Dynamical systems which realize given random bi-sequences of points on their orbits

<table>
<thead>
<tr>
<th>著者別名</th>
<th>加藤 久男</th>
</tr>
</thead>
</table>

Topology and its Applications

volume 158
number 9
page range 1163-1171
year 2011-04

(C) 2011 Elsevier B.V.

NOTICE: this is the author's version of a work that was accepted for publication in Topology and its Applications. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Topology and its Applications, Vol.158. Issue:9, Pages:1163-1171.
doi:10.1016/j.topol.2011.04.004

URL http://hdl.handle.net/2241/113451
doi: 10.1016/j.topol.2011.04.004
Dynamical systems which realize given random bi-sequences of points on their orbits

Hisao Kato

Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan

Abstract. A dynamical system consists of a phase space of possible states, together with an evolution rule that determines all future states and all past states given a state at any particular moment. In this paper, we show that for any countable random infinite bi-sequences of states of some phase space, there exists an evolution rule in C^0-topology which realizes precisely the given sequences of states on their orbits and satisfies some regular conditions on the times to realize the states.

1 AMS Subject Classification: Primary 54F11; 54H20; 58FE60, Secondary 58F11; 28A32; 57Q40.
2 Key words and phrases: Dynamical system, orbits, transitive homeomorphism, chaotic, good measure, measure-preserving homeomorphism, flow.
1 Introduction

A dynamical system consists of a phase space of possible states, together with an evolution rule that determines all future states and all past states given a state at any particular moment. In this paper, we consider some kinds of chaotic properties of dynamical systems. We show that in the world admitting C^0-topology, for any countable random infinite bi-sequences of states of some phase space there exists an evolution rule which realizes precisely the given bi-sequences of states on their orbits and satisfies some regular conditions on the times to realize the states. In other words, for any countable random infinite itineraries, by making a slight modification on our dynamical system, we have a new dynamical system in C^0-topology which realizes the given infinite itineraries and satisfies some regular conditions on the times of itineraries. The ideas of this paper depend on works of Oxtoby-Ulam [7] and Bennett [2]. We need the following terminology and concepts. Let $N = \{1, 2, ..., \}$ be the set of all positive integers and $Z = \{0, \pm 1, \pm 2, ..., \}$ the set of all integers. Also let R be the set of all real numbers and $I = [0, 1]$ the unit interval.

In this paper, we suppose that $f : X \to X$ is a homeomorphism of a compact metric space (X, d), where d is a metric on X. We put $Supp(f) = \{x \in X \mid f(x) \neq x\}$. A point $x \in X$ is a periodic point of f if there exists a positive integer $n \in N$ such that $f^n(x) = x$. A point $x \in X$ is recurrent under f if for any neighborhood U of x there exists a positive integer $n \in N$ such that $f^n(x) \in U$. The orbit of a point $x \in X$ under f, denoted by $Orb(f; x)$, is the set $\{f^n(x) \mid n \in Z\}$. If x is not a periodic point of f, we consider the infinite bi-sequence (=ordered orbit) $(f^n(x) \mid n \in Z) = (..., f^{-2}(x), f^{-1}(x), x, f(x), f^2(x), ...)$ of x under f. If x is a periodic point of f with period n, we also consider the finite sequence (=ordered orbit) $(f^n(x) \mid 0 \leq i \leq n - 1)$ of x under f. For any $x \in X$ and $i, j \in Z$ with $i \leq j$, we put $Orb(f; x)_{[i, j]} = \{f^n(x) \mid i \leq n \leq j\}$. Suppose that $Orb(f; x)$ is not a periodic orbit and $y \in Orb(f; x)$. In this case, we put $Time_f(x \to y) = n$, where n is the (unique) integer satisfying $f^n(x) = y (n \in Z)$.

Let $\varphi : X \times R \to X$ be a flow, i.e., φ is a map (=continuous function) such that

1. $\varphi(x, 0) = x$ and

2. $\varphi(x, s + t) = \varphi(\varphi(x, s), t)$ for any $x \in X$ and any $s, t \in R$.

A point $x \in X$ is a periodic point of φ if there exists a positive number $t \in R$ such that $\varphi(x, t) = x$. The orbit of a point $x \in X$ under φ, denoted by $Orb(\varphi; x)$, is the set $\{\varphi(x, t) \mid t \in R\}$. If x is not a periodic point of φ, we consider the ordered orbit $(\varphi(x, t))_{t \in R}$ of x under φ. If x is a periodic point of φ with period $t_0 > 0$, we consider the ordered orbit $(\varphi(x, t))_{0 \leq t < t_0}$ of x under φ. If x is not a periodic point and $y \in Orb(\varphi, x)$, we put $Time_{\varphi}(x \to y) = t$ if $\varphi(x, t) = y$.

Let $\Lambda = Z$ or $\Lambda = \{0, 1, 2, ..., s\}$ ($s < \infty$). A sequence $S = (a_n \mid n \in \Lambda)$ of points of X is said to be realized by a homeomorphism f if S is a subsequence of the ordered orbit of a_0 under f. Similarly $S = (a_n \mid n \in \Lambda)$ is said to be realized by a flow φ if S is a subsequence of the ordered orbit of a_0 under φ. A sequence $(x_n \mid n \in \Lambda)$ of points of X is a pseudo η-orbit ($\eta > 0$) of f if $d(f(x_n), x_{n+1}) < \eta$ for any $n, n + 1 \in \Lambda$. Let $a, b \in X$. A finite sequence $(x_n \mid 0 \leq n \leq s)$ is a pseudo η-orbit of f from a to b if $x_0 = a, x_s = b$ and $d(f(x_n), x_{n+1}) < \eta$ for any $0 \leq n \leq s - 1$.
Let \((k_n| n \in \mathbb{Z})\) be an arbitrary increasing bi-sequence of integers with \(k_0 = 0\) i.e., \(k_n < k_{n+1}\) for \(n \in \mathbb{Z}\) and let \(S_i = (a_{kn}^n| n \in \mathbb{Z})\) \((i \in \mathbb{N})\) be infinite bi-sequences of distinct points of \(X\). Then the (countable) family \(\{S_i|i \in \mathbb{N}\}\) is said to be chaotic for \((k_n| n \in \mathbb{Z})\) if the following conditions are satisfied:

1. \(S_i\) and \(S_j\) \((i \neq j)\) are mutually disjoint,
2. the set \(\{a_i^0|i \in \mathbb{N}\}\) is dense in \(X\),
3. the sets \(\{a_i^k|n \in \mathbb{N}\}\) and \(\{a_{k-n}^i|n \in \mathbb{N}\}\) are dense in \(X\) for each \(i\),
4. if \(i, j \in \mathbb{N}\) and \(i \neq j\), then \(S_i\) and \(S_j\) are Li-Yorke pair with respect to \((k_n| n \in \mathbb{Z})\) and the diameter \(\delta(X)\) of \(X\), that is,

\[
\lim_{n \to \pm \infty} \inf d(a_{kn}, a_{kn}^j) = 0,
\]

\[
\lim_{n \to \pm \infty} \sup d(a_{kn}, a_{kn}^j) = \delta(X).
\]

It is easy to see that if \(X\) has no isolated point (i.e., \(X\) is perfect), then we have many kinds of chaotic families \(\{S_i|i \in \mathbb{N}\}\).

An \(m\)-dimensional compact connected polyhedron \(X\) is said to be regularly connected if the set

\[
\text{Int}(X) = \{x \in X| x \text{ has an open neighborhood which is homeomorphic to } \mathbb{R}^m\}
\]

is a connected dense open subset of \(X\). Put \(\partial(X) = X - \text{Int}(X)\).

The theory of Menger manifolds was founded by Anderson and Bestvina (see [1] and [3]) and has been studied by many authors. We also study Menger manifolds from the viewpoint of dynamical systems. Anderson and Bestvina gave characterizations of Menger manifolds as follows: For a compactum \(M\), \(M\) is a \(k\)-dimensional Menger manifold if and only if (1) \(\dim M = k\), (2) \(M\) is locally \((k-1)\)-connected, (3) \(M\) has the disjoint \(k\)-cell property, i.e., for any \(\epsilon > 0\) and any maps \(f, g: I^k \to M\), there are maps \(f', g': I^k \to M\) such that \(d(f, f') < \epsilon, d(g, g') < \epsilon\) and \(f'(I^k)\cap g'(I^k) = \phi\). Note that every 0-dimensional Menger manifold is a Cantor set, and every 1-dimensional Menger connected manifold is a Menger curve. If \(X\) is a Menger manifold, we put \(\text{Int}(X) = X\) and \(\partial(X) = \phi\).

Let \(\mu\) be a probability measure on a compact metric space \((X, d)\) which is nonatomic, locally positive; such a measure is called a good measure. Put

\[
M(X; \text{good}) = \{\mu| \mu \text{ is a good measure on } X\}.
\]

If \(X\) is a regularly connected polyhedron, we consider the following subset of measures:

\[
M_0(X; \text{good}) = \{\mu \in M(X; \text{good})| \mu(\partial X) = 0\}.
\]

Let \(H(X, \mu)\) be the set of all \(\mu\)-measure preserving homeomorphisms of \(X\) with metric

\[
\rho(f, g) = d(f, g) + d(f^{-1}, g^{-1}),
\]

3
where \(d(f, g) = \sup \{ d(f(x), g(x)) \mid x \in X \} \). Also, put
\[
H_\partial(X, \mu) = \{ f \in H(X, \mu) \mid f|\partial X = \text{Id} \}.
\]
Note that \(H(X, \mu) \) and \(H_\partial(X, \mu) \) are complete metric spaces (see [7]). Note that if \(X \) is a regularly connected polyhedron and \(\mu, \mu' \in M_\partial(X; \text{good}) \), then there is a homeomorphism \(h : X \to X \) such that \(h_* \mu = \mu' \) (see [7, Corollary 1]). Also, note that if \(X \) is a \(k \)-dimensional Menger manifold \((k \geq 1)\) and \(\mu, \mu' \in M(X; \text{good}) \), then there is a homeomorphism \(h : X \to X \) such that \(h_* \mu = \mu' \) (see [5, Theorem 3.1]).

2 Homeomorphisms which realize precisely the given sequences of points on their orbits

In this section, we consider the case of discrete dynamical systems. A metric \(d \) on a space \(X \) is a convex metric if for any \(x, y \in X \) there is a point \(z \) of \(X \) such that \(d(x, z) = d(z, y) = (1/2)d(x, y) \). It is well-known that a continuum (compact metric connected space) \(X \) is locally connected (=Peano continuum) if and only if \(X \) admits a convex metric \(d \) on \(X \). First, we need the following lemmas (cf. [7, Lemma 14]).

Lemma 2.1. Suppose that \(X \) is a regularly connected polyhedron of dimension \(m \geq 1 \) or a Menger \(k \)-dimensional manifold with \(k \geq 1 \) and \(d \) is a convex metric on \(X \). Let \(\mu \) be a good measure on \(X \) and \(h \in H(X, \mu) \). For any \(\delta > 0 \), there is a natural number \(N \) such that for any \(a, b \in X \) and any \(n \geq N \), there is a pseudo \(\delta \)-orbit \(x_0, x_1, ..., x_n \) of \(h \) from \(a \) to \(b \).

Proof. For a subset \(A \) of \(X \), let \(U(A, \delta) \) be the \(\delta \)-neighborhood of \(A \) in \(X \). Put \(U_1 = U(h(a), \delta) \). By induction on \(i \), we define \(U_{i+1} = U(h(U_i), \delta) \). Since \(h \in H(X, \mu) \), by [7, Lemma 14] and [5] there is a natural number \(N \) such that \(U_N = X \). Let \(a, b \in X \) and \(n \) any natural number with \(n \geq N \). We choose the point \(y \in X \) such that \(b = h^n(y) \). Since \(U_N = X \), there is a pseudo \(\delta \)-orbit \(x_0, x_1, ..., x_N \) of \(h \) from \(a \) to \(y \). Then the sequence \(x_0, x_1, ..., x_N(= y), x_{N+1}(= h(y)), x_{N+2}(= h^2(y)), ..., x_n(= h^{n-N}(y) = b) \) is a pseudo \(\delta \)-orbit \(x_0, x_1, ..., x_n \) of \(h \) from \(a \) to \(b \).

The following lemma follows from [7, Lemma 12] and [5, Proposition 4.16]. We omit the proof.

Lemma 2.2. Suppose that \(X \) is a regularly connected polyhedron of dimension \(m \geq 2 \) or a Menger \(k \)-dimensional manifold \((k \geq 1)\). Let \(\mu \) be a good measure on \(X \). Suppose that \(U \) is a connected open set of \(\text{Int}(X) \) with \(a, b \in U \). Then there exists \(h \in H(X, \mu) \) such that \(h(a) = b \) and \(\text{Supp}(h) \subseteq U \).

The following lemma is a slight modification of [7, Lemma 13]. For completeness, we give the proof.

Lemma 2.3. Suppose that \(X \) is a regularly connected polyhedron of dimension \(m \geq 2 \) or a Menger \(k \)-dimensional manifold \((k \geq 1)\) and \(d \) is a convex metric on \(X \). Let \(F \) be a
finite subset of X and μ a good measure on X. Suppose that \(p_i, q_i \) \((i = 1, 2, ..., l)\) are points of \(\text{Int}(X) - F \) such that \(\{p_i, q_i\} \cap \{p_j, q_j\} = \emptyset \) \((i \neq j)\) with \(d(p_i, q_i) < \delta \). Then there exists \(h \in H(X, \mu) \) such that \(h(p_i) = q_i \) for each \(i \), \(d(h, \text{Id}) < \delta \) and \(\text{Supp}(h) \cap (F \cup \partial X) = \emptyset \).

Proof. We shall prove the case that \(X \) is a regularly connected polyhedron of dimension 2. Since \(F \) is a finite set and \(\text{Int}(X) \) is 2-dimensional manifold, we can choose arcs \(L_i \) from \(p_i \) to \(q_i \) such that the length \(l(L_i) \) of \(L_i \) is less than \(\delta \), \(L_i \cap L_j \) is an at most one point set for \(i \neq j \) and

\[
F \cap L_i = \emptyset, L_i \cap \{p_j, q_j| j = 1, 2, ..., l\} = \{p_i, q_i\}.
\]

Note that if \(X \) is the other cases, we can find arcs \(L_i \) from \(p_i \) to \(q_i \) such that the length \(l(L_i) \) of \(L_i \) is less than \(\delta \), \(F \cap L_i = \emptyset \) and \(L_i \cap L_j = \emptyset \) \((i \neq j)\). Let \(k \) be a sufficiently large natural number. For each \(i \), we can take \(k + 1 \) points \(p_i = p_{i,0} < p_{i,1} < ... < p_{i,k} = q_i \) on \(L_i \) such that the length \(l(L_{i,j}) \) of \(L_{i,j} \) is less than \(\delta/k \) and for each \(1 \leq j \leq k \), the family \(\{L_{i,j}| i = 1, 2, ..., l\} \) are disjoint, where \(L_{i,j} \) is the sub arc from \(p_{i,j-1} \) to \(p_{i,j} \) in \(L_i \) (see the proof of [7, Lemma 13]). Take a sufficiently small neighborhood \(U_{i,j} \) of \(L_{i,j} \) for each \(i, j \) such that \(\delta(U_{i,j}) < \delta/k, U_{i,j} \cap F = \emptyset \) and for each \(j = 1, 2, ..., k \), \(\{U_{i,j}| i = 1, 2, ..., l\} \) are disjoint. For each \(j = 1, 2, ..., k \), we can choose \(h_j \in H(X, \mu) \) such that \(h_j(p_{i,j-1}) = p_{i,j} \) for each \(i \) and \(h_j(X - \bigcup_{i=1}^l U_{i,j}) = \text{Id} \). Put \(h = h_k \circ ... \circ h_1 \). Since \(d(h_j, \text{Id}) < \delta/k \), we see \(d(h, \text{Id}) < \delta \). Hence \(h \) is a desired homeomorphism.

The main result of this section is the following theorem. This theorem means that in the world admitting \(C^0 \)-topology, random infinite sequences of any prophecies will come true by making a slight change. From now on, we may assume that \(X \) admits a convex metric \(d \) if \(X \) is a Peano continuum.

Theorem 2.4. Suppose that \(X \) is a regularly connected polyhedron of dimension \(m \geq 2 \) or a Menger \(k \)-dimensional manifold \((k \geq 1)\), and \(\mu \) is a good measure on \(X \). Let \(h \in H(X, \mu) \), \(\epsilon > 0 \) and let \((k_n| n \in \mathbb{Z}) \) be an arbitrary increasing bi-sequence of integers with \(k_0 = 0 \). Suppose that \(S_i = (a^n_i| n \in \Lambda_i) \) \((i \in \mathbb{N})\) are arbitrary infinite bi-sequences or finite sequences of distinct points of \(\text{Int}(X) \) and \(S_i, S_j \) \((i \neq j)\) are mutually disjoint. Then there is \(f \in H(X, \mu) \) satisfying the following conditions:

1. \(d(f, h) < \epsilon \) and \(f|\partial(X) = h|\partial(X) \).

2. \(S_i \) is realized by \(f \) for each \(i \in \mathbb{N} \). Moreover if \(S_i = (a^n_i| 0 \leq n \leq s_i) \) is a finite sequence, then \(a^n_0 \) is a periodic point of \(f \) and \(S_i \) is realized by \(f \) on the periodic ordered orbit of \(a^n_0 \).

3. If \(S_i \) and \(S_j \) are infinite bi-sequences, then there is \(n(i,j) \in \mathbb{N} \) such that if \(n \in \mathbb{Z} \) and \(|n| \geq n(i,j) \), then \(\text{Time}_f(a^n_0 \to a^n_j) = \text{Time}_f(a^n_0 \to a^n_i) \).

4. If \(S_i \) is an infinite bi-sequence, then \((\text{Time}_f(a^n_0 \to a^n_j)| n \in \mathbb{Z}) \) is a bi-subsequence of \((k_n| n \in \mathbb{Z}) \).
Proof. We may assume that $S_{2i-1} = (a^i_n \mid n \in \mathbb{Z})$ is an infinite bi-sequence and $S_{2i} = (b^i_n \mid 0 \leq n \leq s_i)$ is a finite sequence for each $i \in \mathbb{N}$. We consider the set $S = \bigcup_{i=1}^{\infty} S_i$, where $S_{2i-1} = \{a^i_n \mid n \in \mathbb{Z}\}$ and $S_{2i} = \{b^i_n \mid 0 \leq n \leq s_i\}$. Also, put $S_{2i-1,n} = \{a^i_j \mid -n \leq j \leq n\} \ (n \in \mathbb{N})$. By induction on n, we will construct a sequence $(h_n)_{n \in \mathbb{N}}$ of homeomorphisms of X and a bi-subsequence of $(l_n \mid n \in \mathbb{Z})$ of $(k_n \mid n \in \mathbb{Z})$ with $l_0 = 0$ such that for each $n \in \mathbb{N}$, the following conditions are satisfied:

1. $h_n \in H_{\partial}(X, \mu)$.
2. $d(h_n \circ h_{n-1} \circ \ldots \circ h_1 \circ h, h_{n-1} \circ h_{n-2} \circ \ldots \circ h_1 \circ h) < \epsilon/3^n$ and $d((h_n \circ h_{n-1} \circ \ldots \circ h_1 \circ h)^{-1}, (h_{n-1} \circ h_{n-2} \circ \ldots \circ h_1 \circ h)^{-1}) < \epsilon/3^n$.
3. For each $1 \leq i \leq n$, the finite subsequence $(a^i_{-i}, a^i_{-i+1}, \ldots, a^i_{-1}, a^i_0)$ of S_{2i-1} is realized by $h_i \circ h_{i-1} \circ \ldots \circ h_1 \circ h$. Moreover

\[Time_{(h_i \circ h_{i-1} \circ \ldots \circ h_1)}(a^i_0 \rightarrow a^i_i) = l_i, \]
\[Time_{(h_i \circ h_{i-1} \circ \ldots \circ h_1)}(a^i_0 \rightarrow a^i_{-i}) = l_{-i} \]

and $(Time_{(h_i \circ h_{i-1} \circ \ldots \circ h_1)}(a^i_0 \rightarrow a^i_j) \mid -i \leq j \leq i)$ is a finite subsequence of $(k_n)_{i \in \mathbb{Z}}$.
4. For each $1 \leq i \leq n$, the point b^i_0 is a periodic point of $h_i \circ h_{i-1} \circ \ldots \circ h_1 \circ h$ and the sequence $S_{2i} = (b^i_0, b^i_1, b^i_2, \ldots, b^i_{s_i})$ is realized by $h_i \circ h_{i-1} \circ \ldots \circ h_1 \circ h$.
5. If $1 \leq i \leq j < n$, then for $j < s \leq n$

\[Supp(h_s) \cap Orb((h_j \circ h_{j-1} \circ \ldots \circ h_1 \circ h); a^i_0)_{[l_j, l_i]} = \phi. \]
6. If $1 \leq i < n$, then for $i < s \leq n$

\[Supp(h_s) \cap Orb((h_i \circ h_{i-1} \circ \ldots \circ h_1 \circ h); b^i_0) = \phi. \]
7. If $1 \leq i \leq j \leq n$, then $(h_n \circ h_{n-1} \circ \ldots \circ h_1 \circ h)^{l_j}(a^i_0) = a^i_i$ and $(h_n \circ h_{n-1} \circ \ldots \circ h_1 \circ h)^{l_i}(a^i_0) = a^i_{-j}$.
8. For each $1 \leq i \leq n$,

\[Orb(h_n \circ h_{n-1} \circ \ldots \circ h_1 \circ h; a^i_0)_{[l_n, l_i]} \subset X - S_{2i-1,n} \subset X - S \]

and

\[Orb(h_n \circ h_{n-1} \circ \ldots \circ h_1 \circ h; b^i_0) \subset X - S_{2i} \subset X - S. \]

Let $n = 1$. Suppose that $\delta > 0$ is a sufficiently small positive number. By Lemma 2.1, we can choose $l_{-1}, l_1 \in \mathbb{Z}$ and a pseudo δ-orbit

\[a^i_{-1} = x(l_{-1}), x(l_{-1} + 1), \ldots, x(-1), x(0), x(1), \ldots, x(l_1 - 1), x(l_1) = a^i_1 \]

of h from a^i_{-1} to a^i_1 in $Int(X)$ such that $a^i_0 = x(0)$. We may assume that

\[\{x(j) \mid -l_1 \leq j \leq l_1\} \cap S = S_{1,1} \]
and \(l_{-1}, l_1 \) are elements of the sequence \((k_n \mid n \in \mathbb{Z}) \) such that \(l_{-1} < 0 < l_1 \). Also, we may assume that there is a pseudo \(\delta \)-orbit

\[
b_0^1 = z(0), z(1), ..., z(l_1 - 1), z(l_1) = b_0^1
\]
of \(h \) from \(b_0^1 \) to \(b_0^1 \) in \(\text{Int}(X) \) such that \((b_0^1, b_1^1, ..., b_{n+1}^1) \) is a subsequence of the sequence

\[
z(0), z(1), ..., z(l_1 - 1)).
\]

Also, we may assume that

\[
\{z(j) \mid 0 \leq j \leq l_1 - 1\} \cap (S \cup \{x(j) \mid l_{-1} \leq j \leq l_1\}) = S_2.
\]

For the sake of simplicity, we may assume \(h \) satisfies that \(h(x(j)) \neq x(j) \) and \(h(z(j)) \neq z(j) \) for each \(j \) (see Lemma 2.2); if necessary, we replace \(h \) with the composition \(h' \circ h \) of \(h \) and \(h' \), where \(h' \in H_\beta(X, \mu) \) and \(d(h', Id) \) is sufficiently small. Then

\[
\{h(x(j)), x(j + 1)\} \cap \{h(x(j')), x(j' + 1)\} = \emptyset,
\]

\[
\{h(z(j)), z(j + 1)\} \cap \{h(z(j')), z(j' + 1)\} = \emptyset \quad (j \neq j').
\]

By Lemma 2.3, there is a homeomorphism \(h_1 \in H_\beta(X, \mu) \) such that \(d(h_1, Id) < \delta \) and \(h_1(h(x(j))) = x(j + 1) \) and \(h_1(h(z(j))) = z(j + 1) \) for each \(j \). If \(\delta \) is sufficiently small, then we may assume that \(d(h_1 \circ h, h) < \epsilon/3 \) and \(d((h_1 \circ h)^{-1}, h)^{-1} < \epsilon/3 \). Note that the sequences \((a_{-1}^1, a_0^1, a_1^1)\) and \((b_0^1, b_1^1, ..., b_{n+1}^1)\) are realized by \(h_1 \circ h \) and \(\text{Time}(h_1 \circ h)(a_0^1 \to a_{+1}^1) = l_{+1} \).

Assume that \(h_1, h_2, ..., h_n \) and \(l_{+1}, l_{+2}, ..., l_{+n} \) have been defined for certain \(n \) and they satisfy the conditions 1-8. We define \(h_{n+1} \) and \(l_{+}(n+1) \) as follows.

Let \(\delta > 0 \) be a sufficiently small positive number. Choose integers \(l_{+1}, l_{-(n+1)} \in \mathbb{Z} \) and a pseudo \(\delta \)-orbit

\[
a_{-(n+1)}^{n+1} = x(l_{-(n+1)}), x(l_{-(n+1)} + 1), ..., x(-1), x(0), x(1), ..., x(l_{(n+1)} - 1), x(l_{(n+1)}) = a_{n+1}^{n+1}
\]
of \(h \circ h_{n-1} \circ ... \circ h_1 \circ h \) from \(a_{-(n+1)}^{n+1} \) to \(a_{+1}^{n+1} \) such that the points \(x_i \) are distinct points of \(\text{Int}(X) \), \(a_0^{n+1} = x(0) \), and \((a_i^{n+1}) - (n + 1) \leq i \leq n + 1\) is a subsequence of the sequence

\[
x(l_{-(n+1)}), x(l_{-(n+1)} + 1), ..., x(-1), x(0), x(1), ..., x(l_{(n+1)} - 1), x(l_{(n+1)}).
\]

Also, by Lemma 2.1, for each \(1 \leq i \leq n \), we may choose a pseudo \(\delta \)-orbit

\[
a_i^n = y_i(l_n), y_i(l_n + 1), ..., y_i(l_{n+1}) = a_i^{n+1}
\]
of \(h_n \circ h_{n-1} \circ ... \circ h_1 \circ h \) from \(a_i^{n} \) to \(a_i^{n+1} \) and a pseudo \(\delta \)-orbit

\[
a_{i_{-(n+1)}}^i = y_i(l_{-(n+1)}), y_i(l_{-(n+1)} + 1), ..., y_i(l_{-n}) = a_{i_{-n}}^i
\]
of \(h_n \circ h_{n-1} \circ ... \circ h_1 \circ h \) from \(a_{i_{-(n+1)}}^i \) to \(a_{i_{-n}}^i \). Also, we may assume that there is a pseudo \(\delta \)-orbit

\[
b_0^{n+1} = z(0), z(1), ..., z(l_{(n+1)} - 1), z(l_{(n+1)}) = b_0^{n+1}
\]
of \(h_n \circ h_{n-1} \circ ... \circ h_1 \circ h \) from \(b_0^{n+1} \) to \(b_0^{n+1} \) such that the points \(z_j \) are distinct points of \(\text{Int}(X) \), \((b_0^{n+1}, b_1^{n+1}, b_2^{n+1}, ..., b_k^{n+1})\) is a subsequence of \(z(0), z(1), ..., z((l(n+1) - 1)) \). Moreover, we may assume that \(A, B_i \) \((i = 1, 2, ..., n)\), \(C \) and \(D \) are mutually disjoint, where

\[
A = \{x(j) | l_{-(n+1)} \leq j \leq l_{n+1}\},
\]

\[
B_i = \{y'(j) | l_{-(n+1)} \leq j \leq l_n - 1\} \cup \{y'(j) | l_n + 1 \leq j \leq l_{n+1}\},
\]

\[
C = \{z(j) | 0 \leq j \leq l_{n+1}\},
\]

\[
D = \bigcup_{i=1}^{n}((h_n \circ h_{n-1} \circ ... \circ h_1 \circ h)^j(a_0^n) | l_n \leq j \leq l_n) \cup \bigcup_{i=1}^{n}((h_n \circ h_{n-1} \circ ... \circ h_1 \circ h)^j(b_0^n) | 0 \leq j \leq l_i\}.
\]

Also we may assume that \(l_{-(n+1)}, l_{n+1} \) are elements of the sequence \((k_n | n \in \mathbb{Z})\) and the finite sequence

\[
(Time_{(h_n \circ h_{n-1} \circ ... \circ h_1 \circ h)})(a_0^n \to a^n_j) | -(n+1) \leq j \leq n+1
\]

is a subsequence of \((k_n | i \in \mathbb{Z})\). By the same argument as above, we may assume that \(x(j), y'(j), z(j) \) are not fixed points of \(h_n \circ h_{n-1} \circ ... \circ h_1 \circ h \). By Lemma 2.3, there is a homeomorphism \(h_{n+1} \in H_\beta(X, \mu) \) such that \(h_{n+1}|D = \text{Id}, d(h_{n+1}, \text{Id}) < \delta \) and

\[
h_{n+1}(h_n \circ h_{n-1} \circ ... \circ h_1 \circ h(x(j)) = x(j + 1),
\]

\[
h_{n+1}(h_n \circ h_{n-1} \circ ... \circ h_1 \circ h(y'(j))) = y'(j + 1),
\]

\[
h_{n+1}(h_n \circ h_{n-1} \circ ... \circ h_1 \circ h(z(j))) = z(j + 1)
\]

for each \(i, j \). If \(\delta \) is sufficiently small, then we may assume that

\[
d(h_{n+1} \circ h_n \circ h_{n-1} \circ ... \circ h_1 \circ h, h_n \circ h_{n-1} \circ ... \circ h_1 \circ h) < \epsilon/3^{n+1},
\]

\[
d((h_{n+1} \circ h_n \circ h_{n-1} \circ ... \circ h_1 \circ h)^{-1}, (h_n \circ h_{n-1} \circ ... \circ h_1 \circ h)^{-1}) < \epsilon/3^{n+1}.
\]

Also, we may assume that the condition 8 is satisfied for \(h_{n+1} \circ h_n \circ h_{n-1} \circ ... \circ h_1 \circ h \).

By using the sequence \((h_n)_{n \in \mathbb{N}}\) of homeomorphisms of \(X \), we put

\[
f = \lim_{n \to \infty} h_n \circ h_{n-1} \circ ... \circ h_1 \circ h.
\]

Note that if \(i, j \leq n \), then

\[
f(a_i^n) = h_n \circ h_{n-1} \circ ... \circ h_1 \circ h(a_i^j),
\]

\[
f(b_i^n) = h_n \circ h_{n-1} \circ ... \circ h_1 \circ h(b_i^j).
\]

Then we can see that \(f \) is a desired homeomorphism.

Let \(f : X \to X \) be a map of a compact metric space \((X, d)\). Then \(f \) is **chaotic in the sense of Devaney** if \(f \) satisfies the following conditions:

1. \(f \) has sensitive dependence on initial conditions, i.e., there is a positive number \(\tau > 0 \) such that for any \(x \in X \) and any neighborhood \(U \) of \(x \) in \(X \), there is a point \(y \in U \) such that \(d(f^n(x), f^n(y)) \geq \tau \) for some positive integer \(n \in \mathbb{N} \),
2. f is topologically transitive, i.e., the (positive) orbit $\{f^n(x) | n \in \mathbb{N}\}$ is dense in X for some point $x \in X$.

3. the set of all periodic points is dense in X.

A subset S of X is a scrambled set of f if there is a positive number $\tau > 0$ such that for any $x, y \in S$ with $x \neq y$,

$$\liminf_{n \to \infty} d(f^n(x), f^n(y)) = 0,$$

$$\limsup_{n \to \infty} d(f^n(x), f^n(y)) \geq \tau.$$

If there is an uncountable scrambled set S of f, we say that f is chaotic in the sense of Li-Yorke. A map $f : X \to X$ is everywhere-chaotic (in the sense of Li-Yorke) if the following conditions are satisfied:

1. there is $\tau > 0$ such that if U and V are any nonempty open subsets of X and N is any natural number, then there is a natural number $n \geq N$ such that $d(f^n(x), f^n(y)) \geq \tau$ for some $x \in U$, $y \in V$, and

2. for any nonempty open subsets U, V of X and any $\epsilon > 0$ there is a natural number $n \geq 0$ such that $d(f^n(x), f^n(y)) < \epsilon$ for some $x \in U$, $y \in V$.

Suppose that X is a regularly connected polyhedron of dimension $m \geq 1$. A space homeomorphic to I^m is an m-cell. A 0-dimensional compactum D in $\text{Int}(X)$ is flat if for any neighborhood V of D in X, there is a closed neighborhood U of D in X such that $U \subset V$ and $U = B_1 \cup \cdots \cup B_p$, where B_i ($i = 1, 2, \ldots, p$) are mutually disjoint k-cells. By Generalized Schoenflies theorem, we see that if C and C' are flat Cantor sets in $\text{Int}(X)$, then any homeomorphism $f : C \cup \partial X \to C' \cup \partial X$ can be extended to a homeomorphism $\overline{f} : X \to X$ (e.g., see the proof of [6, p. 93, Theorem 7]). Also, note that any closed subset of a flat 0-dimensional compactum is also flat.

Theorem 2.5. Suppose that X is a regularly connected polyhedron of dimension $m \geq 2$ and E is a dense F_σ-set of X such that E is a countable union of flat Cantor sets in $\text{Int}(X)$. Let μ be a good measure on X with $\mu(E) = 1$. Suppose that $h \in H(X, \mu)$, $\epsilon > 0$ and $(k_n | n \in \mathbb{Z})$ is an arbitrary increasing bi-sequence of integers with $k_0 = 0$. Then there is a homeomorphism $f : X \to X$ satisfying the following conditions:

1. $d(f, h) < \epsilon$ and $f|\partial(X) = h|\partial(X)$.

2. f and f^{-1} are chaotic in the sense of Devaney and chaotic in the sense of Li-Yorke such that the set E is a scrambled set of f. Moreover, if $a, b \in E$ and $a \neq b$, then

 (a) the sets $\{f^{k_n}(a) | n \in \mathbb{N}\}$ and $\{f^{-k_n}(a) | n \in \mathbb{N}\}$ are dense in X,

 (b) $\liminf_{n \to \pm \infty} d(f^{k_n}(a), f^{k_n}(b)) = 0$ and $\limsup_{n \to \pm \infty} d(f^{k_n}(a), f^{k_n}(b)) = \delta(X)$.

To prove the above theorem, we need the following notions: Let X be a space and R be any subset of X^m ($m \geq 2$). A subset $F \subset X$ is said to be independent in R if for any different m points x_1, \ldots, x_m of F (i.e., $x_i \neq x_j$ for $i \neq j$), we have $(x_1, x_2, \ldots, x_m) \in X^m - R$. A countable union of nowhere dense sets is called a set of the first category.
Proposition 2.6. [4, Proposition 2.3] Suppose that X is a regularly connected polyhedron of dimension ≥ 1 and $R \subset X^m$ $(m \geq 2)$. If X has no isolated point and R is of the first category, then there is a subset S of X such that $S = \bigcup_{n=1}^{\infty} C_n$, where C_n are flat Cantor sets in X, S is independent in R, and $\text{Cl}(S) = X$.

By modifying the proof of [4, Theorem 2.6], we can prove the following.

Proposition 2.7. Suppose that X is a regularly connected polyhedron of dimension $m \geq 1$. Let E and S be sets which are countable unions of flat Cantor sets of $\text{Int}(X)$. Then for any $\delta > 0$ there is a homeomorphism $u : X \to X$ such that $u(E) = S$ and $d(u, \text{Id}) < \delta$.

Proof of Theorem 2.5. Let $\{S_i | i \in \mathbb{N}\}$ be a countable family which is chaotic for $(k_n | n \in \mathbb{Z})$. By Theorem 2.4, there is $g \in H(X, \mu)$ such that $d(g, h) < \epsilon/2$ and g satisfies the conditions as in Theorem 2.4. Then g and g^{-1} are everywhere-chaotic. Also we may assume that g and g^{-1} are chaotic in the sense of Devanay. We shall show that the set

$$T(g) = \{x \in X | \text{Cl}(\{f^{k_n}(x) | n \in \mathbb{N}\}) = X = \text{Cl}(\{f^{k-n}(x) | n \in \mathbb{N}\})\}$$

is a dense G_δ-set of X. Let $\{U_i \}_{i \in \mathbb{N}}$ be an open countable base of X. For each $i, j \in \mathbb{N}$, consider the sets

$$T_{i,j}^+ = \{x \in X | g^{k_n}(x) \in (X - U_i) \text{ for } n \geq j\},$$

$$T_{i,j}^- = \{x \in X | g^{k-n}(x) \in (X - U_i) \text{ for } n \geq j\}.$$

Then

$$T(g) = X - \bigcup_{i,j \in \mathbb{N}} (T_{i,j}^+ \cup T_{i,j}^-).$$

Note that each $T_{i,j}^+$ is a closed and nowhere dense set of X and hence we see that $T(g)$ is a dense G_δ-set of X. Put

$$R_0 = ((X - T(g)) \times X) \cup (X \times (X - T(g))).$$

Then R_0 is of the first category in X^2.

Next, we consider the following sets:

$$R_1^+ = \{(x, y) \in X^2 | \limsup_{n \to \infty} d(g^{k_n}(x), g^{k_n}(y)) < \delta(X)\},$$

$$R_2^+ = \{(x, y) \in X^2 | \liminf_{i \to \infty} d(g^{k_i}(x), g^{k_i}(y)) > 0\}.$$

Let $\{\epsilon_i\}$ be a decreasing sequence of positive numbers with $\lim_{i \to \infty} \epsilon_i = 0$. Then $R_1^+ = \bigcup_{i=1}^{\infty} T_i$, where

$$T_i = \{(x, y) \in X^2 | d(g^{k_n}(x), g^{k_n}(y)) \leq \delta(X) - \epsilon_i \text{ for every } n \geq i\}.$$

Also, $R_2^+ = \bigcup_{i=1}^{\infty} W_i$, where

$$W_i = \{(x, y) \in X^2 | d(g^{k_n}(x), g^{k_n}(y)) \geq \epsilon_i \text{ for every } n \geq i\}.$$
Since \(T_i \) and \(W_i \subset X^2 \) are closed, \(R_1^+ \) and \(R_2^+ \) are of the first category in \(X^2 \). Put
\[
R_1^- = \{(x, y) \in X^2 | \limsup_{n \to -\infty} d(g^{kn}(x), g^{kn}(y) < \delta(X))\};
\]
\[
R_2^- = \{(x, y) \in X^2 | \liminf_{n \to -\infty} d(g^{kn}(x), g^{kn}(y) > 0)\}.
\]
Then \(R = R_0 \cup R_1^+ \cup R_2^+ \cup R_1^- \cup R_2^- \) is of the first category. By Proposition 2.6, there is a subset \(S \) of \(X \) such that \(S = \bigcup_{n=1}^{\infty} C_n \), where \(C_n \) are flat Cantor sets in \(Int(X) \), \(S \) is independent in \(R \) and \(\text{Cl}(S) = X \). By Proposition 2.7, there is a homeomorphism \(u : X \to X \) such that \(u(E) = S \) and \(d(u, Id) \) is sufficiently small. Put \(f = u^{-1} \circ g \circ u \). Then \(f : X \to X \) is topologically conjugate to \(g \), \(d(f, g) < \epsilon/2 \) and \(E \) is the scrambled set \(E \) of \(f \). We see that \(f \) is a desired homeomorphism.

3 Flows which realize precisely the given sequences of points on their orbits

In this section, we consider the case of continuous dynamical systems. For any \(t \in \mathbb{R} \), we define the integer \(< t > \in \mathbb{Z} \) by \(< t > = [t + 1/2] \), where \([x]\) is the greatest integer that is less than or equal to \(x \in \mathbb{R} \). Note that if \(t \in \mathbb{R} - \{Z + 1/2\} \), then the integer \(< t > \in \mathbb{Z} \) satisfies \(|t - < t > | < 1/2 \). The main result of this section is the following theorem.

Theorem 3.1. Suppose that \(X \) is a regularly connected polyhedron of dimension \(m \geq 3 \). Let \((k_n| n \in \mathbb{Z}) \) be an arbitrary increasing bi-sequence of integers with \(k_0 = 0 \). Suppose that \(S_i = (a^i_n| n \in \Lambda_i) (i \in \mathbb{N}) \) are any infinite bi-sequences or finite sequences of (distinct) points which are contained in some polyhedral \(m \)-cell \(C \) of \(Int(X) \) and \(\Lambda_i \) are mutually disjoint. Then there exist \(\mu \in M_\varphi(X; \text{good}) \) and a \(\mu \)-measure preserving flow \(\varphi : X \times \mathbb{R} \to X \) satisfying the following conditions:

1. Each \(S_i \) (\(i \in \mathbb{N} \)) is realized by \(\varphi \). Moreover if \(S_i = (a^i_n| 0 \leq n \leq s_i) \) is a finite sequence, then \(a^i_0 \) is a periodic point of \(\varphi \) and \(S_i \) is realized by \(\varphi \) on the periodic orbit of \(a^i_0 \).

2. If \(S_i \) and \(S_j \) are infinite bi-sequences, then there is \(n(i, j) \in \mathbb{N} \) such that if \(n \in \mathbb{Z} \) with \(|n| \geq n(i, j) \), then
\[
< \text{Time}_\varphi(a^i_0 \rightarrow a^i_n) >= < \text{Time}_\varphi(a^j_0 \rightarrow a^j_n) >.
\]

3. If \(S_i \) is an infinite bi-sequence, then the bi-sequence \(< \text{Time}_\varphi(a^i_0 \rightarrow a^i_n) | n \in \mathbb{Z} > \) is a subsequence of \((k_n| n \in \mathbb{Z}) \).

Proof. We use the methods of [7]. By [7, Lemma 1], \(X \) is a continuous image of an \(m \)-cell \(Z \) under a map which is a homeomorphism up to the boundary and which is a simplicial map of a certain subdivision of \(Z \) onto \(X \). Hence we may assume that \(X \) is the \(m \)-dimensional unit cube and \(C \) is an \(m \)-dimensional cube in the interior \(Int(X) \) of \(X \).
Let $B = I^{m-1}$ be the $(m - 1)$-dimensional unit cube and B_1 an $(m - 1)$-dimensional cube in the interior of B. Also, let Q be the m-dimensional cube, that is, the product space of B with $= [0, 1]$ where points $(b, 0)$ and $(b, 1)$ are identified and $p : B \times I \to Q$ denotes the quotient map. By the proof of [7, Theorem 3], there is an onto map $q : Q \to X$ such that $q|\text{Int}(Q)$ is an embedding and $q(\partial Q)$ is an $(m - 1)$-dimensional subpolyhedron of X. Hence we may assume that $X = Q$ and C is a subset of Q such that $C \subset p(B_1 \times [0, 1/2])$. Choose a countable subset D of the interior $\text{Int}(B_1)$ of B_1 with $\text{Cl}(D) = B_1$. Let S be the set which is the union of all S_i. By modifying the proof of Bennett’s theorem [2], we have a homeomorphism $h : Q \to Q$ such that $h|\partial Q = Id$, $h|S : S \to D \times [0, 1/2]$ is an embedding satisfying that $h(S) \cap p(\{d\} \times I)$ is an empty set or a one point set for each each $d \in D$. Consequently, we may assume that S is contained in $p(D \times [0, 1/2])$ and for each each $d \in D$, $S \cap p(\{d\} \times [0, 1/2])$ is an empty set or a one point set. Let d^n_i be the point of D such that $a^n_i \in p(\{d^n_i\} \times [0, 1/2])$ for each $i \in \mathbb{N}, n \in \Lambda_i$. We consider the corresponding sequences $D_i = (d^n_i|n \in \Lambda_i)$ $(i \in \mathbb{N})$ of the sequences S_i. We define a measure ν in B by $\nu(A) = \int_A 1/f(p)dp$, where $f : \text{Int}(B) \to \mathbb{R}$ is a map (=continuous function) such that $\int_B 1/f(p)dp = 1$ and $f(p) > 0$ for $p \in B - \partial B$, $f(B_1) = 1$ and $f(p)$ tends to infinity at the boundary ∂B (see the proof of [7, Theorem 3]). By Theorem 2.4, we have $g \in H_\partial(B, \nu)$ satisfying the conditions of Theorem 2.4 with respect to $h = Id$, the the sequences $D_i = (d^n_i|n \in \Lambda_i)$ $(i \in \mathbb{N})$ and $(k_n| n \in \mathbb{Z})$. Then there is an isotopy h_t of B, $0 \leq t \leq 1$, such that $h_t = Id$ $(0 \leq t \leq 1/2)$, $h_1 = g$, $h_t|\partial(B) = Id$. Define a map $\varphi : B \times I \to Q$ by $\varphi(x, t) = h_t(x)$ for $0 \leq t \leq 1$. Consider the mapping torus Q_1 of the map $g : B \to B$, i.e., Q_1 is obtained from $B \times I$ by identifying points $(x, 1)$ and $(g(x), 0)$ for $x \in B$. Then there is the natural homeomorphism $h : Q_1 \to Q$ such that $h([x, t]) = h_t(x)$. Hence we may assume that $Q = Q_1$. By the proof of [7, Theorem 3], we can define a flow φ upward along streamlines perpendicular to B, taking the velocity at any point to be $1/f(x)$, where x is the last intersection of the streamline with B. Then the flow φ preserves m-dimensional Lebesgue measure in Q_1 (see the proof of [7, Theorem 3]). Note that the velocity at any point x on streamlines perpendicular to B_1 is $1/f(x) = 1$. By the construction of φ, each S_i $(i \in \mathbb{N})$ is realized by the flow φ. Also, the m-dimensional Lebesgue measure in Q_1 induces a good measure μ on X by the map $q : Q \to X$. Let S_i and S_j be infinite bi-sequences. Since $|\text{Time}_q(d^n_0 \to d^n_i) - \text{Time}_q(a^n_0 \to a^n_j)| < 1/2$, we see that

$$< \text{Time}_\varphi(a^n_0 \to a^n_i) >= \text{Time}_g(d^n_0 \to d^n_i) \in \mathbb{Z}.$$

Note that $\text{Time}_q(d^n_0 \to d^n_i) = \text{Time}_q(d^n_0 \to d^n_j)$ for $|n| \geq n(i, j)$. Hence we see that if S_i and S_j are infinite bi-sequences, then for $n \in \mathbb{Z}$ with $|n| \geq n(i, j)$,

$$< \text{Time}_\varphi(a^n_0 \to a^n_i) >= < \text{Time}_\varphi(a^n_0 \to a^n_j) > .$$

We can see that μ and φ satisfy the desired conditions of Theorem 3.1.

By a modification of the proof of Theorem 3.1, we can prove the following theorem. We omit the proof.

Theorem 3.2. Suppose that X is a regularly connected polyhedron of dimension $m \geq 3$. If S_i $(i \in \mathbb{N})$ are any infinite bi-sequences or finite sequences of distinct points of $\text{Int}(X)$
and \(S_i \), \(S_j \) (\(i \neq j \)) are mutually disjoint, then there exist \(\mu \in M_\theta(X; \text{good}) \) and a \(\mu \)-measure preserving flow \(\varphi : X \times \mathbb{R} \to X \) such that for each \(i \in \mathbb{N} \), \(S_i \) is realized by the flow \(\varphi \), and moreover if \(S_i \) is a finite sequence, then \(S_i \) is realized by \(\varphi \) on the periodic ordered orbit of \(\varphi \).

Note that if a separable metric space \(S \) is a countable set and perfect, then \(S \) is homeomorphic to the set \(\mathbb{Q} \) of all rational numbers. If \(f : X \to X \) is a transitive homeomorphism of a perfect compact metric space \(X \) and \(\text{Orb}(x, f) \) is dense in \(X \), then \(\text{Orb}(x, f) \) is homeomorphic to the set \(\mathbb{Q} \).

Theorem 3.3. Suppose that \(X \) is a regularly connected polyhedron of dimension \(n \geq 2 \) or a Menger \(k \)-dimensional manifold with \(k \geq 1 \). Let \(\mu \) be a good measure on \(X \), \(h \in H(X, \mu) \) and \(\epsilon > 0 \). Suppose that \(S_i \) \((i \in \mathbb{N}) \) is a dense countable subset or a finite set of \(\text{Int}(X) \) such that the family \(\{S_i | i \in \mathbb{N} \} \) are mutually disjoint. Then there is \(f \in H(X, \mu) \) satisfying the following conditions:

1. \(d(f, h) < \epsilon \) and \(f|\partial(X) = h|\partial(X) \).
2. If \(S_i \) is an infinite set, then \(S_i \) coincides with a dense orbit of \(f \), i.e., \(S_i = \text{Orb}(a_i, f) \) for \(a_i \in S_i \), and if \(S_i \) is a finite set, then \(S_i \) is a subset of a periodic orbit of \(f \).

Proof. Let \(T_i \) \((i \in \mathbb{N}) \) be infinite bi-sequences of points of \(\text{Int}(X) \) such that \(\{T_i | i \in \mathbb{N} \} \) is a chaotic family for \(Z \). Also, we can choose \(\{P_i | i \in \mathbb{N} \} \) which is a family of finite sequences of points of \(\text{Int}(X) \) such that \(\lim_{i \to \infty} P_i = X \) and \(P_i \) \((i \in \mathbb{N}) \) are mutually disjoint, where \(P_i \) is the set induced by the sequence \(P_i \). By Theorem 2.4, there is \(g \in H(X, \mu) \) such that \(d(h, g) < \epsilon/2 \), \(g|\partial(X) = h|\partial(X) \) and \(T_i \) and \(P_i \) are realized by \(g \). Moreover, we may assume that \(P_i \) is realized on a periodic orbit of \(g \). Hence we can choose a countable family \(\{T_i' | i \in \mathbb{N} \} \) of mutually disjoint dense orbits of \(g \) and a countable family \(\{P_i' | i \in \mathbb{N} \} \) of mutually disjoint periodic orbits of \(g \) such that \(\lim_{i \to \infty} P_i' = X \). By modifying the proof of Bennett [2], we can prove that there is \(u \in H\theta(X, \mu) \) satisfying the following conditions; if \(S_i \) is an infinite set, then \(u(S_i) = T_i' \) and if \(S_i \) is a finite set, then \(u(S_i) \subset P_i' \) for some \(j_i \). Put \(f = u^{-1} \circ g \circ u \). Then \(f \) is a desired homeomorphism.

Finally, we have the following problem.

Problem 3.4. Are any versions of the results of this paper true in the smooth category?

Acknowledgement: The author thanks the referee for helpful comments on the problem above.

References

Hisao Kato
Institute of Mathematics
University of Tsukuba
Ibaraki, 305-8571 Japan
e-mail: hisakato@sakura.cc.tsukuba.ac.jp