Free energy molecular dynamics simulations of pulsed-laser-irradiated SiO$_2$: Si Si bond formation in a matrix of SiO$_2$.

<table>
<thead>
<tr>
<th>著者別名</th>
<th>村上 浩一</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目名</td>
<td>Free energy molecular dynamics simulations of pulsed-laser-irradiated SiO$_2$: Si Si bond formation in a matrix of SiO$_2$.</td>
</tr>
<tr>
<td>番号</td>
<td>番号</td>
</tr>
<tr>
<td>番号</td>
<td>番号</td>
</tr>
<tr>
<td>番号</td>
<td>番号</td>
</tr>
<tr>
<td>権利</td>
<td>権利</td>
</tr>
</tbody>
</table>

doi: 10.1063/1.1929879
Free energy molecular dynamics simulations of pulsed-laser-irradiated SiO$_2$: Si–Si bond formation in a matrix of SiO$_2$

Mauro Boeroa and Atsushi Oshiyama

Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan

Pier Luigi Silvestrelli

INFN UdR Padova and DEMOCRITOS National Simulation Center, Trieste, Italy and Dip. di Fisica “G. Galilei,” Università di Padova, via Marzolo 8, I-35131 Padova, Italy

Kouichi Murakami

Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

(Received 28 May 2004; accepted 4 April 2005; published online 12 May 2005)

Recent experiments have shown that pure Si structures in a matrix of SiO$_2$ can be formed by electron excitation techniques, with appealing applications in nanotechnology. Our

aElectronic mail: boero@comas.frsc.tsukuba.ac.jp
all its four bonds, O atoms can be dislodged. This intuitive image is supported by the computed16 diffusion coefficients17 (Table I): D_O is more than twice larger than D_{Si}. Interestingly, the weakening of the Si–O bonds occurs in regions where the electron excitations localize. In fact, by monitoring the electronic structure, [Fig. 1(b)], we observed that, when an O atom diffuses away, it leaves behind two Si sp^3 DBs similar to E' centers in SiO$_2$.3,14,15 These are located in energy at \sim2.7–3.0 eV above the valence band of SiO$_2$, i.e., inside the SiO$_2$ gap, and are characterized by occupation numbers $f_i=0.86$ and 0.82, respectively. These values are much larger than $f_i=4 \times 10^{-2}$ corresponding to antibonding eigenvalues. Thus, the disruption of the bond network and the formation of Si–Si bonds cannot be ascribed to a simple randomization caused by antibonding states occupation. Since the two DBs are close, a Si–Si dimer of average length 2.54±0.08 Å is quickly formed and remains stable on the time scale of the simulation. The gap states corresponding to the DBs disappear and the resulting electron wave functions is a typical Si–Si covalent bond. The final equilibrated structure is shown in Fig. 1(c). The total number of Si atoms forming stable Si–Si bonds, with lengths ranging from 2.51 to 2.64 Å, is \sim20% of the total number of Si. This results in nonzero values around 2.6 Å of the Si–Si PCF (Fig. 3). The presence of \equivSi–Si–O– \equiv structures is responsible for a shift toward 1.78 Å and a broadening of the first peak of the Si–O PCF. The broad peak at \sim3.4 Å in Si–Si PCF, absent in other simulations at different T_e, originates from \equivSi–Si–O– \equiv and \equivSi–Si–Si– \equiv structures. Interestingly, although $T_f<T_{\text{melt}}$, the formation of Si–Si structures occurs via lattice distortions promoted by the weakening of the chemical bonds and results in a local phase separation induced by electron excitations. Since we are working here in the μ-canonical ensemble, the departing O sits elsewhere and forms a three-membered ring15 where a threefold O atom and a Si floating bonds (FB) coexist.

In our third simulation, at $T_e=30\,000$ K, the ionic forces become so large that many Si–O bonds break and the system heats above T_{melt} in \sim0.3 ps. The ions equilibrate at $T_f=2870$ K (Fig. 2) and with a random distribution of Si and O atoms. The PCFs become almost structureless with only a signature of a dynamical short range order (Fig. 3). Bonds are continuously broken and reformed, lots of unbound atoms wander around and the energy gap is filled by a large population of unsaturated bonds. This is a typical LS of SiO$_2$, as confirmed by the enhancement of D_{Si} and D_{O} (Table I).

Finally, we inspected an oxygen deficient center (ODC) by removing the O atom in \equivSi(1)–O–Si(2)\equiv [see Fig. 1(a)]. For $T_e=20\,000$ K, the two Si atoms facing the O vacancy form a Si–Si dimer of \sim2.53 Å, as expected,16 with no

<table>
<thead>
<tr>
<th>T_e (K)</th>
<th>T_f (K)</th>
<th>D_{Si} (cm2/s)</th>
<th>D_{O} (cm2/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20000</td>
<td>304±118</td>
<td>1.00×10^{-9}</td>
<td>1.26×10^{-9}</td>
</tr>
<tr>
<td>25000</td>
<td>367±112</td>
<td>4.09×10^{-9}</td>
<td>8.49×10^{-9}</td>
</tr>
<tr>
<td>30000</td>
<td>2870±220</td>
<td>1.42×10^{-7}</td>
<td>3.40×10^{-7}</td>
</tr>
</tbody>
</table>

\[TABLE I.\] Ionic temperatures (T_f) and O/Si diffusion coefficients (D_{Si}, D_{O}) for the simulated T_e. Error bars refer to dynamical oscillations of T_f.
major modifications. On the contrary, when $T_e = 25,000$ K Si(1) and Si(2) initially form a dimer that undergoes a very quick breaking. Si(2) moves beyond the plane of its neighbor O atoms forming a threefold O with a nearby oxygen site, while Si(1) carries an unpaired DB. This corresponds to a (meta)stable puckering configuration observed in ODCs.14,15 From this point on, the evolution of the system follows a pathway similar to the case of the nondefective α-quartz, eventually stabilizing as in Fig. 1 (d). In the whole system, four stable Si–Si bonds (~25\% of the total number of Si) with average distances ranging from 2.56 to 2.39 Å are formed in the regions where localized excitations induce a Si–O bond breaking and O diffusion. In the process, Si(1) loses its DB by forming a stable bond with one of the diffusing O atoms that, in turn, binds to another nearby Si. No DB survives, as seen by inspecting the electronic and atomic structures, but three-membered rings, e.g., close to Si(1) in Fig. 1 (d)] and FBs arise. The amount of Si–Si bonds formed around an ODC (25\%) is larger than in pristine SiO\textsubscript{2} (20\%), suggesting that defects promote the formation of Si nano-crystals.

Summarizing, we provided a microscopic picture of the creation of Si–Si bonds in SiO\textsubscript{2} upon electron excitation, clarifying the issues of LS/ESS formation and Si/O diffusivities.

The authors acknowledge computer facilities at Tsukuba University and ISSP and support from Special Nanoscience Project-Tsukuba University and ACT-JST Program.

8 \textit{Cpmd} code by J. Hutter et al., Max-Planck-Institut FKF and IBM Zurich Research Laboratory, 1995–2003.