Rosmarinus officinalis polyphenols activate cholinergic activities in PC12 cells through phosphorylation of ERK1/2

Omri Abdelfatteh El, Han Junkyu, Yamada Parida, Kawada Kiyokazu, Abdrabbah Manef Ben, Isoda Hiroko

Journal of Ethnopharmacology
Volume 131, Issue 2, Pages 451-458, 2010

(C) 2010 Elsevier Ireland Ltd

URL: http://hdl.handle.net/2241/106731
Rosmarinus officinalis polyphenols activate cholinergic activities in PC12 cells through phosphorylation of ERK1/2

Abdelfatteh EL Omri¹, Junkyu Han¹,², Parida Yamada², Kiyokazu Kawada², Manef Ben Abdrabbah³ and Hiroko Isoda¹,²,*

¹Graduate School of Life and Environmental Sciences, ²Alliance for Research on North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan.

³Unité de Recherche Physico-chimie et Moléculaire: Institut Préparatoire aux Etudes Scientifiques et Techniques IPEST, La Marsa, 2070 Tunis - Tunisia.
Abstract

Aim of the study: This paper aimed to elucidate the traditional use of Rosmarinus officinalis (R. officinalis) through the investigation of cholinergic activities and neuronal differentiation in rat pheochromocytoma PC12 cells. These effects were examined in relation to the plant’s habitat, the extraction procedure, and the major active compounds of R. officinalis.

Materials and Methods: Cell viability, cell differentiation, acetylcholinesterase (AChE) activity, total choline, acetylcholine (ACh) and extracellular signal-regulated kinases (ERK1/2) were determined in PC12 cells treated with extracts and HPLC-identified polyphenols of R. officinalis originated from Tunisian semi-arid and subhumid area in comparison with nerve growth factor (NGF).

Results: R. officinalis extracts potentiated cell differentiation and significantly enhanced AChE activity in PC12 cells. The highest AChE activity was induced by semi-arid hydro-ethanolic extract (137% of control). Among HPLC-identified and screened
polyphenols, carnosic acid (CA) and rosmarinic acid (RA) significantly induced cell
differentiation, increased ACh level, and enhanced AChE activity in PC12 cells. U0126,
inhibitor of ERK1/2, significantly reduced CA and RA effects on cell differentiation
and AChE activity.

Conclusions: R. officinalis’ CA and RA exhibited neurotrophic effects in PC12 cells
through cell differentiation induction and cholinergic activities enhancement. These
effects could be regulated by mitogen-activated protein kinase (MAPK), ERK1/2
signaling pathway.

Key words

Rosmarinus officinalis
Carnosic acid
Rosmarinic acid
PC12 cell
Cholinergic activities
ERK1/2
1. Introduction

R. officinalis, member of Lamiaceae family, is an herbal spice native to Mediterranean basin. It is an attractive, fragrant and evergreen shrub with pine needle-like leaves. For long time, this plant was used in Mediterranean cuisine as dried leaves
not only to improve or modify the flavor of food, but also to avoid its deterioration because of its antimicrobial and antioxidant activities (Fernandez et al., 2005). Numerous studies reported that *R. officinalis* has several medicinal use such as anti-inflammatory, anti-nociceptive (Takaki et al., 2008), anti-ulcerogenic (Dias et al., 2000), hepatoprotective (Amin and Hamza, 2005), diuretic (Haloui et al., 2000), neuroprotective and anti-aging (Adams et al., 2007). In folk medicine, this plant is known for memory improving and treating cognitive decline. It is also used as sedative and relaxant, against headaches, epilepsy, and depression (Heinrich et al., 2006). In Tunisia, *R. officinalis* is growing wild in bioclimatic zones extending from the sub-humid to the semi-arid covering wide area of forest land (Zaouali and Boussaid, 2007). *R. officinalis* is one of the most collected, transformed and traded aromatic plant. It is used by local population for its relaxing propriety, but its active compounds and its molecular mechanism remain to be clarified.

It is well known that the cholinergic system is involved in the regulation of several central nerve system (CNS) functions like cognition, memory, conscious arousal, attention and subsequently regulation of mood impairments like depression and anxiety (Dagyté et al., 2010). The modulation of cholinergic activities is presently the most accepted and recognized therapeutic marker for development of cognitive enhancers (Orhan et al., 2008) and to prevent from some lifestyle disease like stress and depression.
AChE is one of the most biological catalysts that play a key role in cholinergic neurotransmission by rapidly hydrolyzing the neurotransmitter ACh at cholinergic synapses and neuromuscular junctions (Taylor and Radic, 1994; Soreq and Seidman, 2001). Particularly in hippocampus, it plays an undoubted key role in regulation of learning and memory (Das et al., 2005), and it was demonstrated to be affected by stressful situations in animal model (Nijholt et al., 2004; Mark et al., 1996; Aloisi et al., 1996). However, the biological role of AChE is not limited to cholinergic transmission. It has been implicated in several non-cholinergic actions including cell proliferation, neurite outgrowth (Mazzanti et al., 2009), cell adhesion, hematopoiesis and tumorigenesis (Zhu et al., 2007).

PC12 cells are well known model for neuronal differentiation (Shibahara et al., 1998; Isoda et al., 2002). When treated with NGF or NGF-like compounds, PC12 cells cease proliferation and take a number of differentiated phenotypic properties of sympathetic neurons, including neurite outgrowth and increase in AChE activity (Liu et al., 2003) with correlated enhancement of ACh synthesis.

The use of NGF seems to be an interesting prevention alternative for cholinergic impairments and its related neuronal diseases. However, their therapeutic use is limited because they do not cross the blood-brain barrier. Epidemiological studies have shown
that antioxidant rich plants have several beneficial effects on neurological disease (Blasina et al., 2009). In this sense, \textit{R. officinalis} might be useful plant.

In order to elucidate the traditional knowledge of this plant, and as part of our search for substances that have NGF-like effects. PC12 cells were treated with different extracts of Tunisian \textit{R. officinalis} originating from semi-arid and subhumid area to investigate their effects on neurite outgrowth and AChE activity. The main active compounds CA and RA were identified. In this study, CA and RA significantly induced cell differentiation, enhanced cholinergic activities and activated ERK1/2 in PC12 cells.

2. Materials and methods

2.1. Sample preparation

\textit{R. officinalis}, growing wild in Tunisia, was collected from Sammama-Mount Kasserine (semi-arid area) and Zaghouan-Mount (subhumid area) during the period April-May 2007. Leaves were collected from wild population, from 5 sites/field of 10 random fields of 100 m2. Fresh leaves were crushed in a mortar and extracted with different solvent 10 % (w/v). The extraction with water (WE) was carried out in
autoclave at 105°C for 15 min. 70% ethanol extract (EE) and 70% methanol extract (ME) were prepared at 25°C for 1 week with shaking at least once a day, in the dark. The liquid fraction was then collected and filtered through 0.22 µm filter. EEA, EES, MEA, MES, WEA, and WES are respectively the EE, ME and WE from plants growing in semi-arid area and sub-humid area.

2.2. Chemicals

CA was purchased from Alexis biochemicals, RA and p-coumaric acid were from MP Biomedicals LLC (Germany). Quercetin dehydrate, ferulic acid, phosphoric acid, acetonitrile (HPLC grade) and acetylcholine iodide were from Wako (Japan). Caffeic acid was from Extrasynthese Genay (France). NGF 7s, Radioimmunoprecipitation assay (RIPA) buffer and p-ERK1/2 antibody were from Sigma Aldrich Co., Ltd. (St Louis, USA). Dulbecco’s modified Eagle medium (DMEM) was from Sigma Aldrich Co., Ltd. (Irvine, UK). ERK1/2 antibody and goat anti-rabbit IgG-HRP were from Santa Cruz Biotechnology Inc. (Santa Cruz, USA). U0126 was from Promega (USA). Goat antimouse IgG-HRP was from Bethyl laboratories Inc. (Montgomery, USA). Fetal bovine serum (FBS) was from Biowest SAS (France). Heat inactivated horse serum (HS) was from Invitrogen (New Zealand). Penicillin-streptomycin was from Lonza Inc.
(Walkersville, MD, USA). MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-
diphenyltetrazolium bromide) was from (Dojindo, Japan).

2.3. HPLC analysis of R. officinalis’ extracts

HPLC analysis were performed on a double plunger pump Gilson HPLC using a
Beta max Neutral column (150 x 4.6mm i.d. particle size 5 µm) (Tosoh Corporation,
Tokyo Japan) heated at 40°C. A binary phase acetonitrile 100% (solvent A) and
distilled water-0.1% H₃PO₄ (solvent B) was used as reported by Almela et al., (2006).
In these conditions, analytes were eluted from the column in increasing order of polarity.
With a flow rate of 3 ml/min, several linear gradients were assayed. R. officinalis’
extracts were injected at 100 µl. Peak spectra were recorded at 230 and 300 nm using
UV detector. Among the main compounds present in rosemary extracts, CA and RA
were quantified with regard to pure standards and reported in (mg/g) of fresh leaves.
Between the gradients tested, good separation was achieved starting with 23% A and
77% B for 8 min, followed by a gradient to 60% A and 40% B in 12 min, kept isocratic
for 5 min then 75% A and 25% B in 10 min. All steps of the gradient were linear.

2.4. Cell culture
PC12 cells (Riken, Japan) were maintained in DMEM supplemented with 5% FBS, 10% HS and 50 U/ml penicillin, and 50 µg/ml streptomycin in a humidified incubator at 37°C, 5% CO₂. For protein extraction and ACh quantification, cell passages were carried out in poly-L-lysine dishes (Wako) using Trypsin 0.25% EDTA to detach cells. For AChE activity and cell viability assay, cell passages were carried out in flasks and cells were detached by pipetting. Prior to each experiment, cells were washed once with medium. Cells used in this study were between passages 3 and 8. Cells treated with NGF 7s at 50 ng/ml were used as positive control.

2.5. Assessment of cell viability

PC12 cells were cultured in 100 µl test medium at a density of 1.0 x 10⁴ cell/well in poly-L-lysine coated 96 well plate. After 24 h incubation, cells were treated with different concentrations of sample for another 24 h and 48 h. Then, 100 µl of fresh culture medium was added with 10% of MTT at 5 mg/ml in PBS (-). After overnight incubation, the colored formazan was dissolved in 100 µl of 10% SDS and the absorbance at 570 nm was determined using a multi-detection microplate reader.
(Powerscan®, HT, Dainippon Pharmaceutical, Japan). The viability of PC12 cells was presented as percentage of control.

2.6. Cell differentiation assay

PC12 cells were cultured in 100 µl test medium at a density of 1.0 x 10^4 cell/well in poly-L-lysine coated 96 well plate. After 24 h incubation, cells were treated with different dilutions of EEA (1/20000, 1/10000, and 1/5000 (v/v)), CA (6.8 µg/ml) and RA (4.8 µg/ml) for another 48 h. In case of CA and RA treatments, PC12 cells were also pretreated with 10 µM U0126 for 30 min.

The proportions of neurite-bearing cells and flat phenotype-like cells were counted using a phase-contrast microscope equipped with DFC 290HD camera (Leica). Synapses, longer than one diameter of the respective cell body, were counted as neuritis and considered as differentiated. Cells with short synapses or with fusiform morphology were considered as flat phenotype-like cells (Blasina et al., 2009). The mean value was calculated from 3 random field observations from 3 independent experiments, and a minimum of 100 to 120 cells per field were counted.

2.7. Measurement of AChE activity
PC12 cells were seeded into 96-well plates as mentioned above. After 24 h incubation, cells were treated with different dilutions of Rosemary extracts (1/20000, 1/10000 and 1/5000 (v/v)). CA, RA, ferulic acid, caffeic acid, p-coumaric acid and quercetin were also added at required concentrations as indicated in figure legends. AChE activity was conducted as reported in our previous study (Isoda et al., 2002). After 24 h treatment, medium was removed and the cells carefully washed twice with 200 μl of PBS (-). Then 20 μl of 5.6 mM acetylcholine iodide and 180 μl of buffer solution (0.12 M NaCl, 0.2% TritonX-100, 1 mM EDTA, 50 mM Heps, pH 7.5) were added into each well. After 2 h incubation at room temperature, 20 μl of the cell lysates were transferred to a fluorescence reading multiwell plate and incubated for 1 h with 160 μl buffer solution (1 mM EDTA, 0.2% TritonX-100, 50 mM acetate buffer, pH 5.0) and 20 μl of 0.4 mM 7-diethylamino-3(4-maleimidyl-phenyl)-4-methylcoumarin in acetonitrile at room temperature. The fluorescence in each well was then measured using a multi-detection microplate reader at 360 nm/460 nm and the activity was reported as percentage of control.

2.8. Effect of U0126 on CA and RA activities
U0126 is a selective and potent inhibitor of MEK1 activity \textit{in vitro}, as well as activation of ERK1/2 by MEK1/2. It is capable of directly inhibiting activated MEK1 and preventing endogenously active MEK1/2 from phosphorylating and activating ERK1/2 (Said et al., 1998). PC12 cells were pretreated with 10 µM U0126 for 30 min then washed with DMEM and treated with CA (2.4, 4.8 and 6.8 µg/ml) and RA (2.4, 3.6, and 4.8 µg/ml) for AChE activity and cell differentiation observation. The effect of U0126 on cell viability was carried out using MTT assay in preliminary experiments.

2.9. Measurement of ACh

PC12 cells were seeded at a density of 2.0 x 10^6 cells in 10 cm poly-L-Lysine coated dish. After 24 h incubation, cells were treated with CA (6.8 µg/ml) and RA (4.8 µg/ml) for another 24 h, then washed twice with 20 ml cold PBS(-). Total choline, free choline and ACh were quantified by choline/Acetylcholine kit (Biovision, USA) according to manufacturer’s instructions. Briefly, cells were lysed in choline assay buffer on ice for 10 min and sonicated, the supernatant was collected after centrifugation at 600 x g for 30 min. In the assay free choline is oxidized to betaine, via the intermediate betaine aldehyde. The reaction generates products which react with the choline Probe to generate fluorescence (Ex/Em 535/587 nm). ACh can be converted to choline by adding
AChE enzyme to the reaction. Without adding the enzyme, the assay detects free choline. The quantification was determined according to standard curves of choline with and without adding AChE enzyme.

2.10. Western blotting

After treatment with CA, RA and NGF as indicated in figure legends, cells were washed twice with cold PBS (-) and total protein was extracted using RIPA buffer according to the manufacturer’s instructions. 15 µg of extracted protein sample was resolved by 12% sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and blotted using Invitrogen IBlot system. The blots were probed with anti-activated ERK1/2 monoclonal antibody (1:3500 dilution), anti-ERK1/2 monoclonal antibody (1/200 dilution) using Snap Id system (Millipore). The signal was visualized using Western blotting Chemiluminescent HRP Substrate (GE Healthcare) Amersham ECL system, after reaction with labelled goat anti-mouse IgG antibody for activated ERK1/2 (1:4000 dilution) and goat anti-rabbit IgG for activated ERK1/2 (1:4000 dilution).

2.11. Statistical analysis
The results were expressed as mean ± standard deviation (S.D.). Differences between treatments were assessed by T test at p-values<0.05 versus control (vs. Ctrl.), and the least significance difference (LSD) test at 95% using Statgraphics® package for windows.

3. Results

3.1. Effect of R. officinalis’ extracts on PC12 cells differentiation and AChE activity

In preliminary experiments using MTT assay, no cytotoxic effect of R. officinalis extract dilutions (1/20000, 1/10000, and 1/5000 (v/v)) was detected in PC12 cells (data not shown).

R. officinalis extracts were screened for their effect on cell morphology and AChE activity in PC12 cells. Among these extracts, EEA showed a clear morphological change in PC12 cells (Fig. 1A). At 1/5000 (v/v) fold dilution, 12% of cells were differentiated and 50% changed to flat phenotype-like cells (Fig. 1B).

AChE activity was carried out after 24 h incubation. All extracts displayed a significant dose dependent increase in AChE activity (p<0.05) except for EES (Fig. 1C
and Fig. 1D). Extracts from Semi-arid plants were more effective in increasing AChE activity than those from plants growing in sub-humid area. The highest AChE activity 137% was found after treatment with EEA at 1/5000 (v/v) (Fig. 1C). While, extracts from *R. officinalis* growing in sub-humid area showed low AChE activity (Fig.1D).

3.2. Quantification of CA and RA compounds in *R. officinalis* extracts

It is recognized that the concentration of active compounds is dependent on plants habitat (Munné-Bosch et al., 2000), the processing methods and solvents used for extraction (Yu et al., 2005). We demonstrated that the highest concentrations of CA and RA were found in the extracts of plant leaves growing in semi-arid area extracted using ethanol and methanol solvent (Table 1). EEA presented the highest amount of CA (13.29 mg/g of fresh leaves) and RA (39.9 mg/g of fresh leaves). Concerning, subhumid area plant extracts, MES presented the highest concentration of CA (10.67 mg/g of fresh leaves) and RA (18.1 mg/g of fresh leaves). Also, we noticed that CA, a water insoluble compound, was absent in water extracts from both growing sites as reported by Kosaka and Yokoi (2003). Other compounds like ferulic acid, caffeic acid, p-coumaric acid, and quercetin were detected (data not shown).
3.3. Effect of U0126 on morphological differentiation and AChE activity induced by CA and RA in PC12 cells

Treatment of PC12 cells with NGF triggers their differentiation into cells that resemble sympathetic neurons, which are characterized by neurite outgrowth and enhancement of AChE activity (Liu et al., 2003). Neurite-like process outgrowth was estimated after 48 h treatment with CA and RA. CA significantly promoted morphological change of PC12 cells compared to RA. As shown in Fig. 2A and Fig. 2C, 16% of CA treated-PC12 cells were differentiated and 55% changed to flat phenotype-like cells. These proportions were 5% differentiated cells and 25% flat phenotype-like cells in RA treated-cells. The neurite-like process extension response was more robust in NGF-treated cells (27% differentiated cells, and 68% flat phenotype-like cells).

Pretreatment of PC12 cells with U0126 resulted in significant change in cell morphology. U0126 treatment prevented CA, and RA effect on PC12 cells differentiation. However, the proportion of flat phenotype-like cells was only reduced by 5% for CA, 10% for RA, and by 10% for NGF. This effect was more severe for RA treated cells (Fig. 2B and Fig. 2C).

After 24 h treatment with CA and RA, both compounds dose dependently increased AChE activity to 130% for CA (Fig. 2D) and 129% for RA (Fig. 2E). Pretreatment with
U0126 totally inhibited CA (2.4 μg/ml, 4.8 μg/ml) (Fig. 2D) and RA (2.4 μg/ml, 3.6 μg/ml) (Fig. 2E) induced AChE activity. However, U0126 pretreatment decreased CA (6.8 μg/ml) and RA (4.8 μg/ml) AChE activity to 121% and 115%, respectively (Fig. 2D and Fig. 2E).

3.4. Effect of CA and RA on ACh release.

ACh is a neurotransmitter synthesized in PC12 cells by choline acetyltransferase (ChAT) from the precursors choline and acetyl-CoA (Pedersen et al., 1997), and degraded by AChE in synapses cleft. As shown in Fig. 3, after 24 h treatment, CA and RA significantly increased total choline to 7.14 nmole/ml and 6.8 nmole/ml. Also, they significantly enhanced ACh level to 2.5 nmole/ml and 2.8 nmole/ml, respectively. Meanwhile, NGF-treated cells showed same level of total choline and no significant effect on ACh level compared to CA and RA-treated cells.

3.5. CA and RA induce PC12 cells differentiation and enhance AChE through ERK1/2

The MAPK/ERK is a signal transduction pathway that couples intracellular responses to the binding of growth factors to cell surface receptors (Kawano et al.,
Activation of ERK1/2 plays an important role in neuronal differentiation, cell survival and maintenance of distinct populations of neurons (Liu et al., 2003). Western blotting results shows that both CA and RA significantly activated ERK1/2 (Fig. 4A). However, CA was more effective than RA to induce ERK1/2 phosphorylation. Treatment with U0126 inhibited CA and RA-induced ERK1/2 phosphorylation (Fig. 4B), and significantly reduced their correspondent AChE activity and cell differentiation, suggesting that such activities could be related to ERK1/2 pathway.

4. Discussion

Here, we demonstrated that Tunisian R. officinalis extracts potentiated PC12 cells differentiation and significantly increased AChE activity. Such effects were strongly related to the plant habitat (Wellwood and Coler, 2006) and the extraction method. Extracts of plants growing in semi-arid area have shown higher activities than sub-humid area. These neurotrophic capacities of R. officinalis could be related to the presence of pro-electrophilic compounds reported to be good candidate for treating neurodegenerative disease (Satoh et al., 2008). HPLC results supported this finding,
showing that *R. officinalis* growing in semi-arid environment present higher amounts of CA and RA.

R. officinalis and its main polyphenols have been the topic of many studies related to neurotrophic activity, neurobehavioral and neurodegenerative disease. In fact, CA has been reported to promote synthesis of NGF in T98G human glioblastoma cells (Kosaka and Yokoi, 2003). As well, RA has been demonstrated to have antidepressive effects in the forced swimming test in mice (Takeda et al., 2002). More recently, it has been shown that *R. officinalis* produces a specific antidepressant-like effect in animal experiment (Machado et al., 2009).

CA and RA showed lower AChE activity in comparison with EEA, suggesting a possible synergetic activity between these 2 compounds or with other constituents of rosemary leaves. For this reason, we explored AChE activity of some other polyphenols present in *R. officinalis* extracts detected by HPLC. We have noticed that p-coumaric acid enhanced AChE activity to 117% of control at 30 µM, whereas ferulic acid, quercetin and caffeic acid exhibited an AChE activity compared to the control level (Fig. 5).

To the best of our knowledge, the study reported here could be the first to show that *R. officinalis’* CA and RA induced PC12 cells differentiation, improved total choline level and ACh synthesis in PC12 cells. These compounds may have NGF-like
neurotrophic effects in PC12 cell. In CNS, CA and RA may support the survival of existing neurons, and encourage the growth and differentiation of new neurons and synapses (Martin et al., 2010). By improving cholinergic activities, *R. officinalis’* CA and RA may attenuate cholinergic neurons atrophy resulting in an enhancement of memory, attention and impaired behavior like depression and anxiety (Dagypté et al., 2010).

PC12 cells differentiation and AChE activity have been previously reported to correlate with a sustained activation of ERK1/2 (Liu et al., 2003; Liu et al., 2006). Our results show that exposure of PC12 cells to CA and RA has activated ERK1/2. Priming with U0126 prevented PC12 cells differentiation and suppressed AChE activity at low concentrations of CA and RA. However, at high concentrations, AChE activity was reduced but not suppressed. Our results correlate with previous finding suggesting that CA and RA could upregulate AChE activity regardless of ERK1/2 MAPK (Madziar et al., 2005). Meanwhile, other pathways like PI3K/Akt (Jiang et al., 2007), protein kinase C (PKC) (Birikh et al., 2002), Nrf2 (Kosaka et al., 2009) may be involved in such signaling. Moreover, PC12 cells have been shown to synthesize nuclear and cytoplasmic isoforms of AChE (Santos et al., 2007). In fact this enzyme is expressed in several molecular forms, with different structural features but identical catalytic sites (Schweitzer, 1993). The exploration of specific pathways and molecular mechanisms of
CA and RA toward neuronal differentiation and cholinergic functions are the future targets of our research.

In conclusion, our data indicate that treatment of PC12 cells with Tunisian *R. officinalis* extracts significantly increased AChE activity and potentiated cell differentiation to flat phenotype-like cells. These effects were dependent from plant environment and solvent used for extraction. This work emphasize the use of solvent extracts of *R. officinalis* in industrial scale to upgrade the valorization of this plant commonly used as dried leaves, water infusion tea or essential oil. Moreover, we demonstrated that the neurotrophic activity of *R. officinalis* is correlated to the presence of CA and RA. Both compounds reproduced AChE activity of the plant extract. CA and RA-induced cholinergic activities in PC12 cells were nearly similar and partially dependent on ERK1/2 signaling pathway.

Acknowledgements

This research was partially supported by Mitsui & Co., Ltd. Environment Fund.

References

splicing of acetylcholinesterase results in enhanced fear memory and long-term potentiation. Molecular Psychiatry 9, 174-183.

LIST OF FIGURE AND TABLE

Table1. Amount of CA and RA in *R. officinalis* extracts in mg/g of fresh leaves. Results are the mean ± S.D. of 3 independent trials.

Fig. 1. Effect of *R. officinalis* ethanol extract (EEA) on PC12 cells differentiation and AChE activity. (A) Shows photo taken at 200 x magnification, of the effect of *R.*
EEA in PC12 cells after 48 h incubation, in comparison with control, scale bar represents 50 µm. (B) shows the effect of EEA on the proportion of differentiated cells (Diff. cells), and flat phenotype-like cells as shown in Material and methods. Results are mean ± S.D. of 3 independent trials (n = 9). (C) Shows AChE activity of *R. officinalis* extracts collected from Sammama (Semi-arid area) (D) Shows AChE activity of *R. officinalis* extracts collected from Zaghouan (Subhumid area). AChE activity was determined as described in Materials and methods. Results are mean ± S.D. of 3 independent trials (n =12) (*p < 0.05 vs. Ctrl.).

Fig. 2. Effect of CA, RA and NGF on PC12 cells differentiation and AChE activity with and without U0126 pretreatment. (A) Shows the photo at (200 x) magnification of PC12 cells treated with CA at 6.8 µg/ml, RA at 4.8 µg/ml, and NGF at 50 ng/ml after 48 h treatment. The scale bar represents 50 µm. (B) shows the photo at (200 x) magnification of PC12 cells pretreated with 10 µM of U0126 for 30 min then treated with CA at 6.8 µg/ml, RA at 4.8 µg/ml, and NGF at 50 ng/ml for 48 h. The scale bar represents 50 µm. (C) shows the effect of CA at 6.8 µg/ml, RA at 4.8 µg/ml, and NGF at 50 ng/ml after 48 h treatment on the proportion of differentiated cells (Diff. cells) and flat phenotype-like cells as shown in Material and methods. Results are mean ± S.D. of 3 independent trials (n = 9) (*P < 0.05 vs. Ctrl.). (D) shows AChE activity of CA (2.4,
4.8, and 6.8 µg/ml) in PC12 cells after 24 h treatment with or without 10 µM U0126 pretreatment for 30 min. (E) shows AChE activity of RA (2.4, 3.6, and 4.8 µg/ml) on PC12 cells after 24 h with and without 10 µM U0126 pretreatment for 30 min. 50 ng/ml of 7s NGF was used as a positive control. AChE activity was determined as percentage of control as described in Materials and methods. Control PC12 cells were grown in test medium. AChE activity was determined as described in Materials and methods. Results are mean ± S.D. of 3 independent trials (n =12) (*p < 0.05 vs. Ctrl.).

Fig. 3. Effect of CA and RA treatment on total choline and ACh in PC12 cells. Cells were treated with CA at 6.8 µg/ml, RA at 4.8 µg/ml and NGF at 50 ng/ml for 24 h. Total choline was quantified according to a standard curve of choline with and without AChE addition. ACh was determined by substraction of free choline from total choline. Results are mean ± S.D. of 3 independent trials, ((*p< 0.05 vs. Ctrl.), # Least significant difference (LSD at 95%) between treatment).

Fig. 4. Effect of CA and RA on ERK1/2 phosphorylation in PC12 cells. Cells were seeded at a density of 2.0 x 10⁶ cells in 10 cm poly-L- lysine coated dish. Cells were treated with CA at 4.8 µg/ml and 6.8 µg/ml, RA at 2.4 µg/ml and 3.6 µg/ml, and NGF at
50 ng/ml. (A) Without U0126 pretreatment. (B) With 10 μM U0126 pretreatment.

Results are representative of 3 independent trials.

Fig. 5. Effect of some *R. officinalis*’ polyphenols on AChE activity in PC12 cells. Cells were treated with ferulic acid, caffeic acid, and p-coumaric acid at 20, 30, and 50 μM and quercetin at 1, 5, and 10 μM for 24 h. AChE activity was determined as described in Materials and methods. Results are mean ± S.D. of 3 independent trials (n =12) (*p < 0.05 vs. Ctrl.)