著者別名	村上 浩一
著作権 | ホンデフク株式会社
権利 | フェルグッド株式会社

doi: 10.1063/1.338351
Charge-state changes of substitutional nitrogen impurities in silicon induced by additional impurities and defects

Hisayoshi Itoh, Kouichi Murakami, Koki Takita, and Kohzoh Masuda
Institute of Materials Science, University of Tsukuba, Sakura, Ibaraki 305, Japan

(Received 19 June 1986; accepted for publication 13 January 1987)

Charge states of substitutional N impurities (N⁺) in Si are found to be controllable by doping with P, B, and O impurities in N-ion implanted and subsequently pulsed-laser annealed Si (Si:N system). Electron-spin resonance measurements of the Si:N system doped with P, B, or O impurities show that the spin density of neutral N⁺ (N⁺) decreases because of doping with these impurities. Compensation by multiple doping with equal amounts of P and B impurities leaves the density of N⁺ essentially unchanged. These results yield evidence for charge-state changes of N⁺ due to the Fermi level shift. Oxygen doping is found to introduce donors. Three charge states, i.e., positive (N⁺), neutral (N⁰), and negative (N⁻) are assigned to off-center substitutional N in Si.

I. INTRODUCTION

Nitrogen (N) impurities doped in Si are known to pin dislocations in Si and suppress thermal oxidation of Si. It was reported that N impurities retard silicide formation. In addition, buried silicon-nitride layer formed by N-ion implantation is useful for an insulator and a diffusion barrier for impurities. Therefore, N impurities in Si have been of technological interest in recent years.

There is, however, little information about substitutional or off-center substitutional N impurities (N⁺) in Si, in contrast to the other group-V elements. This is attributed to the difficulty of introducing N⁺ into Si by the conventional doping techniques. In fact, the equilibrium solid solubility of N in Si is low (4.5 ± 1.0 × 10¹⁸ atoms/cm³) (Ref. 9) as compared with that of the other donor- and acceptor-type impurities. On the other hand, it is known that N impurities are introduced into off-center substitutional sites of Si in excess of their solid solubility by means of N-ion implantation and subsequent pulsed-laser annealing (PLA). This stimulated many kinds of experiments for N impurities in Si; e.g., deep-level transient spectroscopy (DLTS), photoluminescence, infrared absorption, and electron spin resonance (ESR). This also stimulated theoretical studies of N impurities in Si. The electronic levels of N⁺, however, have not as yet been clarified. Determination of the charge states of N⁺ is needed to understand electrical characteristics and diffusion kinetics for N in Si. This can be accomplished by the introduction of donor-type or acceptor-type impurities into Si with N⁺ (Si:N system).

Moreover, the interactions between N and O impurities have been a growing interest. It was reported that N impurities enhance oxygen precipitation in Czochralski (CZ) Si wafers. Interactions of N pairs with O in pulsed-laser annealed Si and suggested that the interaction is controlled by O, which diffuses to sites near Si-N pairs. We found that O impurities have an effect on thermal annealing behavior of N⁺.

In this paper we report the effects of introducing P, B, and O impurities into the Si:N system and then discuss the charge states and electronic levels of N⁺ in Si. The impurity doping effects are investigated by the ESR measurements of various Si:N samples with additionally implanted impurities.

II. EXPERIMENTAL PROCEDURE

N ions (N⁺) were implanted in CZ, B-doped (100) Si wafers with the resistivity of 30–50 Ω cm at an acceleration energy of 70 keV. P ions (P⁺), B ions (B⁺), and O ions (O⁺) were subsequently implanted at acceleration energies of 70, 30, and 80 keV, respectively, to approximately overlap the profiles for N. The mean projected ranges (Rₚ) for 70 keV N⁺, 70 keV P⁺, 30 keV B⁺, and 80 keV O⁺ are about 940, 850, 970, and 940 Å, respectively. The standard deviations for N, P, B, and O ions are about 400, 340, 370, and 390 Å, respectively. The ion implantation dose varied from 10¹⁰ to 10¹⁵/cm² for P and B ion implantations and from 10¹⁰ to 10¹⁵/cm² for O ion implantation. All the ion implantations were made at room temperature (RT) and in a vacuum lower than 4 × 10⁻⁶ Torr. The dose rates of the ion-implanted impurities were lower than 0.5 μA/cm².

All the ion implanted samples were annealed with a Q-switched ruby laser (λ = 694 nm, pulse duration = 40 ns) at energy densities from 1.2 to 1.5 J/cm². The anneal beam irradiated samples in air through a quartz tube to homogenize a spatial variation in the beam intensity.

ESR measurements of these samples were made with a X-band (9-GHz) microwave incident upon TE₀₁₁ cylindrical cavity at RT. For the measurement of conduction and/or donor electrons in P-doped Si:N samples, the ESR measurements were made at about 77 K. To avoid the saturation of ESR absorption of neutral N⁺ (N⁰), the microwave power was made lower to 2 mW. The absolute number of N⁰ in Si was determined relative to the known number of Mn²⁺ in MgO, as a spin standard. Thus, a variation in cavity Q does not affect our evaluation of the spin density of N⁰. The absolute spin density was estimated to be uncertain by a factor less than 3, but the uncertainty in the relative density was less than ± 15%.

4862 J. Appl. Phys. 61 (10), 15 May 1987 0021-8979/87/104862-07$02.00 © 1987 American Institute of Physics 4862

Downloaded 22 Dec 2009 to 130.158.56.186. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp
III. RESULTS AND DISCUSSION

A. Phosphorus and boron doping

Figure 1 shows ESR spectra of Si:N, P-doped Si:N (Si:N:P) and B-doped Si:N (Si:N:B) samples observed at RT. Three hyperfine (hf) lines of N$_{0}^{+}$ are clearly observed in the Si:N sample with 2×10^{14} N$_{2}^{+}$/cm2, as shown in Fig. 1(a). It was reported by Brower10 that the SL5 center assigned to N$_{0}^{+}$ has C$_{3v}$ symmetry about (111) at temperatures below 100 K. This indicates that N is in off-center substitutional site rather than substitutional site of Si. Furthermore, we found from ESR measurements at RT that N$_{0}^{+}$ is isotropic (T_{d} symmetry) because of a motional effect.11 In this case the g value and hf constant A are 2.0065 ± 0.0005 and 16.0 ± 0.3 G, respectively. It is found from Fig. 1 that these isotropic values are not changed by doping with P or B in the Si:N sample, but intensities for the hf lines of N$_{0}^{+}$ are decreased by P or B doping, as shown in Figs. 1(b) and 1(c). Possible effects of strong spin–spin interactions between localized spin of N$_{0}^{+}$ and degenerate P donor electrons must be considered when we interpret a decrease in N$_{0}^{+}$. However, since no significant change in ESR linewidth and g factor of N$_{0}^{+}$ was observed in the Si:N:P system, the decrease in N$_{0}^{+}$ cannot be explained by spin–spin interactions between N$_{0}^{+}$ and P donor electrons. The same result was obtained in dangling bonds of Si in degenerate Si:P systems.28

Figure 2 shows the effects of various doses of P and B impurities on N$_{0}^{+}$ in the Si:N samples with 2×10^{14} N$_{2}^{+}$/cm2 and 5×10^{13} N$_{2}^{+}$/cm2. The Ar impurity effect is also shown in Fig. 2 for comparison. Here, an acceleration energy of Ar ions (Ar$^{+}$) was 80 keV and R_{p} is about 770 Å. The spin density of N$_{0}^{+}$ decreases dramatically with P or B doses above certain critical doses. The critical doses of P and B for the Si:N sample with 2×10^{14} N$_{2}^{+}$/cm2 are approximately 4×10^{13}P$^{+}$/cm2 and 2×10^{13} B$^{+}$/cm2, respectively. Average concentrations (dose/2R_{p}) of P and B for these critical doses are about 2×10^{18}/cm2 and 1×10^{19}/cm3, respectively. For the Si:N sample with 5×10^{13} N$_{2}^{+}$/cm2, the critical doses of P and B are about 2×10^{13} P$^{+}$/cm2 and 1×10^{13} B$^{+}$/cm2, respectively. In contrast to P and B doping, N$_{0}^{+}$ remains constant for Ar doping to a dose of about 1×10^{15} Ar$^{+}$/cm2. Results of Hall effect and Rutherford backscattering measurements29 show that 100% of the P and B impurities (up to concentrations of 5×10^{21}/cm3 and 1×10^{23}/cm3, respectively) are electrically activated by PLA. It was also reported29 that no macroscopic defects exist after PLA in Si doped with P and B up to these concentrations. In the present study the maximum concentration of P and B, corresponding to a dose of 1×10^{15}/cm2, is about 1×10^{20}/cm3. Consequently, ion-implanted P and B impurities are completely activated and the crystallinity of the Si:N system is not affected significantly by these P- or B-doping levels.

The critical P dose necessary to decrease N$_{0}^{+}$ is found to be dependent upon the implanted N dose rather than the spin density. This was determined from measurements on a Si:N sample that had been implanted with 2×10^{15} N$_{2}^{+}$/cm2. The spin density of N$_{0}^{+}$ for this higher dose was essentially the same as that for 2×10^{14} N$_{2}^{+}$/cm2, but the critical P dose was about 7×10^{13} P$^{+}$/cm2 compared to 4×10^{13} P$^{+}$/cm2. Thus, the decrease in N$_{0}^{+}$ is caused by P doping rather than by direct interaction between N and P in Si.

The P-doping effect on the spin density of N$_{0}^{+}$ can be interpreted by change in charge states of N$_{0}^{+}$. In this case a negative charge state of N$_{0}^{−}$ (N$_{0}^{−}$) is probably formed in the Si:N:P system. It was reported experimentally that N$_{0}^{−}$ is a deep-level donor and N-related paramagnetic defects exist in pulsed-laser annealed Si:N system.10,11 Electronic levels for N$_{0}^{−}$, N$_{2}^{+}$, and other N-related (ΣN) defects are schematically illustrated in Fig. 3. Without P doping, the Fermi level (E_{F}) is thought to be located between a level of N$_{0}^{−}$ and that
of N$_p^-$. Doping with P donors will cause E_F to rise because P-donor electrons are trapped by levels of other ΣN defects, levels between the initial E_F and the level of N$_p^-$ (ΔE_1 in Fig. 3). In the P-dose range below the critical dose, P-donor electrons are trapped only by levels of ΣN defects in ΔE_1 and the density of N$_p^0$ does not change. Above the critical P dose, E_F is shifted towards the level of the P, and so P donor electrons are trapped by N$_p^0$ to form diamagnetic N$_p^-$ states in the Si:N:P system.19

To examine conduction and/or donor (C/D) electrons trapped by ΣN defects and N$_p^0$, ESR measurements of the Si:N:P samples were performed at about 77 K. ESR spectra observed are shown in Fig. 4. The spectrum of C/D electrons

$$ (g = 1.999) $$ is observed in the Si:N:P sample with 5×10^{13} N$_p^2$ /cm2 and 1×10^{14} P$^+$ /cm2 as shown in Fig. 4(a). It is found from Figs. 4(b) and 4(c) that C/D electrons decrease with increasing N dose. In the Si:N:P with 1×10^{15} N$_p^+$/cm2 and 1×10^{14} P$^+$/cm2, C/D electrons cannot be seen, while N$_p^0$ can be observed. Figure 5 shows N dose dependence of the spin density of C/D electrons and N$_p^0$ in the Si:N:P samples with 1×10^{14} P$^+$/cm2 and 5×10^{13} P$^+$/cm2. N dose dependence of N$_p^0$ in the Si:N system is also represented by a dashed line in Fig. 5. The decrease in C/D electrons by doping with N indicates that ΣN defects with deep levels increase with N dose, and they trap C/D electrons. It should be also stressed that the number of the trap centers is approximately 50%-100% of that of the implanted N$_p^-$. This suggests that N pairs observed by Stein17 in Si implanted with N may be dominant in ΣN. For N$_p$ dose $> 1 \times 10^{14}$/cm2, N$_p^0$ becomes observable, while the C/D electrons almost disappear. The difference between the spin density of N$_p^0$ in the Si:N system and that in the Si:N:P system corresponds to a density of N$_p^-$ in the Si:N:P system.

Similarly to the P doping, B doping decreases N$_p^0$ in the Si:N system, as shown in Fig. 2. This can also be explained by change in the charge states of N$_p^-$. In this case no shallow donors are added so that doping with B in the Si:N system causes E_F to fall. If the initial E_F is located just below the level of N$_p^-$ within an energy difference of 0.06 eV, an increase in the spin density of N$_p^0$ should be observed at 300 K initially for B doping. However, the density of N$_p^0$ is not influenced within the experimental accuracy (15%) by the doping with B in the dose range below critical doses of about 10^{13}/cm2. This suggests that the initial E_F is not located just below the level of N$_p^-$ but near the middle of the levels of N$_p^0$ and N$_p^-$. Thus, below the critical dose, B acceptors capture electrons from ΣN defects whose levels are located between the initial E_F and the level of N$_p^0$ (ΔE_2 in Fig. 3). In the B-dose range above the critical dose, E_F is shifted towards the
acceptor level of B, and then N\textsubscript{A} with a positive charge (N\textsubscript{A}+) is possibly formed, which cannot be detected by ESR measurements. In contrast to this idea, one may consider that the decrease in N\textsubscript{O} by B doping is due to pair formation of N\textsubscript{A} and substitutional B impurities, and such a pair has no unpaired electron. This latter possibility must be ruled out because of the results of multiple doping with P and B in the Si:N system, as described later.

To confirm the idea of charge-state changes, multiple doping with P and B was carried out in the Si:N system. In this approach doping effects are independent of Si:N defects since electronic levels for B acceptors and P donors are most shallow. Figure 6 shows the results of multiple doping with P and B impurities in the Si:N system. The spin density of N\textsubscript{O} in the Si:N sample with 2\times1014 N\textsubscript{A}+/cm2 is about 3.8\times1013/cm2 and decreases down to 1.9\times1013/cm2 and 1\times1012/cm2 with B doping at doses of 5\times1013 B+/cm2 and 1.5\times1014 B+/cm2, respectively [see Figs. 2 and 6]. In the Si:N:B with 5\times1013 B+/cm2, N\textsubscript{O} increases substantially when the P doping is around a dose of 5\times1013 P+/cm2. A similar result is obtained for P doping in the Si:N:B with 1.5\times1014 B+/cm2. These results illustrate the compensating effect between P donors and B acceptors and show that the decrease in N\textsubscript{O} by B or P doping is not caused by N\textsubscript{A}-P or N\textsubscript{A}-B pairing. We conclude, therefore, that the variation in N\textsubscript{O} observed in the Si:N:B and Si:N:P systems is due to changes in the charge states of the N\textsubscript{A}.

B. Oxygen doping

The effect of doping with O impurities on N\textsubscript{O} in the Si:N system was examined to investigate interactions between N and O impurities (or O-related defect centers). Figure 7 shows the O-doping effect on N\textsubscript{O} for the Si:N samples with 2\times1014 N\textsubscript{A}+/cm2 and 5\times1013 N\textsubscript{A}+/cm2. The Ar-doping effect is also shown for comparison. For the Si:N:B sample, the spin density of N\textsubscript{O} changes anomalously in O dose range between 1\times1014 O\textsubscript{2}+/cm2 and 1\times1015 O\textsubscript{2}+/cm2, i.e., N\textsubscript{O} decreases with increasing O dose in the dose range from 1\times1014 to 5\times1014 O\textsubscript{2}+/cm2 and increases in the range from 5\times1014 to 1\times1015 O\textsubscript{2}+/cm2. No significant change in N\textsubscript{O} is seen below 1\times1014 O\textsubscript{2}+/cm2. In the dose range above 1\times1015 O\textsubscript{2}+/cm2, N\textsubscript{O} decreases with increasing O dose because of imperfect recrystallization like Ar implantation above 1\times1015 Ar+/cm2. The anomalous change in N\textsubscript{O} is not observed in Ar doping.

He-ion implantation and multiple doping with O and B (or P) were performed to investigate the anomalous change in N\textsubscript{O} in the Si:N:O system. The results of He+ implantation are shown in Fig. 8 for the Si:N:O sample with 2\times1014 N\textsubscript{A}+/cm2 and 5\times1014 O\textsubscript{2}+/cm2 in which the largest anomalous decrease is observed. N\textsubscript{O} in the Si:N:O system is increased by defect production with He-ion implantation, such as the case of the Si:N:P system. This suggests that new donor levels related with O impurities are formed in the Si:N:O system, and N\textsubscript{O} states are generated.

Figure 9 shows B- and P-doping effects on N\textsubscript{O} for the Si:N:O samples with 3\times1014 O\textsubscript{2}+/cm2 and 5\times1014 O\textsubscript{2}+/cm2.

![Image of Figure 6](http://example.com/image6.png)

FIG. 6. P-doping effect on N\textsubscript{O} in the Si:N:B samples with 5\times1013 B+/cm2 and 1.5\times1014 B+/cm2. N\textsubscript{O} dose in both samples is 2\times1014 N\textsubscript{A}+/cm2. Broken line indicates the spin density of N\textsubscript{O} in the Si:N with 2\times1014 N\textsubscript{A}+/cm2.

![Image of Figure 7](http://example.com/image7.png)

FIG. 7. O and Ar-doping effects upon N\textsubscript{O} density in the Si:N samples with 2\times1014 N\textsubscript{A}+/cm2 and 5\times1013 N\textsubscript{A}+/cm2. The abscissa indicates 80-keV O2+ and 80-keV Ar+ dose levels. The spin density of residual paramagnetic defects is also shown for the Si:N:O sample with 2\times1014 N\textsubscript{A}+/cm2 after pulsed-laser annealing.

![Image of Figure 8](http://example.com/image8.png)

FIG. 8. He-ion implantation effect on N\textsubscript{O} in the Si:N:P sample with 2\times1014 P+/cm2, the Si:N:B sample with 1\times1014 B+/cm2 and the Si:N:O sample with 5\times1014 O\textsubscript{2}+/cm2. N\textsubscript{O} dose in all samples is 2\times1014 N\textsubscript{A}+/cm2. The projected range of 60 keV He+ is about 0.8 \mu m.
the Si:N system because some kinds of defects such as \(\Sigma \)N exist in the Si:N system. Approximate levels for \(N_0 \) are estimated from the results of N dose dependence of C/D electrons and \(N_0^+ \) in the Si:N:P system and from DLTS measurements for the Si:N system. It should be stressed that, for example, ESR signals of both C/D electrons and \(N_0^+ \) can be observed in the Si:N:P sample with \(2 \times 10^{14} \) \(N_0^+ \)/cm\(^2\) and \(1 \times 10^{14} \) P\(^+\)/cm\(^2\), as shown in Figs. 4(b) and 5. The spin density of P donor electrons and \(N_0^+ \) becomes about 2% of that in the Si:P sample only with \(1 \times 10^{14} \) P\(^+\)/cm\(^2\) and about 10% of that in the Si:N sample only with \(2 \times 10^{14} \) N\(^+_0\)/cm\(^2\), respectively. The latter shows that about 90% of \(N_0 \) is in the state of N\(^-_0\). These indicate that electrons occupy about 2% of P donor level and about 90% of N\(^-_0\) level at 77 K. Taking account of the Fermi–Dirac distribution function at 77 K, a difference in the energy levels between P donor and N\(^-_0\) is estimated to be about 40 meV. Since the maximum concentration of P is about \(1 \times 10^{15}/\text{cm}^2\) in the Si:N:P sample with \(1 \times 10^{14} \) P\(^+\)/cm\(^2\), the P donors form an impurity band in Si. However, it was assumed here that the width of the impurity band is narrow. Thus, the level of N\(^-_0\) is estimated to be about 80 meV under the bottom of the conduction band of Si (\(E_c \)-0.08 eV). Pantelides and Sah\(^{33}\) reported that a calculated level of N\(^-_0\) is \(E_c \)-52.5 meV. Our estimated value is in reasonable agreement with the calculated value. To investigate deep levels in pulsed-laser annealed Si:N system, DLTS measurements of the Si:N system were performed. Three deep levels of \(E_c \)-0.31 eV, \(E_c \)-0.42 eV, and \(E_c \)-0.56 eV were observed. In particular, the level of \(E_c \)-0.31 eV increased with N dose in the Si:N system. It seems that the level of \(E_c \)-0.31 eV compares with a value (\(E_c \)-335.9 meV) for \(N_0^+ \) calculated by Pantelides and Sah.\(^{33}\) More work is needed, however, for assignment of these observed levels. The DLTS and barrier-controlled ESR measurements are now in progress for the Si:N system to determine exact levels of N\(^-_0\) and N\(^0\).

He-ion implantation of the Si:N:P and Si:N:B systems was performed to further check the approximate levels of \(N_0^+ \) and N\(^-_0\). These are schematically illustrated in Fig. 10(a). Figure 8 shows the result of 60-keV He\(^+\) implantation in the Si:N:P with \(2 \times 10^{14} \) \(N_0^+ \)/cm\(^2\) and \(2 \times 10^{14} \) P\(^+\)/cm\(^2\) and in the Si:N:B with \(2 \times 10^{14} \) N\(^+_0\)/cm\(^2\) and \(1 \times 10^{14} \) B\(^+\)/cm\(^2\). The initial spin densities of \(N_0^+ \) in the Si:N:P and Si:N:B samples decrease from \(3.0 \times 10^{13}/\text{cm}^2\) to \(2.0 \times 10^{13}/\text{cm}^2\) and \(1.3 \times 10^{13}/\text{cm}^2\), respectively, because of the charge-state changes of \(N_0^+ \), as shown in Figs. 10(b) and 10(c) (see Sec. A). The He-ion implanted samples were not annealed in this case. The increase in \(N_0^+ \) in the Si:N:P sample is clearly observed with He-ion dose from \(2 \times 10^{13} \) He\(^+\)/cm\(^2\) to \(3 \times 10^{14} \) He\(^+\)/cm\(^2\), but is not observed in the Si:N:B sample. Our interpretation for the He\(^+\) implantation effect is illustrated in Figs. 10(d) and 10(e) for the Si:N:P and Si:N:B systems, respectively. It was reported that He-ion implantation induces several deep-level defects (electron traps and hole traps) such as O-vacancy pairs and divacancy centers in Si,\(^{34}\) similarly in the case for electron irradiation. Since the levels of induced defects are thought to be distributed in Si band gap, these levels cause gradually \(E_c \) to shift towards the middle of the band gap with increasing the He dose. Therefore,
matsu for his support in the ESR experiments. We would like to express our appreciation to Dr. Y. Yuba for DLTS measurements and valuable discussions. This work was partly supported by a Grant-in-Aid for the Special Project Research (1985-1987) on Ion Beam Interactions with Solids from the Ministry of Education, Science and Culture.

FIG. 10. (a) Schematic energy diagram of the substitutional N (N_s) in Si. Signs of +, and — indicate charge states of N_s. A level of N_s+ indicating a bonding state of Si-N is assumed to be under the top of the valence band. P- and B-doping effects on N_s are shown in (b) and (c), respectively. He+ implantation effect is schematically illustrated in (d) and (e) for Si:N:P and Si:N:B systems, respectively. D represents levels of defects induced by He+ implantation. Solid arrows represent an electron trapping.

the results of He-ion implantation can be interpreted by the Fermi level shift if the electronic levels of N_s (N_s^0 and N_s^-) are located in the upper side of Si band gap.

IV. CONCLUSIONS

We have investigated the effects of doping with P (donor-type) and B (acceptor-type) impurities on substitutional N impurities (N_s^0) in the Si:N system in order to clarify electronic states of N_s in Si. The spin density of neutral substitutional N impurities (N_s^0) in the Si:N system decreases by introduction of P or B impurities. He+ implantation causes increase in N_s^0 for Si:N:P system, while it causes decrease in N_s^0 for Si:N:B system. Multiple doping with equal amounts of P and B impurities shows no significant change in N_s^0, indicating their compensating effects. From these results, we conclude that substitutional N impurities (N_s) in Si exhibit at least three controllable charge states, i.e., neutral (N_s^0), negative (N_s^-), and positive (N_s^+) states. N_s^- and N_s^+ states are formed in the Si:N:P and Si:N:B systems, respectively, depending on the Fermi level position.

Furthermore, the effects of doping with O impurities on N_s^0 are first investigated. The spin density of N_s^0 decreases anomalously by O doping in the dose range between 1×10^{14} O^2+ /cm2 and 1×10^{15} O^2+ /cm2. Both He+ implantation and B doping in the Si:N:O system cause increase in N_s^0, whereas P doping causes its decrease. The results yield evidence that new O-related donors are generated by pulsed-laser annealing, and then N_s^- states are formed in the Si:N:O system.

ACKNOWLEDGMENTS

The authors would like to thank O. Eryu and T. Masaki for their assistance in the experiments and Professor H. Sue-
