram of the magnetic field measured in the 6.2 mm × 9.1 mm cylindrical region. Peak-to-peak and root mean square values of the inhomogeneity were 37 ppm and 3.1 ppm, respectively. Figure 4 shows two-dimensional (2D) cross sections selected from a 3D image data set of the capillary phantom acquired with a 3D spin-echo sequence [TR (repetition time)/TE (echo time) = 100 ms/10 ms, image matrix = 128³, voxel size = (100 μm)³, NEX (number of excitation) = 1]. Although signal voids caused by a considerable offset of the magnetic field and inhomogeneity of the rf field are evident in the images, the detailed structure of the phantom is visualized clearly.

Figure 5 shows midsagittal and horizontal cross sections of the mouse embryo selected from a 3D image data set acquired with a 3D spin-echo sequence [TR/TE = 100 ms/10 ms, image matrix = 128 × 128 × 256, voxel size = (50 μm)³, NEX = 32]. Although background signal from the NiSO₄ solution is present, the internal structures of the embryo are visualized clearly. These images also demonstrate that no detectable magnetic field drift was present during data acquisition (14.5 h).

From the above experiments, although previous studies could not make homogeneous magnetic field suitable for MRI or MR microscopy, we have demonstrated that the temporal stability and spatial homogeneity of the magnetic field produced by our bulk magnet are sufficient for MR microscopy of small samples. The available volume for MR imaging is currently smaller than that of conventional superconducting magnets, but the bulk magnet is cryogen free and compact, which is advantageous over conventional superconducting magnets. If we require a larger volume for small animal MRI using bulk magnets, larger HTS bulk crystals and an advanced field shimming technique will be required. In conclusion, we have developed the first MR microscope.
microscope that uses a superconducting bulk magnet and have shown the potential of our system.

FIG. 5. (Color) The midsagittal [(a) and (b)] and horizontal (c) cross sections of mouse embryo chemically fixed at 14 days postconception (dpc) measured using the MR microscope. The voxel size is (50 μm). The background signal was manually removed for clarity in (b).