ON A NEW ALGORITHM FOR INHOMOGENEOUS DIOPHANTINE APPROXIMATION

By
Shin-ichi YASUTOMI

Abstract. The inhomogeneous Diophantine approximation algorithm of Nishioka et al., \((X, T_2, c(x), d(x, y))\), was shown by Komatsu to be efficient for inhomogeneous Diophantine approximation, but lacks a properly founded natural extension and not all periodic points about the approximation are determined. A new algorithm, \((X, T, a(x), b(x, y))\), is proposed in this paper as a modification of \((X, T_2, c(x), d(x, y))\), and is shown to be efficient for inhomogeneous Diophantine approximation similar to \((X, T_2, c(x), d(x, y))\) but also to have a natural extension, which allows all periodic points about \((X, T, a(x), b(x, y))\) to be determined and gives \(\liminf_{q \to \infty} q |q\alpha - \beta - p|\) for the periodic points \((\alpha, \beta)\).

1. Introduction

It is well known that connections exist between the continued fractions algorithm and the minimization of \(|q\alpha - p|\), where \(q\) is an natural number, \(p\) is an integer, and \(\alpha\) is an irrational number. The problem of minimizing \(|q\alpha - \beta - p|\), where \(\beta\) is a real number, is called the inhomogeneous Diophantine approximation. This problem has been considered by many authors (e.g., [12, 18, 13, 6, 7, 1, 2, 3, 4, 8, 21, 10, 11, 5, 14, 16, 17], and detailed information can be obtained by a review of the literature. Many algorithms related to the problem have been used. For example, Ito and Kasahara [10] defined the following algorithm, which was implicitly introduced by Morimoto [18]. Let \(Z = \{(x, y) | 0 \leq y < 1, -y < x < -y + 1\}\), as shown in Fig. 1.
Then for $(x, y) \in Z$:

$$a'(x, y) = \left\lfloor \frac{1 - y}{x} \right\rfloor - \left\lfloor \frac{-y}{x} \right\rfloor, \quad b'(x, y) = -\left\lfloor \frac{-y}{x} \right\rfloor.$$

The algorithm T_1 is then defined by the following transformation on Z for $(x, y) \in Z$.

$$T_1(x, y) = \left(1 - a'(x, y), b'(x, y) - \frac{y}{x}\right).$$

This algorithm $(Z, T_1, a'(x, y), b'(x, y))$ gives the best solution to the inhomogeneous Diophantine approximation. Constructing the natural extension of the algorithm, they determined all the periodic points about the algorithm. Ito [9] was the first to subsequently find that a certain natural extension of the Diophantine algorithm is useful for investigating the algorithm. Komatsu studied the following algorithm, which was introduced by Nishioka et al. [19]. With $X = [0, 1]^2$, T_2 is defined as the following transformation on X for $(x, y) \in X$.

$$T_2(x, y) = \left(1 - c(x), d(x, y) - \frac{y}{x}\right),$$

where $c(x) = \left\lfloor \frac{1}{x} \right\rfloor$ and $d(x, y) = \left\lceil \frac{y}{x} \right\rceil$. Using this algorithm, $(X, T_2, c(x), d(x, y))$, Komatsu [14] obtained $\lim \inf_{q \to \infty} q|qz - \beta - p|$ in some cases.

In this paper, an algorithm $(X, T, a(x), b(x, y))$ is introduces as a modification of $(X, T_2, c(x), d(x, y))$. The new algorithm also gives the best solution for the inhomogeneous Diophantine approximation as does $(X, T_2, c(x), d(x, y))$. However, a natural extension is constructed for $(X, T, a(x), b(x, y))$, which has not been done for $(X, T_2, c(x), d(x, y))$. Using the natural extension of $(X, T, a(x), b(x, y))$, all purely periodic points about the algorithm are determined, and for the purely periodic point (x, β), a relation between $\lim \inf_{q \to \infty} q|qz - \beta - p|$ and the natural extension of $(X, T, a(x), b(x, y))$ is obtained. Although all eventually periodic points have been determined by Komatsu [15], all purely periodic points have not.
2. Definition and Some Properties of Algorithm

We denote \(\mathbb{R}, \mathbb{Q}, \) and \(\mathbb{Z} \) the set of all real numbers, the set of all rational numbers and the set of all integers respectively. For \((x, y) \in X \) with \(x \neq 0 \) we define \(a(x) \) by \(\frac{1}{\lfloor x \rfloor} \) and we define \(b(x, y) \) by

\[
b(x, y) = \begin{cases}
1 & \text{if } y = 0, \\
\left\lfloor \frac{x}{y} \right\rfloor & \text{if } y > 0 \text{ and } \left\lfloor \frac{1}{x} \right\rfloor > \left\lfloor \frac{y}{x} \right\rfloor \text{ or } \left\lfloor \frac{1}{x} \right\rfloor = \frac{y}{x}, \\
0 & \text{if } \left\lfloor \frac{1}{x} \right\rfloor = \left\lfloor \frac{y}{x} \right\rfloor \text{ and } \left\lfloor \frac{1}{x} \right\rfloor \neq \frac{y}{x}.
\end{cases}
\]

We define a transformation \(T \) as follows; for \((x, y) \in X \) if \(x > 0 \), then

\[
T(x, y) = \begin{cases}
\left(\frac{1}{x} - a(x), b(x, y) - \frac{y}{x} \right) & \text{if } b(x, y) > 0, \\
\left(\frac{1}{x} - a(x), \frac{1}{x} - \frac{y}{x} \right) & \text{if } b(x, y) = 0,
\end{cases}
\]

and if \(x = 0 \), then \(T(x, y) = (x, y) \).

We define \(a_n(x) = a(T^{n-1}(x, y)) \), \(b_n(x, y) = b(T^{n-1}(x, y)) \) and \((x_n, y_n) = T^{n-1}(x, y) \). It is not difficult to see that if \(x \notin \mathbb{Q} \), then for any integer \(n > 0 \) \(a_n(x) \) and \(b_n(x, y) \) are defined.

Lemma 2.1 follows from the continued fraction theory.

Lemma 2.1. Let \((x, y) \in X \) and \(x \notin \mathbb{Q} \). Then, for each integer \(n > 0 \)

1. \(q_n(x)x - p_n(x) = (-1)^n q_1 \cdots q_{n+1} \frac{(-1)^n}{q_{n+1}(x) + q_{n+2}(x)} \),
2. \(|q_{n-1}(x)x - p_{n-1}(x)| = a_{n+1}(x, y)|q_n(x)x - p_n(x, y)| + |q_{n+1}(x, y)x - p_{n+1}(x, y)| \),
3. \(|q_n(x)x - p_n(x, y)| > |q_{n+1}(x, y)x - p_{n+1}(x, y)| \),
4. for any integer \(j, k \) with \(q_n(x) < j < q_{n+1}(x, y) \), \(|q_n(x)x - p_n(x, y)| < \left| jx - k \right| \),

where \(\{p_n(x)\}_{-1 \leq n}, \{q_n(x)\}_{-1 \leq n} \) are defined by

\[
p_{-1}(x) = 1, \quad p_0(x) = 0, \\
q_{-1}(x) = 0, \quad q_0(x) = 1,
\]

for \(n \geq 1 \)

\[
p_n(x) = a_n(x)p_{n-1}(x) + p_{n-2}(x), \\
q_n(x) = a_n(x)q_{n-1}(x) + q_{n-2}(x).
\]
LEMMA 2.2. Let \((x, y) \in X\). Then,

1. \(a_n(x) > 0\) and \(a_n(x) \geq b_n(x, y) \geq 0\),
2. if \(b_n(x, y) = 0\), then \(b_{n+1}(x, y) = 1\).

PROOF. The proof of (1) is easy. Let us prove (2). We suppose that \(b_n(x, y) = 0\). Then, we see that \(v(x_n) = \frac{2n}{a_n(x)}\) and \(a(x_n) < \frac{2n}{X_n}\). Since \(x_{n+1} = \frac{1}{x_n} - a(x_n)\) and \(y_{n+1} = \frac{1}{x_n} - \frac{2n}{X_n}\), we have \(x_{n+1} > y_{n+1}\). Thus, we obtain \(b(x_{n+1}, y_{n+1}) = 1\).

Let \((x, y) \in X\) and \(x \not\in \mathbb{Q}\). Let us define integers \(A_n(x, y)\), \(B_n(x, y)\) as follows:

\[
A_1(x, y) = \begin{cases}
0 & \text{if } b(x, y) > 0, \\
-1 & \text{if } b(x, y) = 0.
\end{cases} \\
B_1(x, y) = \begin{cases}
b_1(x, y) & \text{if } b(x, y) > 0, \\
0 & \text{if } b(x, y) = 0,
\end{cases}
\]

For \(n > 1\)

\[
A_n(x, y) = \begin{cases}
A_{n-1}(x, y) + b_n(x, y)p_{n-1}(x) & \text{if } b(x, y) > 0, \\
A_{n-1}(x, y) - p_{n-2}(x) & \text{if } b(x, y) = 0,
\end{cases} \\
B_n(x, y) = \begin{cases}
B_{n-1}(x, y) + b_n(x, y)q_{n-1}(x) & \text{if } b(x, y) > 0, \\
B_{n-1}(x, y) - q_{n-2}(x) & \text{if } b(x, y) = 0.
\end{cases}
\]

We remark that \(\{B_n(x, y)\}_{n=1, 2, \ldots}\) and \(\{A_n(x, y)\}_{n=1, 2, \ldots}\) are not increasing sequences generally as \(n \to \infty\).

LEMMA 2.3. Let \((x, y) \in X\) and \(x \not\in \mathbb{Q}\). Then, for any \(n > 0\)

\[
y = B_n(x, y)x - A_n(x, y) + (-1)^n y_{n+1}x_1 \cdots x_n. \tag{1}
\]

PROOF. We prove the lemma by the induction on \(n\). Let \(n = 1\). First, let \(b_1(x, y) > 0\). Then, we see \(y_2 = b_1(x, y) - \frac{x_1}{x_1}\). Therefore, we have \(y_1 = b_1(x, y)x_1 - y_2x_1 = B_1(x, y)x - A_1(x, y) - y_2x_1\). Next, let \(b_1(x, y) = 0\). Then, we see \(y_2 = \frac{1}{x_1} - \frac{x_1}{x_1}\). Therefore, we have \(y_1 = 1 - y_2x_1 = B_1(x, y)x - A_1(x, y) - y_2x_1\). Hence, (1) holds for \(n = 1\). Secondly, we suppose that (1) holds for \(n = k\), that is, \(y = B_k(x, y)x - A_k(x, y) + (-1)^k y_{k+1}x_1 \cdots x_k\). Let \(b_{k+1}(x, y) > 0\). Then, we have \(y_{k+2} = b_{k+1}(x, y) - \frac{x_1}{x_k+1} \cdot x_{k+1}\) which implies \(y_{k+1} = b_{k+1}(x, y)x_{k+1} - x_{k+1}y_{k+2}\). Therefore, using \(x_1 \cdots x_{k+1} = (-1)^k (q_kx - p_k)\), we see

\[
y = B_k(x, y)x - A_k(x, y) + (-1)^k y_{k+1}x_1 \cdots x_k,
\]

\[
= B_k(x, y)x - A_k(x, y) + (-1)^k b_{k+1}(x, y)x_1 \cdots x_{k+1}(-1)^{k+1} y_{k+1}x_1 \cdots x_{k+1},
\]

\[
= B_{k+1}(x, y)x - A_{k+1}(x, y) + (-1)^{k+1} y_{k+2}x_1 \cdots x_{k+1}.
\]
Let $b_{k+1}(x, y) = 0$. Then, we have $y_{k+2} = \frac{1}{x_{k+1}} - \frac{y_{k+1}}{x_{k+1}}$, which implies $y_{k+1} = 1 - x_{k+1}y_{k+2}$. Using $x_1 \cdots x_k = (-1)^{k+1}(q_{k-1}x - p_{k-1})$, we have

$$y = B_k(x, y)x - A_k(x, y) + (-1)^k y_{k+1}x_1 \cdots x_k,$$

$$= B_k(x, y)x - A_k(x, y) + (-1)^k x_1 \cdots x_k + (-1)^{k+1} y_{k+2}x_1 \cdots x_{k+1},$$

$$= B_{k+1}(x, y)x - A_{k+1}(x, y) + (-1)^{k+1} y_{k+2}x_1 \cdots x_{k+1}.$$

Therefore, (1) holds for $n = k + 1$. Thus, we have Lemma. \hfill \Box

Lemma 2.4. Let $(x, y) \in X$ and $x \notin Q$. Then, $\lim_{n \to \infty} (B_n(x, y)x - A_n(x, y)) = y$.

Proof. By Lemma 2.3 $|y - B_n(x, y)x + A_n(x, y)| = y_{n+1}x_1 \cdots x_n$. By Lemma 2.1 we have $x_1 \cdots x_n = |q_{n-1}x - p_{n-1}| < \frac{1}{q_n}$. Thus, we have Lemma. \hfill \Box

We define $\Psi = \{ (x, y) \in \mathbb{R}^2 | x \notin Q \text{ and } y \neq mx + n \text{ for any } m, n \in \mathbb{Z} \}$.

Lemma 2.5. Let $(x, y), (z, w) \in X$ and $x, z \notin Q$. If $a_n(x) = a_n(z)$ and $b_n(x, y) = b_n(z, w)$, for any integer $n > 0$, then $(x, y) = (z, w)$.

Proof. By continued fraction theory we obtain $x = z$. From Lemma 2.4 we have $y = w$. \hfill \Box

Lemma 2.6. Let $(x, y) \in X \cap \Psi$. Then, if $b_n(x, y) = 0$ for some integer $n > 0$, then there exists an integer $k > 0$ such that $b_{n+2k}(x, y) > 0$.

Proof. We suppose that there exists an integer m such that for any $k \geq 0$ $b_{m+2k}(x, y) = 0$. Then, from Lemma 2.2 we have $b_{n+2k+1}(x, y) = 1$ for any $k \geq 0$. Let $(u, v) = T^{m-1}(x, y)$. Then, $b_{2k}(u, v) = 0$ and $b_{2k+1}(u, v) = 1$ for any $k \geq 0$. We see easily that $b_n(u, 1) = b_n(u, v)$ for any integer $n \geq 1$. From Lemma 2.5 we have $v = 1$. Then, we see $(x, y) \notin \Psi$. But it is a contradiction. Therefore, we have Lemma. \hfill \Box

Lemma 2.7. Let $(x, y) \in X \cap \Psi$. Then, if $a_n(x) = b_n(x, y)$ for some integer $n > 0$, then there exists an integer $k > n$ such that $a_k(x) \neq b_k(x, y)$.

Proof. We suppose that there exists an integer m such that for any $k \geq m$ $a_k(x) = b_k(x, y)$. Let $(u, v) = T^{m-1}(x, y)$. It is not difficult to see that $b_j(u, 1 - u) = b_j(u, v)$ for any integer $j \geq 1$. From Lemma 2.5 we have $v = 1 - u$. \hfill \Box
Then, by using the equation \((u, v) = T^{m-1}(x, y)\) we see easily \((x, y) \notin \Psi\). But it is a contradiction. Therefore, we have Lemma. \(\square\)

Lemma 2.8. Let \((x, y) \in X\) and \(x \notin Q\). We suppose that there exist integers \(e, f\) such that \(y = ex + f\). If \(e \geq 0\), then there exists an integer \(n \geq 0\) such that \(y_n = 0\). If \(e < 0\), then there exists an integer \(n \geq 0\) such that \(y_n = 1 - x_n\).

Proof. Let \(e \geq 0\). Since \(0 \leq ex + f \leq 1\), we see that \(-e < f \leq 0\) for \(e > 0\) and \(f = 0, 1\) for \(e = 0\) respectively. If \(b_1(x, y) > 0\), then we have

\[
y_2 = b_1(x, y) - \frac{y}{x} = -f \left(\frac{1}{x} - a_1(x) \right) - fa_1(x) + b_1(x, y) - e
\]

If \(b_1(x, y) = 0\), then we have \(y_2 = \frac{1}{x} - \frac{y}{x} = (1 - f)\left(\frac{1}{x} - a_1(x) \right) + (1 - f)a_1(x) - e\). Therefore, by the induction for each integer \(n > 0\) there exists integers \(r_n \) and \(s_n\) such that \(y_n = r_nx_n + s_n\), \(r_n \geq 0\) and \(r_n \geq r_{n+1}\) for \(r_n > 0\). We see also that if \(r_n > 0\) and \(b_1(x, y) > 0\), then \(r_n > r_{n+1}\). Since from Lemma 2.2 we see \(b_n(x, y) > 0\) for infinitely many \(n\), there exists a integer \(m > 0\) such that \(r_m = 0\). Therefore, \(y_m = 0\) or \(y_m = 1\). If \(y_m = 1\), then we have \(y_{m+1} = 0\). Thus, we have Lemma.

Let \(e < 0\). Since \(0 \leq ex + f \leq 1\), we see that \(0 < f \leq |e|\). We suppose that \(b_1(x, y) > 0\). Then, we have \(y_2 = -fx_2 - fa_1(x) + b_1(x, y) - e\). We see easily that if \(f = -e = 1\), then we have \(-fa_1(x) + b_1(x, y) - e = 1\) if \(f = -e > 1\), then we have \(-fa_1(x) + b_1(x, y) - e < f\). Next, we suppose that \(b_1(x, y) = 0\). Since the fact that \(f = 1\) implies \(b_1(x, y) > 0\), we see \(f < 1\). Then, \(y_2 = (1 - f) \cdot \left(\frac{1}{x} - a_1(x) \right) + (1 - f)a_1(x) - e\). Therefore, by the induction we see that for each integer \(n > 0\) there exists integers \(r_n \) and \(s_n\) such that \(y_n = r_nx_n + s_n\), \(r_n < 0\) and \(|r_n| \geq |r_{n+1}|\). We see also that if \(|r_n| = |r_{n+1}|\) and \(|r_n| > 1\), then \(|r_{n+2}| > |r_{n+1}|. Therefore, there exists an integer \(m > 0\) such that \(r_m = -1\) and \(s_m = 1\). \(\square\)

Lemma 2.9. Let \((x, y) \in X\), \(x \notin Q\) and \((x, y) \notin \Psi\). Then, following (1) or (2) holds:

1. there exists integer \(m > 0\) such that for any integer \(k \geq 0\) \(b_{m+2k}(x, y) = 0\);
2. there exists integer \(m > 0\) such that for any integer \(n \geq m\) \(a_n(x) = b_n(x, y)\).

Proof. From Lemma 2.8 there exists an integer \(m\) such that \(y_m = 0\) or \(y_m = 1 - x_m\). We suppose \(y_m = 0\). Then, we see that for each integer \(k \geq 0\) \(b_{m+1+2k}(x, y) = 0\). Next, we suppose \(y_m = 1 - x_m\). Then, we see that for each integer \(n \geq m\) \(a_n(x) = b_n(x, y)\). \(\square\)
LEMMA 2.10. Let \(\{a_n\}_{n=1,2,...} \) and \(\{b_n\}_{n=1,2,...} \) be integral sequences such that for any integer \(n > 0 \)
1. \(a_n > 0 \) and \(a_n \geq b_n \geq 0 \),
2. if \(b_n = 0 \), then \(b_{n+1} = 1 \),
3. if \(a_n = 0 \), then there exists an integer \(k > 0 \) such that \(b_{n+2k} = 0 \),
4. if \(a_n = b_n \), then there exists an integer \(k > 0 \) such that \(a_{n+k} \neq b_{n+k} \).

Then, there exists \((x, y) \in X \cap \Psi \) such that \(a_n = a_n(x) \) and \(b_n = b_n(x, y) \).

PROOF. We define \(\Delta_{m,n} \) for integers \(m \) and \(n \) with \(m > 0 \) and \(m \geq n \geq 0 \) as follows:
\[
\pi_{m,n} = \begin{cases}
\{(x, y) \in [0, 1]^2 \mid \frac{1}{m+1} \leq x \leq \frac{1}{m}, (n-1)x \leq y \leq nx\} & \text{if } n \geq 1, \\
\{(x, y) \in [0, 1]^2 \mid \frac{1}{m} \leq x \leq \frac{1}{m}, y \geq mx\} & \text{if } m \geq n \text{ and } n = 0.
\end{cases}
\]

We define transformation \(T(a, b) \) on \(\mathbb{R}^2 \) for integers \(a, b \) with \(a > 0 \) and \(a \geq b \geq 0 \) as follows:
\[
T(a, b)(x, y) = \begin{cases}
\left(\frac{1}{x} - a, b - \frac{y}{x}\right) & \text{if } b > 0, \\
\left(\frac{1}{x} - a, \frac{1}{x}\right) & \text{if } b = 0.
\end{cases}
\]

Similarly, we define transformation \(F(a, b) \) on \(\mathbb{R}^2 \) for integers \(a, b \) with \(a > 0 \) and \(a \geq b \geq 0 \) as follows:
Lemma 2.9. We see that for large T, we have $T^{m-1} = T^{m-1}$. Further, we have $T^{m-1} = T^{m-1}(u_n, v_n) = (a_m', b_m')$ for $n > 0$ and $a_m' = a_m' + 1 = b_m'$. Since $T^{m-1} = T^{m-1}(u_n, v_n) = (a_m', b_m')$, we obtain $T^{m-1} = T^{m-1}(u_n, v_n) = (a_m' + 1, 1)$ as $i \to \infty$. Then, we have $b_m' = 1$. By the induction, we see that $b_m' = 1$ for any $m > 0$. But it contradicts the condition of $\{b_n\}_{n=1,2,...}$. Secondly, we suppose that $b_m' = 0$. Since $T^{m-1}(u_n, v_n) = (a_m', b_m'a_m')$, we see that $T^{m-1}(u_n, v_n) = (a_m' + 1, a_m')$ and $b_m' = 1$. Then, we see easily that $T^{m-1}(u_n, v_n) = (a_m' + 2, 0)$ as $i \to \infty$. By the induction, we see that $b_m' = 1$ for any $m > 0$ and $a_m' + 2 = 0$ for any odd $j > 0$. But it contradicts the condition of $\{b_n\}_{n=1,2,...}$. Therefore, $b_m' = b_n$ for any integer $n > 0$. From Lemma 2.9 we see $(\alpha, \beta) \in \Pi$. Thus, we have Lemma.

\[F(a,b)(x,y) = \begin{cases} \frac{b-y}{x+a}, & \text{if } b > 0, \\ \frac{1-y}{x+a}, & \text{if } b = 0. \end{cases}\]

We can easily check $F(a,b) \circ T(a,b) = T(a,b) \circ F(a,b) = \text{identity map.}$

We define $Y = \{(x,y) \in X \mid y \leq x\}. \quad$ Then, we see that if $b > 0$, then $\pi_{a,b} = F(a,b)(X)$ and $F(a,b) : X \to \pi_{a,b}$ is bijective and if $b = 0$, then $\pi_{a,b} = F(a,b)(Y)$ and $F(a,b) : Y \to \pi_{a,b}$ is bijective. Noting that $F(a,1)(X) \subset Y$, we see that if $b > 0$, then $F(a_{b_1}) \cdots F(a_{b_{-1}}, b_{n-1}) F(a_{b_n}) X$ is included in X and it become a quadrangle with inner points. Similarly, we get that if $b = 0$, then $F(a_{b_1}) \cdots F(a_{b_{-1}}, b_{n-1}) F(a_{b_n}) Y$ is included in X and it become a triangle with inner points. If $b > 0$, let (u_n, v_n) be an inner point in $F(a_{b_1}) \cdots F(a_{b_{-1}}, b_{n-1}) F(a_{b_n}) X$ and $F(a_{b_1}) \cdots F(a_{b_{-1}}, b_{n-1}) F(a_{b_n}) Y$. It is not difficult to see that $a_k(u_n) = a_k$ and $b_k(u_n, v_n) = b_k$ for $k = 1, 2, \ldots, n$. Since X is compact, there exist an increasing integral sequence $\{n_i\}$ and $(\alpha, \beta) \in X$ such that $(u_n, v_n) \to (\alpha, \beta)$ as $i \to \infty$. Let $(\alpha_n, \beta_n) = T^{n-1}(\alpha, \beta)$. By continued fraction theory $a_k(\alpha) = a_k$ for any integer $k > 0$. We suppose that there exists an integer $m > 0$ such that $b_m(\alpha, \beta) \neq b_m$. Let $m' > 0$ be an integer such that $b_m'(\alpha, \beta) \neq b_m'$. And for any $0 < k < m'$, $b_k(\alpha, \beta) = b_k$. Then, we have $T^{m'-1}(u_n, v_n) \to (\alpha_m', b_m')$ as $i \to \infty$. On the other hand, we see that for large i $T^{m'-1}(u_n, v_n) \in \pi_{a_m', b_m'}$. Therefore, (α_m', b_m') is in the boundary set of $\pi_{a_m', b_m'}$. Therefore, we see easily that $b(\alpha_m', b_m') = b(\alpha_m', b_m')
eq 0$ (see Figure 2.2). Further more, if $b(\alpha_m', b_m') < a(\alpha_m', b_m')$, then we have $b(\alpha_m', b_m') + 1 = b_m'$ and if $b(\alpha_m', b_m') = a(\alpha_m', b_m')$, then we have $b_m' = 0$. First, we suppose that $b(\alpha_m', b_m') + 1 = b_m'$. Since $T^{m'-1}(u_n, v_n) \to (\alpha_m', b(\alpha_m', b_m') a_m')$, we obtain $T^{m'}(u_n, v_n) \to (a_m', b_m')$ as $i \to \infty$. Then, we have $b_m' = 1$. By the induction we see that $b_m' = 1$ for any even $m > 0$ and $b_m' + 1$ for any odd $m > 0$. But it contradicts the condition of $\{b_n\}_{n=1,2,...}$. Secondly, we suppose that $b_m' = 0$. Since $T^{m'-1}(u_n, v_n) \to (\alpha_m', b_m'a_m')$ as $i \to \infty$, we see that $T^{m'}(u_n, v_n) \to (\alpha_m' + 1, a_m')$ and $b_m' = 1$. Then, we see easily that $T^{m'}(u_n, v_n) \to (\alpha_m' + 2, 0)$ as $i \to \infty$. By the induction, we see that $b_m' = 1$ for any even $m > 0$ and $\alpha_m' + 2 = 0$ for any odd $m > 0$. But it contradicts the condition of $\{b_n\}_{n=1,2,...}$. Therefore, $b_n(\alpha, \beta) = b_n$ for any integer $n > 0$. From Lemma 2.9 we see $(\alpha, \beta) \in \Pi$. Thus, we have Lemma. \[\square\]

Lemma 2.11. Let $(x,y) \in X$ and $x \notin \mathbb{Q}$. Then,
\begin{enumerate}
\item $b_n(x,y) \geq 0$ for any $n > 0$ and $A_n(x,y) \geq 0$ for any $n > 1$,
\end{enumerate}
(2) \(\limsup_{n \to \infty} B_n(x, y) = \infty \) and \(\limsup_{n \to \infty} A_n(x, y) = \infty \).

(3) If \((x, y) \in \Psi \), then \(\lim_{n \to \infty} B_n(x, y) = \infty \) and \(\lim_{n \to \infty} A_n(x, y) = \infty \).

Proof of (1). We suppose that \(B_n(x, y) < 0 \) for some integer \(n > 0 \). Without loss of generality we suppose that \(B_j(x, y) \geq 0 \) for any integer \(0 < j < n \). \(B_1(x, y) \geq 0 \) implies \(n > 1 \). From the fact that \(B_{n-1}(x, y) \geq 0 \) and \(B_n(x, y) < 0 \) we see \(b_n(x, y) = 0 \). Then, we have \(B_n(x, y) = B_{n-1}(x, y) - q_{n-2}(x) \). By Lemma 2.2 we have \(b_{n-1}(x, y) > 0 \). If \(n - 1 > 1 \), then we have \(B_{n-1}(x, y) - q_{n-2}(x) = B_{n-2}(x, y) + (b_{n-1}(x, y) - 1)q_{n-2}(x) \geq 0 \). But it is a contradiction. If \(n - 1 = 1 \), then we have \(B_{n-1}(x, y) - q_{n-2}(x) = b_1(x, y) - 1 \geq 0 \). But it is a contradiction. Similarly, we see \(A_n(x, y) \geq 0 \) for any \(n > 1 \).

Proof of (2). First, we are proving that \(B_{n+2}(x, y) \geq B_n(x, y) \) for any \(n \geq 1 \) and equation holds iff \(b_{n+1}(x, y) = 1 \) and \(b_{n+2}(x, y) = 0 \). If \(b_{n+1}(x, y) > 0 \) and \(b_{n+2}(x, y) > 0 \), then the proof is easy. We suppose that \(b_{n+1}(x, y) = 0 \) and \(b_{n+2}(x, y) = 1 \). Then, we have \(B_{n+1}(x, y) = B_n(x, y) - q_{n-1}(x) \) and \(B_{n+2}(x, y) = B_{n+1}(x, y) + b_{n+2}(x, y)q_{n+1}(x) \). Therefore, we have \(B_{n+2}(x, y) > B_n(x, y) \). Next, we suppose that \(b_{n+1}(x, y) > 0 \) and \(b_{n+2}(x, y) = 0 \). Then, we have \(B_{n+1}(x, y) = B_n(x, y) + b_{n+1}(x, y)q_n(x) \) and \(B_{n+2}(x, y) = B_{n+1}(x, y) - q_n(x) \). Therefore, we see \(B_{n+2}(x, y) - B_n(x, y) = (b_{n+1}(x, y) - 1)q_n(x) \), which implies that \(B_{n+2}(x, y) \geq B_n(x, y) \) and the equation holds iff \(b_{n+1}(x, y) = 1 \). Therefore, we see that \(\lim_{n \to \infty} B_{2n}(x, y) < \infty \) iff there exists some integer \(m > 0 \) such that for any \(n > m \) \(b_{2n}(x, y) = 0 \) and \(b_{2n-1}(x, y) = 1 \). We suppose that for some integer \(m > 0 \) for any \(n > m \) \(b_{2n}(x, y) = 0 \) and \(b_{2n-1}(x, y) = 1 \). Then, we obtain \(\lim_{n \to \infty} B_{2n+1}(x, y) = \infty \). Thus we have the proof of (2).

Proof of (3). From the proof of (2) we see that \(\lim_{n \to \infty} B_{2n}(x, y) < \infty \) iff there exists some integer \(m > 0 \) such that for any \(n > m \) \(b_{2n}(x, y) = 1 \) and \(b_{2n-1}(x, y) = 0 \). By Lemma 2.6 we see that \(\lim_{n \to \infty} B_{2n}(x, y) = \infty \). Similarly, we have \(\lim_{n \to \infty} B_{2n+1}(x, y) = \infty \). Thus, we have \(\lim_{n \to \infty} B_n(x, y) = \infty \). Similarly, we have \(\lim_{n \to \infty} A_n(x, y) = \infty \).

Lemma 2.12. Let \((x, y) \in X \cap \Psi \). For any integer \(n \geq 1 \), \(|B_n(x, y)x - A_n(x, y) - y| \geq |B_{n+2}(x, y)x - A_{n+2}(x, y) - y| \). The equation holds if and only if \(b_{n+2}(x, y) = 0 \) and \(b_{n+1}(x, y) = 1 \) \((B_n(x, y) = B_{n+2}(x, y)) \).

Proof. First, we suppose that \(b_{n+1}(x, y) \geq 1 \). We also suppose that \(n \) is odd. From Lemma 2.1 and Lemma 2.3, we have

\[
B_{n+1}(x, y)x - A_{n+1}(x, y) < y < B_{n+1}(x, y)x - A_{n+1}(x, y) - (q_n(x)x - p_n(x)) \\
\leq B_n(x, y)x - A_n(x, y).
\]
We suppose $b_{n+2}(x, y) = 0$. Then, since $B_{n+2}(x, y)x - A_{n+2}(x, y) = B_{n+1}(x, y)x - A_{n+1}(x, y) - (q_n(x) - p_n(x))$, by (2) we get $y < B_{n+2}(x, y)x - A_{n+2}(x, y) \leq B_n(x, y)x - A_n(x, y)$, which follows the lemma. We remark that $B_{n+1}(x, y)x - A_{n+1}(x, y) - (q_n(x) - p_n(x)) = B_n(x, y)x - A_n(x, y)$ if and only if $b_{n+1}(x, y) = 1$. We suppose $b_{n+2}(x, y) > 0$. Then, from Lemma 2.1 and Lemma 2.3, we have $0 < b_{n+2}(x, y)(q_{n+1}(x)x - p_{n+1}(x)) < -(q_n(x) - p_n(x))$. Therefore, we get

$$B_{n+2}(x, y)x - A_{n+2}(x, y) < B_{n+1}(x, y)x - A_{n+1}(x, y) - (q_n(x) - p_n(x))$$

$$\leq B_n(x, y)x - A_n(x, y),$$

which implies Lemma. We can prove similarly in the case of even n. Next, we suppose that $b_{n+1}(x, y) = 0$. Then, from Lemma 2.1 and Lemma 2.3, we have

$$B_{n+1}(x, y)x - A_{n+1}(x, y) < y < B_{n+1}(x, y)x - A_{n+1}(x, y) + (q_n(x) - p_n(x))$$

$$= B_n(x, y)x - A_n(x, y).$$

Using $b_{n+2}(x, y) = 1$, we get $B_{n+2}(x, y)x - A_{n+2}(x, y) = B_{n+1}(x, y)x - A_{n+1}(x, y) + (q_{n+1}(x) - p_{n+1}(x)) < B_n(x, y)x - A_n(x, y)$, which implies Lemma. We can prove similarly in the case of even n. □

Lemma 2.13. Let $(x, y) \in X \cap \Psi$. If $n > 0$ is odd, then $B_n(x, y)x - A_n(x, y) - y > 0$ and for any integers m, j with $0 < m < B_n(x, y)$, if $mx - j - y > 0$, then

$$B_n(x, y)x - A_n(x, y) - y < mx - j - y.$$

If $n > 0$ is even, then $B_n(x, y)x - A_n(x, y) - y < 0$ and for any integers m, j with $0 < m < B_n(x, y)$, if $mx - y - j < 0$, then

$$B_n(x, y)x - A_n(x, y) - y > mx - y - j.$$

Proof. We are proving the lemma by using the induction on n. Let $n = 1$. From Lemma 2.3 we have $B_1(x, y)x - A_1(x, y) - y = x_1y_2 > 0$. We suppose that there exist integers m, k with $0 < m < B_1(x, y)$ such that $mx - j - y > 0$ and $B_1(x, y)x - A_1(x, y) - y \geq mx - j - y$. Let $b_1(x, y) = 0$. Then, from the fact $B_1(x, y) = 0$ we have a contradiction. Let $b_1(x, y) > 0$. Then, we have $B_1(x, y) = b_1(x, y)$ and $A_1(x, y) = 0$. We see that $mx - y = B_1(x, y)x - y + (m - B_1(x, y))x = x_1y_2 + (m - B_1(x, y))x < 0$. Therefore, $mx - j - y > 0$ implies $j < 0$. On the other hand, we have $B_1(x, y)x - mx = y + x_1y_2 - mx < 1$. By the assumption, we see $0 < B_1(x, y)x - y - (mx - j - y) = B_1(x, y)x - mx + j$. On the other hand, $B_1(x, y)x - mx < 1$ and $j < 0$ implies $B_1(x, y)x - mx + j < 0$. This is a contradiction. Thus we have the proof for $n = 1$. We suppose that the lemma
holds for any \(n \) with \(1 \leq n \leq k \). Let \(n = k + 1 \). We suppose that \(k + 1 \) is odd. From Lemma 2.3 we have \(B_{k+1}(x, y)x - A_{k+1}(x, y) - y > 0 \). We suppose that there exist integers \(m, j \) with \(0 < m < B_{k+1}(x, y) \) such that \(B_{k+1}(x, y)x - A_{k+1}(x, y) - y > mx - j - y > 0 \). We suppose \(b_{k+1}(x, y) > 0 \). First, we suppose \(m \geq B_k(x, y) \). Since \(B_{k+1}(x, y) - m \leq B_{k+1}(x, y) - B_k(x, y) = b_{k+1}(x, y)q_k(x) < q_{k+1}(x) \), from Lemma 2.1 we obtain \(|(B_{k+1}(x, y) - m)x - A_{k+1}(x, y) + j| \geq |q_k(x)x - p_k(x)| \). On the other hand, by using Lemma 2.3 we have

\[
|(B_{k+1}(x, y) - m)x - A_{k+1}(x, y) + j|
= B_{k+1}(x, y)x - A_{k+1}(x, y) - y - (mx - j - y)
< B_{k+1}(x, y)x - A_{k+1}(x, y) - y < |q_k(x)x - p_k(x)|.
\]

But it is a contradiction. Secondly, we suppose \(m < B_k(x, y) \). If \(m \leq B_{k-1}(x, y) \), using Lemma 2.12 we have a contradiction from the assumption of the induction. Therefore, we have \(m > B_{k-1}(x, y) \). We suppose \(b_k(x, y) > 0 \). Since \(B_k(x, y) - m \leq B_k(x, y) - B_{k-1}(x, y) = b_k(x, y)q_{k-1}(x) < q_k(x) \), from Lemma 2.1 we have \(|(B_k(x, y) - m)x - A_k(x, y) + j| \geq |q_{k-1}(x)x - p_{k-1}(x)| \). On the other hand, we obtain

\[
|(B_k(x, y) - m)x - A_k(x, y) + j|
= mx - j - y - (B_k(x, y)x - A_k(x, y) - y)
< B_{k+1}(x, y)x - A_{k+1}(x, y) - y - (B_k(x, y)x - A_k(x, y) - y)
= b_{k+1}(x, y)|q_k(x)x - p_k(x)|.
\]

From Lemma 2.1 we have \(b_{k+1}(x, y)|q_k(x)x - p_k(x)| < |q_{k-1}(x)x - p_{k-1}(x)| \). But it is a contradiction. Next, we suppose \(b_k(x, y) = 0 \). Then, since \(B_{k-1}(x, y) > B_k(x, y) \), the fact \(m > B_{k-1}(x, y) \) contradicts the assumption \(m < B_k(x, y) \). Secondly, we suppose \(b_{k+1}(x, y) = 0 \). If \(m \leq B_{k-1}(x, y) \), then it contradicts the assumption of the induction. Therefore, we have \(m > B_{k-1}(x, y) \) by using Lemma 2.12. Since \(B_{k+1}(x, y) - m < B_{k+1}(x, y) - B_{k-1}(x, y) = (b_k(x, y) - 1)q_{k-1}(x) < q_k(x) \), by using Lemma 2.1 we have \(|(B_{k+1}(x, y) - m)x - A_k(x, y) + j| \geq |q_{k-1}(x)x - p_{k-1}(x)| \). On the other hand, we see

\[
|(B_{k+1}(x, y) - m)x - A_k(x, y) + j|
= B_{k+1}(x, y)x - A_{k+1}(x, y) - y - (mx - j - y)
< B_{k+1}(x, y)x - A_{k+1}(x, y) - y - (B_k(x, y)x - A_k(x, y) - y)
= |q_{k-1}(x)x - p_{k-1}(x)|.
\]
But it is a contradiction. For even \(k + 1 \) we have a proof similarly. Therefore, we have the proof for \(n = k + 1 \). Thus, we obtain the lemma.

\[\square \]

Lemma 2.14. Let \((x, y) \in X \cap \Psi\). Let \(n > 0 \) be an integer. Then, \(B_n(x, y) \leq q_n(x) + q_{n-1}(x) \). If \(b_n(x, y) > 0 \), then \(B_n(x, y) \geq q_{n-1}(x) \). If \(b_n(x, y) = 0 \), then \(B_n(x, y) \leq q_{n-1}(x) \). Furthermore,

\[\lim_{n \to \infty} \frac{(B_n(x, y) - q_{n-1}(x))}{b_n(x, y)} = \infty. \]

Proof. Let \(n > 0 \) be an integer. Using the induction on \(n \) it is not difficult to see that \(B_n(x, y) \leq q_n(x) + q_{n-1}(x) \). We suppose \(b_n(x, y) > 0 \). Then, we have \(B_n(x, y) - q_{n-1}(x) = B_{n-1}(x, y) + (b_n(x, y) - 1)q_{n-1}(x) \geq B_{n-1}(x, y) \). Therefore, using Lemma 2.11, we have \(B_n(x, y) - q_{n-1}(x) \geq 0 \) and

\[\lim_{n \to \infty} \frac{(B_n(x, y) - q_{n-1}(x))}{b_n(x, y)} = \infty. \]

Let \(n > 0 \) be an integer with \(b_n(x, y) = 0 \). If \(n = 1 \), then we see easily \(B_n(x, y) \leq q_{n-1}(x) \). Let \(n > 1 \). Then, we have \(B_n(x, y) = B_{n-1}(x, y) - q_{n-2}(x) \leq q_{n-1}(x) \).

Following Theorem is a analogous to the result by Komatsu [14].

Theorem 2.15. Let \((x, y) \in X \cap \Psi\).

\[\liminf_{q \to \infty} q\|qx - y\| \]

\[= \liminf_{n \to \infty} \min_{\tau} \{ B_n(x, y) | B_n(x, y)x - A_n(x, y) - y | \}, \]

\[\tau(B_n(x, y) - q_{n-1}(x))(B_n(x, y) - q_{n-1}(x))x - (A_n(x, y) - p_{n-1}(x)) - y | \}, \]

where \(q \in \mathbb{Z} \) and for \(z \in \mathbb{R} \) \(\|z\| = \min \{|z - m| \mid m \in \mathbb{Z} \} \) and \(\tau(u) = u \) for \(u > 0 \) and \(\tau(u) = \infty \) for \(u \leq 0 \).

Proof. We are proving that for each \(n > 1 \) with \(b_n > 0 \) if for an integer \(q \) \(B_{n-1}(x, y) < q < B_n(x, y) \), then

\[q\|qx - y\| \]

\[\geq \min_{j=n, n-1} \{ B_j(x, y) | B_j(x, y)x - A_j(x, y) - y | \}, \]

\[\tau(B_j(x, y) - q_{j-1}(x))(B_j(x, y) - q_{j-1}(x))x - (A_{j-1}(x, y) - p_j(x)) - y | \}. \]
It follows Theorem 2.15. Let $n > 1$ and $b_n(x, y) > 0$. Let $B_{n-1}(x, y) < q < B_n(x, y)$. We suppose that n is odd. If $qx - q' < B_{n-1}(x, y)x - A_{n-1}(x, y)$ for an integer q', then from Lemma 2.3 we have $|q(qx - q' - y)| > |B_{n-1}(x, y)(B_{n-1}(x, y)x - A_{n-1}(x, y) - y)|$. We suppose that $B_{n-1}(x, y)x - A_{n-1}(x, y) < qx - q' < B_n(x, y)x - A_n(x, y)$ for an integer q'. From Lemma 2.13, we have $qx - q' < y$. Since $B_n(x, y)x - A_n(x, y) = B_{n-1}(x, y)(q_{n-1}(x)x - p_{n-1}(x))$, there exists an integer j such that $0 \leq j < b_n(x, y)$ and

$$j(q_{n-1}(x)x - p_{n-1}(x)) \leq qx - q' - (B_{n-1}(x, y)x - A_{n-1}(x, y))$$

$$< (j + 1)(q_{n-1}(x)x - p_{n-1}(x)).$$

Then, we have $|(q - B_{n-1}(x, y) - jq_{n-1}(x))x - q' + A_{n-1}(x, y) + jp_{n-1}(x)| < |B_{n-1}(x, y)x - p_{n-1}(x)|$. On the other hand, we have $|q - B_{n-1}(x, y) - jq_{n-1}(x)| < b_n(x, y)q_{n-1}(x) < q_n(x)$. Using Lemma 2.1 we have $q - B_{n-1}(x, y) - jq_{n-1}(x) = 0$. We see easily that $q' - A_{n-1}(x, y) - jp_{n-1}(x) = 0$. Then, we have

$$q|qx - q' - y| = (B_{n-1}(x, y) + jq_{n-1}(x))(|B_{n-1}(x, y) + jq_{n-1}(x)|x$$

$$- (A_{n-1}(x, y) + jp_{n-1}(x)) - y|$$

$$\geq \min_{0 \leq l \leq b_n(x, y) - 1} \{(B_{n-1}(x, y) + lj_{n-1}(x))(B_{n-1}(x, y) + lj_{n-1}(x))x$$

$$- (A_{n-1}(x, y) + lj_{n-1}(x)) - y|\}.$$
\[q|qx - q' - y| \geq \min \{ B_{n-1}(x, y)|B_{n-1}(x, y)x - A_{n-1}(x, y) - y|, \]
\[(B_n(x, y) - q_{n-1}(x))(B_n(x, y) - q_{n-1}(x))x - (A_n(x, y) - p_{n-1}(x)) - y|}. \]

We suppose that \(B_n(x, y)x - A_n(x, y) < qx - q' \) for an integer \(q' \). We consider the case of \(b_{n-1}(x, y) > 0 \). We suppose \(B_n(x, y)x - A_n(x, y) - (q_{n-2}(x)x - p_{n-2}(x)) \leq qx - q' \). Then, we have \(y < B_{n-1}(x, y)x - A_{n-1}(x, y) - (q_{n-2}(x)x - p_{n-2}(x)) \leq qx - q' \). Therefore, noting \(B_{n-1}(x, y) - p_{n-2}(x) \geq 0 \) from Lemma 2.14, we have
\[q|qx - q' - y| \geq (B_{n-1}(x, y) - q_{n-2}(x)) \times |(B_{n-1}(x, y) - q_{n-2}(x))x - (A_{n-1}(x, y) - p_{n-2}(x)) - y|. \]

Next, we suppose \(B_n(x, y)x - A_n - (q_{n-2}(x)x - p_{n-2}(x)) > qx - q' \). Then, we have \(0 < qx - q' - (B_n(x, y)x - A_n(x, y)) < -(q_{n-2}(x)x - p_{n-2}(x)) \). Noting \(0 < B_n(x, y) - q < b_n(x, y)q_{n-1}(x) \), similarly to the previous argument, we see that there exists an integer \(j' \) such that \(0 \leq j' < b_n(x, y) \) and \((B_n(x, y)x - A_n(x, y)) - (qx - q') = q_{n-2}(x)x - p_{n-2}(x) + j'(q_{n-1}(x)x - p_{n-1}(x)) \). Therefore, we have
\[qx - q' = B_n(x, y)x - A_n(x, y) - (q_{n-2}(x)x - p_{n-2}(x)) - j'(q_{n-1}(x)x - p_{n-1}(x)) \]
\[= B_{n-1}(x, y)x - A_{n-1}(x, y) - (q_{n-2}(x)x - p_{n-2}(x)) \]
\[+ (b_n(x) - j')(q_{n-1}(x)x - p_{n-1}(x)). \]

Using (5) and \(B_{n-1}(x, y)x - A_{n-1}(x, y) - q_{n-2}(x)x - p_{n-2}(x) > y \), we see \(0 < B_{n-1}(x, y)x - A_{n-1}(x, y) - (q_{n-2}(x)x - p_{n-2}(x)) - y < qx - q' - y \). Therefore,
\[q|qx - q' - y| > (B_{n-1}(x, y) - q_{n-2}(x)) \times |B_{n-1}(x, y)x - A_{n-1}(x, y) - (q_{n-2}(x)x - p_{n-2}(x)) - y|. \]

We consider the case of \(b_{n-1}(x, y) = 0 \). We suppose that \(B_n(x, y)x - A_n(x, y) - (q_{n-2}(x)x - p_{n-2}(x)) \leq qx - q' \). Since \(B_n(x, y)x - A_n(x, y) - (b_{n-1}(x, y)x - A_{n-1}(x, y)) = q_{n-1}(x)x - p_{n-1}(x) \), we have \(0 < y - (B_{n-1}(x, y)x - A_{n-1}(x, y)) < q_{n-1}(x)x - p_{n-1}(x) \). On the other hand, we obtain \(qx - q' - y > qx - q' - (B_n(x, y)x - A_n(x, y)) \geq -(q_{n-2}(x)x - p_{n-2}(x)) \). Therefore, \(q|qx - q' - y| > B_{n-1}(x, y)|B_{n-1}(x, y)x - A_{n-1}(x, y) - y| \). Secondly, we suppose \(B_n(x, y)x - A_n(x, y) - (q_{n-2}(x)x - p_{n-2}(x)) > qx - q' \). Then, \(0 < qx - q' - (B_n(x, y)x - A_n(x, y)) < -(q_{n-2}(x)x - p_{n-2}(x)) \). Using \(0 < B_n(x, y) - q < q_{n-1}(x) \) and Lemma
2.1, we have a contradiction. Therefore, we have the inequality (4). Thus, we have Lemma.

Lemma 2.16. Let \((x, y) \in X \cap \Psi\). For any integer \(n > 0\),

\[
\liminf_{q \to \infty} q\|qx - y\| = \liminf_{q \to \infty} q\|qx_n - y_n\|,
\]

where \((x_n, y_n) = T^{-1}(x, y)\).

Proof. We are proving that \(\liminf_{q \to \infty} q\|qx - y\| = \liminf_{q \to \infty} q\|qx_2 - y_2\|\). It follows the lemma. Let \(e = \liminf_{q \to \infty} q\|qx - y\|\) and \(f = \liminf_{q \to \infty} q\|qx_2 - y_2\|\). Then, there exist an increasing positive integral sequences \(\{p'_k\}_{k=1,2,\ldots}\) and \(\{q'_k\}_{k=1,2,\ldots}\) such that \(f = \liminf_{k \to \infty} q'_k|q'_kx_2 - y_2 - p'_k|\). We suppose that \(b_1(x, y) > 0\). Then, for \(k > 0\) we have

\[
q'_k|q'_kx_2 - y_2 - p'_k| = q'_k\left|q'_k\left(\frac{1}{x_1} - a_1(x)\right) - \left(b_1(x, y) - \frac{y_1}{x_1}\right) - p'_k\right|
\]

\[
= q'_k\left|\left(q'_ka_1(x) + p'_k + b_1(x, y)\right)x_1 - y_1 - q'_k\right|
\]

\[
= (q'_ka_1(x) + p'_k + b_1(x, y))(q'_ka_1(x) + p'_k + b_1(x, y))x_1 - y_1 - q'_k
\]

\[
q'_k\left(\frac{q'_k}{x_1} - \frac{q'_k}{x_1}a_1(x) + p'_k + b_1(x, y)\right).
\]

Since \(\frac{p'_k}{q'_k} \to x_2\) as \(k \to \infty\), we see that \(\lim_{k \to \infty} x_1(q'_ka_1(x) + p'_k + b_1(x, y)) = \lim_{k \to \infty} \frac{q'_k}{x_1}a_1(x) + \frac{p'_k}{q'_k} + \frac{b_1(x, y)}{q'_k} = 1\). Thus, \(e \leq f\). If \(b_1(x, y) = 0\), we have \(e \leq f\) by the same manner. Similarly, we have \(e \geq f\). Thus, we have the lemma.

3. Natural Extension

\(\mathbb{Z}^+\) denotes the set of all positive integers. We define \(\Omega_1\), \(\Omega_2\), \(\Omega'_1\) and \(\Omega'_2\) as follows:

\[
\Omega_1 = \{(x, y) \in [0, 1]^2 \mid (x, y) \in \Psi, y \leq x\},
\]

\[
\Omega_2 = \{(x, y) \in [0, 1]^2 \mid (x, y) \in \Psi, y > x\},
\]

\[
\Omega'_1 = \{(x, y) \mid (x, y) \in \Psi, y > 1, x \leq -1, y \leq -x + 1\},
\]

\[
\Omega'_2 = \{(x, y) \mid (x, y) \in \Psi, 0 \leq y \leq 1, x \leq -1\}.
\]
Let \(\Omega = \{ \Omega_1 \times (\Omega'_1 \cup \Omega'_2) \} \cup (\Omega_2 \times \Omega'_1) \).

We define a transformation \(\bar{T} \) on \(\Omega \) as follows: for \((x, y, z, w) \in \Omega\)

\[
\bar{T}(x, y, z, w) = \begin{cases}
\left(\frac{1}{x} - a(x), b(x, y) - \frac{y}{z}, a(x), b(z, w) - \frac{w}{z} \right) & \text{if } b(x, y) > 0, \\
\left(\frac{1}{x} - a(x), \frac{1}{z} - \frac{y}{z}, \frac{1}{z} - a(x), \frac{1}{z} - \frac{w}{z} \right) & \text{if } b(x, y) = 0.
\end{cases}
\]

We see easily that \(\bar{T} \) is well defined.

Theorem 3. \(\bar{T} \) is bijective.

Proof. We define \(\Delta_{m,n} \) for \(m \in \mathbb{Z}_+ \) and \(n \in \mathbb{Z}_+ \cup \{0\} \) with \(m \geq n \) as follows;

\[
\Delta_{m,n} = \begin{cases}
\{(x, y) \in X \cap \Psi \mid \frac{1}{m+1} < x < \frac{1}{m}, (n-1)x < y < nx \} & \text{if } n \geq 1, \\
\{(x, y) \in X \cap \Psi \mid \frac{1}{m+1} < x < \frac{1}{m}, y > mx \} & \text{if } m \geq n \text{ and } n = 0.
\end{cases}
\]

Then, we see easily that \(T : \Delta_{m,n} \to X \cap \Psi \) is bijective for \(n > 0 \) and \(T : \Delta_{m,0} \to \Omega_1 \) is bijective. We define \(\Delta'_{m,n} \) for \(m \in \mathbb{Z}_+ \) and \(n \in \mathbb{Z}_+ \cup \{0\} \) with \(m \geq n \) as follows; if \(n = 1 \), then we see \(\Delta'_{m,n} = \{(x, y) \in \Omega'_1 \mid -(m + 1) < x < -m, 1 < y < -x + m + 2 \} \) and if \(n > 1 \), then we see \(\Delta'_{m,n} = \{(x, y) \in \Omega'_1 \mid -(m + 1) < x < -m, -x - m + n < y < -x - m + n + 1 \} \) and if \(n = 0 \), then we see \(\Delta'_{m,n} = \{(x, y) \in \Omega'_2 \mid -(m + 1) < x < -m \} \).

We see that for \(m \in \mathbb{Z}_+ \) and \(n \in \mathbb{Z}_+ \cup \{0\} \) with \(m \geq n \) and \(n \neq 1 \) \((T_{(m,n)})_{\Omega_1} \Omega'_1 \to \Delta'_{m,n} \) is bijective and \((T_{(m,1)})_{\Omega_1} \Omega'_1 \cup \Omega'_2 \to \Delta'_{m,1} \) is bijective, where \(T_{(m,n)} \) is defined in Section 2. On the other hand, we have
On a New Algorithm for Inhomogeneous Diophantine Approximation

\[\Omega = \bigcup_{(m,n) \in \mathbb{Z}_+ \times \mathbb{Z}_+, m \geq n, n \neq 1} \Delta_{m,n} \times \Omega_1' \bigcup_{m \in \mathbb{Z}_+} \Delta_{m,1} \times (\Omega_1' \cup \Omega_2') \quad \text{(disjoint)} \]

\[= \bigcup_{(m,n) \in \mathbb{Z}_+ \times \mathbb{Z}_+, m \geq n, n \neq 1} (X \cap \Psi) \times \Delta_{m,n}' \bigcup_{m \in \mathbb{Z}_+} (X \cap \Psi) \times (\Delta_{m,1}') \quad \text{(disjoint)} \]

We see that \(\tilde{T}_{\Delta_{m,n} \times \Omega_1} \Delta_{m,n} \times \Omega_1' \rightarrow (X \cap \Psi) \times \Delta_{m,n}' \) is bijective for \((m,n) \in \mathbb{Z}_+ \times \mathbb{Z}_+ \) with \(n \neq 1 \) and \(\tilde{T}_{\Delta_{m,1} \times (\Omega_1' \cup \Omega_2')} \Delta_{m,1} \times (\Omega_1' \cup \Omega_2') \rightarrow (X \cap \Psi) \times \Delta_{m,1}' \) for \(m \in \mathbb{Z}_+ \) is bijective and \(\tilde{T}_{\Delta_{m,0} \times \Omega_1'} \Delta_{m,0} \times \Omega_1' \rightarrow \Omega_1 \times \Delta_{m,0}' \) is bijective for \(m \in \mathbb{Z}_+ \). Therefore, \(\tilde{T} \) is bijective.

Following Lemma 3.2 is easily proved.

Lemma 3.2. Let \(K \) be a real quadratic field over \(\mathbb{Q} \). Let \((x, y) \in K^2 \cap X \cap \Psi \). Then, if \((x, y, \bar{x}, \bar{y}) \in \Omega \), then \((T(x, y), \overline{\mathcal{T}(x, y)}) = \tilde{T}(x, y, \bar{x}, \bar{y}) \), where for \(z \in K \) \(\overline{z} \) is the algebraic conjugate of \(z \) related to \(K/\mathbb{Q} \).

Komatsu [15] determine the all eventually periodic points in \((X, \mathcal{T}_2) \). Following Lemma is the similar result.
Lemma 3.3. Let \((x, y) \in X \cap \Psi\), \(x\) be a quadratic irrational number and \(y \in \mathbb{Q}(x)\). Then, \((x, y, \bar{x}, \bar{y})\) is an eventually periodic point related to \(\bar{T}\), where for \(z \in \mathbb{Q}(x)\) \(\bar{z}\) is an algebraic conjugate of \(z\) related to \(\mathbb{Q}(x)/\mathbb{Q}\).

Proof. Since \(y \in \mathbb{Q}(x)\), there exist \(r_n, s_n \in \mathbb{Q}\) such that \(y_n = r_n + s_n x_n\). Let \(d_n\) be the denominator of \(r_n, s_n\). By using induction, we see \(d_0 = d_n\) for all \(n\). From the well known fact about continued fraction of quadratic irrational numbers, there exists an integer \(m\) such that \(\{x_m, x_{m+1}, \ldots\}\) is purely periodic. It is known that \(\bar{x}_n < -1\) for each \(n \geq m\). We define a constant \(c_1\) by \(c_1 = \min\{|\bar{x}_n| \mid n \geq m\}\). Let \(c_2 = \max\{a_n(x) \mid n = 1, \ldots\}\). Let \(r = \frac{c_1(c_2 + 1)}{c_1 - 1}\). Then, if \(n > m\) and \(|\bar{y}_n| > r\), we have

\[
|\bar{y}_{n+1}| < c_2 + \frac{\bar{y}_n}{\bar{x}_n} < c_2 + \frac{\bar{y}_n}{c_1} = |\bar{y}_n| - \frac{|\bar{y}_n|(c_1 - 1)}{c_1} + c_2 < |\bar{y}_n| - 1.
\]

Therefore, there exists \(n_1\) such that \(n_1 > m\) and \(|\bar{y}_{n_1}| \leq r\). On the other hand, if \(n > m\) and \(|\bar{y}_n| \leq r\), then we have

\[
|\bar{y}_{n+1}| < c_2 + \frac{\bar{y}_n}{\bar{x}_n} < 2r.
\]

We suppose that \(\limsup_{n \to \infty} |\bar{y}_n| = \infty\). Let \(n_2 = \min\{k \mid k > n_1, |\bar{y}_k| > 3r\}\). We assume \(|\bar{y}_{n_2-1}| > r\). Then, we have \(|\bar{y}_n| < |\bar{y}_{n_2-1}| - 1\). Therefore, we have \(|\bar{y}_{n_2-1}| > 3r\). But it is a contradiction. Next, we assume \(|\bar{y}_{n_2-1}| \leq r\). Then, by using previous argument, we have \(|\bar{y}_{n_2}| \leq 3r\). But it is a contradiction. Thus, there exists \(c > 0\) such that \(|\bar{y}_n| < c\) for all \(n\). From the facts that \(|\bar{y}_n| < c\) and \(|\bar{y}_n| < 1\) for all \(n\), we see that there exits \(c_3\) such that \(|r_n|, |s_n| < c_3\) for all \(n\). Using the fact \(d_0 = d_n\) for all \(n\), we see that \(\{y_n \mid n = 0, 1, \ldots\}\) has finitely many numbers. Thus, \((x, y, \bar{x}, \bar{y})\) is an eventually periodic point related to \(T\).

Lemma 3.4. Let \((x, y) \in X \cap \Psi\), \(x\) be a quadratic irrational number and \(y \in \mathbb{Q}(x)\), where for \(z \in \mathbb{Q}(x)\) \(\bar{z}\) is an algebraic conjugate of \(z\) related to \(\mathbb{Q}(x)/\mathbb{Q}\). Then, there exists an integer \(n > 0\) such that \((x_n, y_{n+1}, \bar{x}_n, \bar{y}_n) \in \Omega\).

Proof. By Lemma 3.3 \(\{(x_n, y_n) \mid n = 0, 1, \ldots\}\) is eventually periodic. Therefore, there exist integers \(m_1, m_2 > 0\) such that for any \(n \geq m_1\) \((x_{n+m_2}, y_{n+m_2}) = (x_n, y_n)\). We define \(m_1\) as follows. If \(b_n > 0\) for any \(n \geq m_1\), then we set \(m_3 = m_1\). If there exists \(m' \geq m_1\) such that \(b_{m'}(x, y) = 0\), then we set \(m_3 = m'\). If for integers \(a, b\) \(b > 0\) and \(a \geq b\), then it is not difficult to see that \(T(a, b)(c(l(\Omega_1))) \subset \{(x, y) \in \Omega\}\).
On a New Algorithm for Inhomogeneous Diophantine Approximation

\[cl(\Omega_1' \backslash \{ -a - 1 \leq x \leq -a \}) \]

where \(cl(\Omega_1') \) is the closure of \(\Omega_1' \). Therefore, if \(b_n(x, y) > 0 \) for any \(n \geq m_1 \), then we have

\[
T_{(a_{m_3+m_2-1}(x), b_{m_3+m_2-1}(x, y))} \cdots T_{(a_{m_1}, b_{m_1}(x, y))} \eta \subseteq \eta,
\]

where \(\eta = \{ (x, y) \in cl(\Omega_1') \mid -a_{m_3+m_2-1}(x) - 1 \leq x \leq -a_{m_3+m_2-1}(x) \} \). It is not difficult to see that for integers \(a, a' \geq 1 \) \(T_{(a_1, 0)} cl(\Omega_1') \subseteq \{ (x, y) \in cl(\Omega_1') \mid -a - 1 \leq x \leq -a \} \). By lemma 2.2 \(m_2 > 1 \) and \(b_{m_3+m_2-1}(x, y) \neq 0 \). Thus, we have

\[
T_{(a_{m_3+m_2-1}(x), b_{m_3+m_2-1}(x, y))} \cdots T_{(a_{m_1}, b_{m_1}(x, y))} \eta \subseteq \eta.
\]

By Bronwell’s fixed point theorem there exists \((x', y') \in \{ (x, y) \in cl(\Omega_1') \mid -a_{m_3+m_2-1}(x) - 1 \leq x \leq -a_{m_3+m_2-1}(x) \} \) such that \(T_{(a_{m_3+m_2-1}(x), b_{m_3+m_2-1}(x, y))} \cdots T_{(a_{m_1}, b_{m_1}(x, y))} (x', y') = (x', y') \). We see easily that \((x', y') = (x_{m_3+m_2}, y_{m_3+m_2}) \). Therefore, we have \((x_{m_1}, y_{m_1}, x_{m_2}, y_{m_2}) \in \Omega \).

Lemma 3.5. Let \((x, y) \in X \cap \Psi \), \(x \) be a quadratic irrational number and \(y \in Q(x) \). Let \((x, y, x', y') \in \Omega \), where for \(z \in Q(x) \) \(z \) is an algebraic conjugate of \(z \) related to \(Q(x)/Q \). Then, \((x, y, x', y') \) is a purely periodic point related to \(\tilde{T} \).

Proof. By Lemma 3.3 there exist integers \(m, m_1 \geq 1 \) such that for any integer \(n > m \) \((x_n, y_n) = (x_{n+m_1}, y_{n+m_1}) \). Since \((x_1, y_1, x_1, y_1) \in \Omega \), by Lemma 3.2 we have \((x_n, y_{n}, x_{n}, y_{n}) \in \Omega \) for any integer \(n > 0 \). Since \(\tilde{T} \) is bijective on \(\Omega \), for each integer \(n > m \) we have \((x_{n-1}, y_{n-1}, x_{n-1}, y_{n-1}) = (x_{n+m_1-1}, y_{n+m_1-1}, x_{n+m_1-1}, y_{n+m_1-1}) \). By using the induction we have \((x_1, y_1, x_1, y_1) = (x_{1+m_1}, y_{1+m_1}, x_{1+m_1}, y_{1+m_1}) \). Thus, \((x, y, x', y') \) is a purely periodic point related to \(\tilde{T} \).

Theorem 3.6. Let \((x, y) \in X \cap \Psi \). \(x \) is a quadratic irrational number, \(y \in Q(x) \) and \((x, y, x', y') \in \Omega \) if and only if \((x, y) \) is a purely periodic point related to \(T \), where for \(z \in Q(x) \) \(z \) is an algebraic conjugate of \(z \) related to \(Q(x)/Q \).

Proof. The necessary condition of the theorem is proved in Lemma 3.5. Let us prove the sufficient condition. We assume that \((x, y) \in X \cap \Psi \) and \((x, y) \) is a purely periodic point related to \(T \). Then, it is not difficult to see that \(x \) is a quadratic irrational number and \(y \in Q(x) \). Using Theorem 3.1 and Lemma 3.4, we see that \((x, y, x', y') \in \Omega \).

Following Lemma 3.7 is a well known result.

Lemma 3.7 (É. Galois). Let \(0 < x < 1 \) be a quadratic irrational number and let \(x \) have purely periodic continued fraction expansion. Then,
\[\lim_{n \to \infty} \left(\frac{g_n(x)}{q_{n-1}(x)} + \bar{x}_{n+1} \right) = 0, \text{ where for } z \in \mathbb{Q}(x) \bar{z} \text{ is an algebraic conjugate of } z \text{ related to } \mathbb{Q}(x)/\mathbb{Q}. \]

Proof. Let \(W = [0, 1] \times (-\infty, -1]. \) We define a transformation \(\rho \) on \(W \) as follows: for \((x, y) \in W \)

\[
\rho(x, y) = \begin{cases}
\left(\frac{1}{x} - a(x), \frac{1}{y} - a(x) \right) & \text{if } x \neq 0, \\
(x, y) & \text{if } x = 0.
\end{cases}
\]

We see easily that \(\rho \) is well defined. Since \(x \) is reduced, \(\bar{x} < -1 \) (see [20]). Therefore, \((x, \bar{x}) \in W. \) We see easily that \(\rho^n(x, \bar{x}) = (x_{n+1}, \bar{x}_{n+1}). \) On the other hand, for each integer \(n > 0 \left(x_{n+1} - \frac{q_n(x)}{q_{n-1}(x)} \right) \in W. \) We see for each integer \(n > 0 \)

\[
\rho \left(x_{n+1} - \frac{q_n(x)}{q_{n-1}(x)} \right) = \left(x_{n+2} - \frac{q_{n-1}(x)}{q_n(x)} - a_{n+1}(x) \right) = \left(x_{n+2} - \frac{q_{n+1}(x)}{q_n(x)} \right).
\]

Therefore, we have \(\rho^{n-1}(x_2, -\frac{q_1(x)}{q_0(x)}) = \left(x_{n+1} - \frac{q_n(x)}{q_{n-1}(x)} \right). \) We denote \(u_n = -\frac{q_n(x)}{q_{n-1}(x)} \) for each integer \(n > 0. \) Then, we have

\[
|x_{n+2} - u_{n+1}| = \frac{|x_{n+1} - u_n|}{|x_{n+1}|} \leq \frac{|x_{n+1} - u_n|}{C},
\]

where \(C = \min\{|x_j| : j = 1, 2, \ldots\}. \) Therefore, we have \(|x_{n+1} - u_n| \leq \frac{|x_j - u_j|}{C^{n-1}} \) for each \(n > 0. \) Since \(C > 1, \) we obtain the lemma.

Lemma 3.8. Let \((x, y) \in X \cap \Psi \) and let \((x, y) \) be a purely periodic point related to \(T. \) Then, \(\lim_{n \to \infty} \left(\frac{b_n(x, y)}{q_{n-1}(x)} - \bar{y}_{n+1} \right) = 0. \)

Proof. We see easily that \(\bar{T} \) is naturally extended to \(\Omega_\# = \{ \Omega_1 \times \text{cl}(\Omega_1') \cup \Omega_2 \times \text{cl}(\Omega_2') \}. \) We also denote it \(\bar{T}. \) For each integer \(k \geq 1 \) \(u_k \) denotes \(-\frac{q_k(x)}{q_{k-1}(x)} \) and \(v_k \) denotes \(\frac{B_k(x, y)}{q_k(x)}. \) First, we show that \((x_2, y_2, u_1, v_1) \in \Omega_\#. \) and for \(n \geq 1 \) \(\bar{T}^{n-1}(x_2, y_2, u_1, v_1) = (x_{n+1}, y_{n+1}, u_n, v_n). \) We suppose \(b_1(x, y) > 0. \) Then, we see that \(-\frac{q_1(x)}{q_0(x)} = -a_1(x) \) and \(\frac{B_1(x, y)}{q_0(x)} = b_1(x, y). \) Since \(0 < b_1(x, y) \leq a_1(x, y), \) we have \(\left(x_2, y_2, -\frac{q_1(x)}{q_0(x)}, b_1(x, y) \right) \in \Omega_\#. \) We suppose \(b_1(x, y) = 0. \) Then, we see that \(\frac{B_1(x, y)}{q_0(x)} = 0 \) and \(y_2 = \frac{1}{x_1} - \frac{v_1}{x_1}. \) From the fact that \(a_1 = \left[\frac{v_1}{x_1} \right], \) we have \(\frac{1}{x_1} - a_1 \geq \frac{1}{x_1} - \frac{v_1}{x_1}. \) Therefore, we have \(\left(x_2, y_2, -\frac{q_1(x)}{q_0(x)}, b_1(x, y) \right) \in \Omega_\#. \) Secondly, we suppose that for an integer \(k > 0 \) \(\bar{T}^{k-1}(x_2, y_2, u_1, v_1) = (x_{k+1}, y_{k+1}, u_k, v_k). \) Then,
On a New Algorithm for Inhomogeneous Diophantine Approximation

we have \(\frac{1}{u_k} - a_{k+1}(x) = \frac{q_{k-1}(x)}{q_k(x)} - a_{k+1}(x) = u_{k+1} \). We suppose that \(b_{k+1}(x, y) > 0 \). Then, we have \(b_{k+1}(x, y) - \frac{u_k}{u_k} = b_{k+1}(x, y) + \frac{P_k(x, y)}{q_k(x)} = v_{k+1} \). Therefore, we have \(\bar{T}(x_{k+1}, y_{k+1}, u_k, v_k) = (x_{k+2}, y_{k+2}, u_{k+1}, v_{k+1}) \). We suppose that \(b_{k+1}(x, y) = 0 \). Then, we have \(\frac{1}{u_k} = \frac{b_k(x, y) - q_{k-1}(x)}{q_k(x)} = \frac{b_{k+1}(x, y)}{q_k(x)} = v_{k+1} \). Therefore, we have \(\bar{T}(x_{k+1}, y_{k+1}, u_k, v_k) = (x_{k+2}, y_{k+2}, u_{k+1}, v_{k+1}) \). Thus, we have the proof of that for \(n \geq 1 \) \(\bar{T}^{n-1}(x_2, y_2, u_1, v_1) = (x_{n+1}, y_{n+1}, u_n, v_n) \). Since for \(n \geq 1 \) \(\bar{T}^{n-1}(x_2, y_2, \bar{x}_2, \bar{y}_2) = (x_{n+1}, y_{n+1}, \bar{x}_{n+1}, \bar{y}_{n+1}) \). If \(b_{n+1}(x, y) > 0 \), then we obtain

\[
|v_{n+1} - \bar{y}_{n+2}| = \left| \frac{v_n}{u_n} - \frac{\bar{y}_{n+1}}{x_{n+1}} \right| = \left| \frac{v_n}{u_n} - \frac{v_n}{x_{n+1}} + \frac{v_n}{x_{n+1}} - \frac{\bar{y}_{n+1}}{x_{n+1}} \right|
\]

and if \(b_{n+1}(x, y) = 0 \), then we obtain

\[
|v_{n+1} - \bar{y}_{n+2}| = \left| \frac{1}{u_n} - \frac{v_n}{u_n} - \frac{1}{x_{n+1}} + \frac{\bar{y}_{n+1}}{x_{n+1}} \right|
\]

\[\leq \left(1 + \frac{v_n}{u_n} \right) \left| \frac{x_{n+1} - u_n}{x_{n+1}} \right| + \frac{|v_n - \bar{y}_{n+1}|}{|x_{n+1}|} \tag{6}\]

\[
\text{and if } b_{n+1}(x, y) = 0, \text{ then we obtain}
\]

\[|v_{n+1} - \bar{y}_{n+2}| \leq 3(n - 1) \frac{|x_2 - u_1|}{C_{n-1}} + \frac{|v_1 - \bar{y}_2|}{C_{n-1}}, \tag{7}\]

Since \((u_n, v_n) \in cl(\Omega_1 \cup \Omega_2)^c\), \(\frac{|x_1|}{|u_n|} \leq 2 \) for each integer \(n > 0 \). From the proof of Lemma 3.7, (6) and (7) we see that

\[|v_{n+1} - \bar{y}_{n+2}| \leq 3(n - 1) \frac{|x_2 - u_1|}{C_{n-1}} + \frac{|v_1 - \bar{y}_2|}{C_{n-1}}, \]

where \(C = \min\{|x_j| \mid j = 1, 2, \ldots\} \). Thus, we have the lemma. \(\square \)

Theorem 3.9. Let \((x, y) \in [0, 1]^2\) be a periodic point of \(\bar{T} \). Then,

\[\lim_{q \to \infty} q\|qx - y\| = \min\left\{ \frac{y_n\bar{y}_n - \tau(y_n - 1)(1 - y_n)}{x_n - \bar{x}_n} ; n = 0, 1, 2, \ldots \right\},\]

where \(\|x\| = \min\{|m - x| \mid m \in \mathbb{Z}\} \) and \(\tau(u) = u \) for \(u > 0 \) and \(\tau(u) = \infty \) for \(u \leq 0 \).

Proof. From Theorem 2.15 we have

\[
\lim_{q \to \infty} q\|qx - y\|
\]

\[= \lim_{n \to \infty} \min\{B_n(x, y) \mid B_n(x, y)x - A_n(x, y) - y(; \tau(B_n(x, y) - q_{n-1}(x))
\]

\[\times \mid(B_n(x, y) - q_{n-1}(x))x - (A_n(x, y) - p_{n-1}(x, y)) - y\mid.\]
Using Lemma 2.1 and Lemma 2.3

\[B_n(x, y) \left| B_n(x, y)x - A_n(x, y) - y \right| = B_n(x, y)y_{n+1}x_1 \cdots x_n \]

\[= B_n(x, y)y_{n+1} \left(q_{n-1}(x)x - p_{n-1}(x) \right) \]

\[= \frac{B_n(x, y)y_{n+1}}{q_{n-1}(x) \left(\frac{q_n(x)}{q_{n-1}(x)} + x_{n+1} \right)} . \]

If \(b_n(x, y) > 0 \), we have similarly

\[(B_n(x, y) - q_{n-1}(x))(B_n(x, y) - q_{n-1}(x))x - (A_n(x, y) - p_{n-1}(x)) - y \]

\[= (B_n(x, y) - q_{n-1}(x))(-1)^n y_{n+1}x_1 \cdots x_n - (q_{n-1}(x)x - p_{n-1}(x)) \]

\[= (B_n(x, y) - q_{n-1}(x))q_{n-1}(x)x - p_{n-1}(x)) \left| 1 - y_{n+1} \right| \]

\[= \frac{(B_n(x, y) - q_{n-1}(x)) \left| 1 - y_{n+1} \right| \times \frac{1}{q_{n-1}(x) \left(\frac{q_n(x)}{q_{n-1}(x)} + x_{n+1} \right)}} . \]

From Lemma 2.14 we note that if \(b_n(x, y) > 0 \), \(B_n(x, y) - q_{n-1}(x) \leq 0 \) and \(0 < \frac{1}{y_{n+1}} < 1 \). Using Lemma 3.7 and Lemma 3.8, we have Theorem 3.9. \(\square \)

References

[4] J. W. S. Cassels, Über \(\lim_{x \to +\infty} x(\sqrt{3}x + a - y) \), (German) Math. Ann. 127 (1954), 288–304.

On a New Algorithm for Inhomogeneous Diophantine Approximation

General Education Suzuka College of Technology
Shiroko, Suzuka, Mie, 510-0294, Japan
yasutomi@genl.suzuka-ct.ac.jp