REFERENCES

Stabilizing and Direction Control of Efficient 3-D Biped Walking Based on PDAC

Tadayoshi Aoyama, Yasuhsia Hasegawa, Kosuke Sekiyama, and Toshio Fukuda

Abstract—This paper proposes a 3-D dynamic walking algorithm based on passive dynamic autonomous control (PDAC). The robot dynamics is modeled as an autonomous system of a 3-D inverted pendulum by applying the PDAC concept that is based on the assumption of point contact of the robot foot and the virtual constraint as to robot joints. Due to autonomy, there are two conservative quantities named “PDAC constant,” which determine the velocity and direction of the biped walking. We also propose the convergence algorithm to make PDAC constants converge to arbitrary values, so that walking velocity and direction are controllable. Finally, experimental results validate the performance and the energy efficiency of the proposed algorithm.

Index Terms—Biped walking, legged robots, underactuate.

I. INTRODUCTION

By assuming a point contact between a robot foot and the ground and using a robot inherent dynamics, a natural and efficient bipedal walking has been realized. Grizzle and Westervelt et al. built the controller by the use of virtual constraint that realizes the stable dynamic walking by means of the planar biped robot with a torso [1]–[3]. Also, it is reported to propose analytical 3-D biped walking control method for a five-link bipedal robot based on the point contact [4], [5]. A few works realized 3-D biped walking with an experimental robot. Fukuda et al. realized 3-D dynamic walking with the experimental robot based on the assumption that the sagittal and lateral motions can be separated [6]. However, this control method has a problem in dividing 3-D dynamics when the dynamics of each plane is closely coupled. In order to solve this problem, we apply the passive dynamic autonomous control (PDAC) [7], which is one of the point contact methods, to a 3-D dynamics of the robot without dividing.

We model a biped robot as a 3-D inverted pendulum. By applying the PDAC, a 3-D dynamics is expressed as a 2-D autonomous system. This 2-D autonomous system has two conservative quantities named as “PDAC constant.” Since two PDAC constants determine the walking velocity and the walking direction of the robot, the velocity and the direction of the walking are converged into the desired ones by controlling the two PDAC constants. This paper proposes the two controllers for two PDAC constants and confirms the convergence of two constants in numerical simulations. Finally, experimental results validate that the proposed algorithm realizes the stable and energy efficient walk.

Manuscript received March 1, 2009; revised June 29, 2009. First published October 20, 2009; current version published November 11, 2009. Recommended by Guest Editor J.-P. Laumond.
T. Aoyama, K. Sekiyama, and T. Fukuda are with the Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603, Japan (e-mail: aoyama@robo.mein.nagoya-u.ac.jp; sekiyama@mein.nagoya-u.ac.jp; fukuda@mein.nagoya-u.ac.jp).
Y. Hasegawa is with the Department of Intelligent Interaction Technologies, University of Tsukuba, Tsukuba 305-8573, Japan (e-mail: hase@eisys.tsukuba.ac.jp).

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMECH.2009.2032777
Fig. 1. (a) 3-D inverted pendulum model. (b) Definition of coordinate system. Note that this figure shows only a coordinate system definition and does not mean that foot placement is in alignment.

Fig. 2. (a) Passive joints (point contact) and active pendulum length actuation. (b) Polar coordinate system around contact point.

II. MODEL

A. 3-D Inverted Pendulum Model

In this paper, a robot is modeled as a 3-D inverted pendulum, as shown in Fig. 1(a). We utilize the polar coordinate system, and the state variables and parameters are shown in Fig. 2(b). By applying PDAC, dynamic equations of 3-D inverted pendulum are expressed as follows:

\[
\frac{d}{dt}(ml^2 \dot{\phi}) = 0
\]

and

\[
\frac{d}{dt}(ml^2 \dot{\theta}) = ml^2 \dot{\phi}^2 \sin \theta \cos \theta + mgl \sin \theta
\]

where \(\theta\) and \(\phi\) are the variables of the pendulum angle around the contact point, and \(l\) is the variable of the pendulum length. The detailed calculation process of (1) and (2) is given in [8]. By multiplying both sides of (1) by \(ml^2 \sin^2 \theta \dot{\phi}\) and integrating with respect to time, the following constraint equation is obtained:

\[
\dot{\phi} = \frac{\sqrt{2C_1}}{ml^2 \sin^2 \theta}
\]

where \(C_1\) is the integral constant. Substituting (3) into (2) results in

\[
\dot{\theta} = \frac{1}{ml^2} \sqrt{2 \int \left(\frac{2C_1 \cos \theta}{\sin^2 \theta} + m^2 g l^3 \sin \theta d\theta \right)}
\]

\[
:= \frac{1}{M(\theta)} \sqrt{2(D(\theta) + C_2)}
\]

\[
:= F_2(\theta)
\]

where \(C_2\) is the integral constant. We call \(C_1\) and \(C_2\) “PDAC constant,” which are determined by initial state immediately after a foot contact. Next, in accordance to PDAC, the pendulum length is described as the function of \(\theta\) as

\[
l := \lambda(\theta).
\]

In this paper, for simplicity, \(\lambda\) is defined as a function of \(\theta\) as follows:

\[
\lambda(\theta) := \sqrt{\int f(\theta) \cos \theta d\theta} - \left(f(\theta) - f''(\theta) \right) \sin \theta.
\]

By substituting this equation into (6), the converged dynamics are derived as

\[
M(\theta) = mf(\theta)^{2/3}
\]

\[
D(\theta) = \frac{C_1}{\sin^2 \theta} - m^2 g ((f(\theta) - f''(\theta)) \cos \theta - (f'(\theta) - f'''(\theta)) \sin \theta).
\]

B. Design of Walking Cycle

In this section, the actual motion of the robot is designed. Fig. 3 shows the parameters and variables of the pendulum motion. \(S_0\) and \(S_2\) denote moments right before and after a foot contact, and \(S_1\) is a moment at \(\dot{\theta} = 0\). The variables \(\theta, \phi,\) and \(l_i\) denote the roll angle, yaw angle, and pendulum length at \(S_i\) \((i = 0, 1, 2)\), respectively. During a cycle of walking motion, \(\phi\) is monotonically increasing. Meanwhile, \(\theta\) decreases at first, and then increases, after posing for a moment at \(\theta_1\). Thus, we compartmentalize a walking cycle from a foot contact to the next foot contact into two phases—phase (A): from \(S_0\) to \(S_1\) \((\dot{\theta} < 0)\); phase (B): from \(S_1\) to \(S_2\) \((\dot{\theta} > 0)\). In phase (A), the pendulum length is constant; thus, the coefficients \(p_1, p_2, \ldots, p_4\) in (9) are

\[
p_1 = p_2 = p_3 = 0
\]

\[
p_4 = l_1^0.
\]
In phase (B), the coefficients \(p_1 - p_4 \) are decided so that the following four conditions are satisfied:

\[
\begin{align*}
f(\theta_1) &= l_1^3 \\
f(\theta_2) &= l_2^3 \\
f'(\theta_2) &= 0
\end{align*}
\]

and

\[
-f''(\theta_1) \cos \theta_1 + \left(-f'(\theta_1) + f'''(\theta_1) \right) \sin \theta_1 = 0.
\]

Equations (15) and (16) signify the condition of pendulum length continuity, and (17) is the condition that the velocity of the pendulum along \(l \) is 0 at a foot contact. The objective of (18) is to match PDAC constants of the phases (A) and (B).

From (15)–(18), the coefficients \(p_1 - p_4 \) are derived as follows:

\[
\begin{align*}
p_1 &= -\frac{l_2^3 - l_0^3}{(\theta_2 - \theta_0)^3} u_3 \\
p_2 &= -\frac{l_2^3 - l_0^3}{(\theta_2 - \theta_0)^3} u_2 \\
p_3 &= -3p_1 \theta_2^2 - 2p_2 \theta_2 \\
p_4 &= l_2^3 - p_1 \theta_2^3 - p_2 \theta_2^2 - p_3 \theta_2
\end{align*}
\]

where

\[
\begin{align*}
u_1 &= 2\theta_2 + \theta_1 \\
u_2 &= -6\theta_1 \cos \theta_1 - 3\theta_2^2 \sin \theta_1 + 6 \sin \theta_1 + 3\theta_2^2 \sin \theta_1 \\
u_3 &= -2 \cos \theta_1 - 2 \theta_1 \sin \theta_1 + 2 \theta_2 \sin \theta_1.
\end{align*}
\]

C. Foot Contact Model

In this paper, it is assumed that perfectly inelastic collision between the ground and a foot occurs for a moment, similarly to previous works \([1, 3, 5]\). Thus, the angular momentum around a new contact point is conserved. Assuming that \(\phi_0 \) is the angle of \(\phi \) right after a foot contact, a vector of the pendulum after impact, \(\mathbf{L} \), is

\[
\mathbf{L} = [l_0 \sin \phi_0 \sin \theta_0, l_0 \cos \phi_0 \sin \theta_0, l_0 \cos \phi_0 \sin \theta_0]^T
\]

where \(\phi_0 \) and \(\theta_0 \) are angles in the coordinate system of the next step.

The velocity vector right before a foot contact, \(\mathbf{V}_1 \), is calculated as follows:

\[
\mathbf{V}_1 = [v_x, v_y, v_z]^T
\]

where

\[
\begin{align*}
v_x &= l_2 (\dot{\phi}_2 \cos \phi_2 \sin \theta_2 + \dot{\theta}_2 \sin \phi_2 \cos \theta_2) \\
&+ \dot{l}_2 (\sin \phi_2 \sin \theta_2) \\
v_y &= l_2 (-\dot{\phi}_2 \sin \phi_2 \sin \theta_2 + \dot{\theta}_2 \cos \phi_2 \cos \theta_2) \\
&+ \dot{l}_2 (\cos \phi_2 \sin \theta_2) \\
\text{and} \\
v_z &= -l_2 \dot{\theta}_2 \sin \theta_2 + \dot{l}_2 (\cos \theta_2)
\end{align*}
\]

with \(\phi_2 \) being the angle of \(\phi \) before the foot contact.

The velocity vector after a foot contact, \(\mathbf{V}_0 \), is derived by the following equation:

\[
\mathbf{V}_0 = \frac{\mathbf{V}_1 (\mathbf{L} \times (\mathbf{V}_1 \times \mathbf{L}))}{|\mathbf{L} \times (\mathbf{V}_1 \times \mathbf{L})|^2} (\mathbf{L} \times (\mathbf{V}_1 \times \mathbf{L}))
\]

where \(\mathbf{V}_1 = [-v_x, v_y, v_z]^T \) since left- and right-handed systems are switched at a foot contact.

From (30), \(\dot{\theta}_0 \) and \(\phi_0 \) are

\[
\dot{\theta}_0 = \frac{-v_z}{l_0 \sin \theta_0}
\]

and

\[
\dot{\phi}_0 = \frac{\sin \phi_0 \cos \theta_0 \dot{\phi}_0}{\cos \phi_0 \sin \theta_0} - \frac{-v_y}{l_0 \cos \phi_0 \sin \theta_0}.
\]

III. Stabilization

A. Geometrical Constraints

In order to stabilize walking, some geometrical constraints are given. At first, a displacement of a pendulum length is fixed to a constant value. In this constraint, a supplied energy is almost constant. In addition, the following two constraints about a foot contact are designed, as shown in Fig. 4.

1) The height of center of gravity (COG) \(h \) at a foot contact is constant, i.e., roll angles of stance and swing leg are constant at a foot contact.

2) Yaw angle of a swing leg is shifted by \(\epsilon \) from the symmetrical position with a stance leg at a foot contact, i.e., it is \(\phi_0[k+1] = -\phi_2[k] + \epsilon \), where \(\phi_0[k+1] \) and \(\phi_2[k] \) denote \(\phi_0 \) and \(\phi_2 \) at the \((k+1)\)th and \(k \)th steps, respectively.

B. Stabilization Based on PDAC Constant

In this section, we propose the novel stabilizing control by the use of PDAC constants. The 2-D converged dynamics has two conserved quantities, i.e., PDAC constants \(C_1 \) and \(C_2 \), as can be seen in (4) and (7). These two PDAC constants determine the trajectory in the 3-D space composed of \(\theta, \dot{\theta}, \) and \(\phi \), i.e., the robot dynamics. Note that \(\phi \), which decides only the direction of the pendulum, is directly independent of \(\theta, \dot{\theta}, \) and \(\phi \) [see (4) and (7)]. Thus, in order to build the controller that stabilizes bipedal walking in the 4-D space composed of \(\theta, \dot{\theta}, \phi, \) and \(\dot{\phi} \), it is necessary to design the following two controllers: 1) the convergent controller of PDAC constant for stabilizing the dynamics and 2) the walking direction controller for deciding the walking direction of the robot. Hereinafter, controller 1) is described first, and then
2) is explained. We show the process of convergence and stabilization by means of return maps.

1) Convergent Controller of PDAC Constants: Two PDAC constants that determine the robot dynamics keep certain values respectively until a next foot contact. Values of the two PDAC constants are derived from the condition immediately after a foot contact; also, two PDAC constants are redetermined at every foot contact, respectively. Therefore, stabilization can be realized if two PDAC constants converge to the desired values at every step. In order to converge PDAC constants to the desired values, it is necessary to find the condition of \(\dot{l}_2 \), \(h \), and \(\epsilon \). Hence, the constraint condition satisfying the desired PDAC constants is derived.

At first, convergent values of PDAC constants are obtained. Letting PDAC constants at the \(k \)th step to be \(C_1[k] \) and \(C_2[k] \), \(C_1[k + 1] \) and \(C_2[k + 1] \) are described as follows from (4), (7), (31) and (32):

\[
C_1[k + 1] = \left(\frac{R_{11}}{l_1} \sqrt{C_1[k] + R_{12} \sqrt{A}} \right)^2
\]

\[
C_2[k + 1] = \left(\frac{1}{\sin^2 \theta_0} R_{11} \sqrt{C_1[k] + R_{12} \sqrt{A}} \right)^2 + \frac{m^2 g l_0^2 \cos \theta_0}{l_2^3}
\]

\[
= \xi_2(C_1[k], C_2[k], \theta_0, \theta_2, \epsilon, l_2)
\]

where

\[
R_{11} = \frac{l_0 \sin \theta_0 \cos \epsilon}{l_2 \sin \theta_2}
\]

\[
R_{12} = \frac{l_0 \sin \theta_0 \cos \theta_2 \sin \epsilon}{l_2}
\]

\[
R_{21} = \frac{l_0 \cos \theta_0 \sin \epsilon}{l_2 \sin \theta_2}
\]

\[
R_{22} = \frac{l_0}{l_2} \left(\sin \theta_2 \theta_0 - \cos \theta_0 \cos \theta_2 \cos \epsilon \right)
\]

and

\[
A = \frac{-C_1[k]}{\sin^2 \theta_0} + D(\theta_2) + C_2[k].
\]

Note that \(l_0 \) is a constant value.

Assuming that \(C_1[k] = C_1[k + 1] = C_1^* \) and \(C_2[k] = C_2[k + 1] = C_2^* \), (34) and (36) at stable points are described as follows:

\[
C_1^* = \left(\frac{R_{21}}{l_0} \sqrt{C_1^*} + R_{22} \sqrt{B} \right)^2
\]

\[
= \xi_1(C_1^*, C_2^*, \theta_0, \theta_2, \epsilon, l_2)
\]

\[
C_2^* = \left(R_{21} \sqrt{C_1^*} + R_{22} \sqrt{B} \right)^2
\]

\[
+ \frac{1}{\sin^2 \theta_0} \left(R_{11} \sqrt{C_1[k] + R_{12} \sqrt{A}} \right)^2
\]

\[
+ m^2 g l_0^2 \cos \theta_0
\]

\[
= \xi_2(C_1^*, C_2^*, \theta_0, \theta_2, \epsilon, l_2)
\]

where

\[
B = -C_1^* + D(\theta_2) + C_2^*.
\]

Thus, the convergent PDAC constants \(C_1^* \) and \(C_2^* \) are derived as follows:

\[
C_1^* = \frac{R_{21} \sqrt{C_1^*} + R_{22} \sqrt{B} \left(\frac{R_{21} + R_{22} \sqrt{A}}{\sin^2 \theta_0} - 1/(\sin^2 \theta_2) + (1 - R_{11})^2/R_{12}^2 \right)}{R_{12}^2}
\]

\[
= \eta_1(\theta_0, \theta_2, \epsilon, l_2)
\]

\[
C_2^* = \left(\frac{1}{\sin^2 \theta_0} + \frac{(1 - R_{11})^2}{R_{12}^2} \right) C_1^*
\]

\[
= \eta_2(\theta_0, \theta_2, \epsilon, l_2).
\]

The geometrical constraint \(h \) represents the relationship of \(\theta_0, \theta_2, \) and \(l_2 \), i.e.,

\[
h = l_0 \cos \theta_0
\]

\[
= l_2 \cos \theta_2.
\]

Hence, from (48), and (50)–(52), it is possible to decide \(\theta_0, \theta_2, \epsilon_2, \) and \(l_2 \) by Newton–Raphson method.

By employing \(\theta_0, \theta_2, \epsilon_2 \), and \(l_2 \) satisfying (48) and (50), if \(C_1[k] = C_1^* \) and \(C_2[k] = C_2^* \), then \(C_1[k + 1] = C_1^* \) and \(C_2[k + 1] = C_2^* \). Thus, if \(C_1^* \) and \(C_2^* \) exist and are unique, and if \(\frac{\partial \eta_1}{\partial \theta} < 1 \) and \(\frac{\partial \eta_2}{\partial \theta} < 1 \) in the vicinity of \((C_1^*, C_2^*) \), PDAC constants are converged on a fixed point. Fig. 5 shows the constant \(C_1^* \) manifold and the constant \(C_2^* \) manifold in a 3-D space composed of \(\theta_0, \theta_2, \phi \). If \(C_2 \) is converged on \(C_2^* = 456 \), the trajectory in the 3-D space composed of \((\theta, \phi, \dot{\phi}) \) is attracted to the manifold depicted in Fig. 5 (left). Similarly, if \(C_1 \) has converged on 0.02, the trajectory is attracted to the manifold shown in Fig. 5 (middle). Consequently, if \(C_1 \) and \(C_2 \) are converged on \((C_1^*, C_2^*) \), the robot state is attracted to the trajectory composed of both manifolds, as shown in Fig. 5 (right). Fig. 6 (top and bottom) shows, respectively, the return maps of \(C_1 \) and \(C_2 \) under the condition of \((C_1^*, C_2^*) = (0.02, 456.0) \). As can be seen in this figure, \(C_1 \) and \(C_2 \)
possess the stable fixed points at \(C^*_1 \) and \(C^*_2 \). Therefore, \(C_1 \) and \(C_2 \) converge to \(C^*_1 \) and \(C^*_2 \), respectively. That is, the trajectory in the 3-D space composed of \(\theta \), \(\dot{\theta} \), and \(\phi \) converges to a sole trajectory determined by \(C^*_1 \), \(C^*_2 \), and \(h \).

2) Walking Direction Controller: Next, we design the walking direction controller. Since \(\phi \) is independent of the robot dynamics, \(\phi \) determines only a walking direction. Thus, the walking direction is determined by the phase portrait of \(\phi \). If two-cycle trajectory occurs in the phase space of \(\phi \), the robot walks to the right or left direction. That is to say, by adjusting the degree of the error from one-cycle trajectory, i.e., the degree of two cycles, it is possible to control the walking direction. The difference of two cycles in the phase space of \(\phi \) should be controlled arbitrary in order to walk in the desired direction.

Fig. 7 shows the relationship between PDAC constants, \(C_1 \), \(C_2 \), and the variation of \(\phi \) for a step, \(\phi_2 - \phi_0 \). As can be seen in this figure, the variation of \(\phi \) monotonically increases with respect to \(C_2^* \) and monotonically decreases with respect to \(C_1^* \). Besides, it can be seen from this figure that the effect of \(C_2^* \) on the variation of \(\phi \) is large, whereas that of \(C_1^* \) is quite small. Thus, to adjust the two cycles of the trajectory in the phase space of \(\phi \), \(C_1^* \) and \(C_2^* \) are determined according to the following equations:

\[
C_1^* = C_1^d \tag{53}
\]

\[
C_2^* = C_2^d + g_\phi \left(\phi_1[k] - \phi_3[k+1] + (-1)^k \sigma \phi_1^d \right) \tag{54}
\]

where

\[
\sigma = \begin{cases}
1, & \text{left direction} \\
-1, & \text{right direction}
\end{cases} \tag{55}
\]
C_1^* and C_2^* are the desired PDAC constants, g_0 is the feedback gain of the direction, $\phi_1[k]$ and $\phi_1[k-1]$ are ϕ_1 values at present and previous steps, and ϕ_1^d is the desired angle, which is determined by the desired walking direction, e.g., $\phi_1^d = 0$ if the desired walking direction is straight. Note that ϕ_8 is the yaw angle at $\theta = 0$ (see Fig. 3).

Fig. 8 shows the return map of $\delta \phi[k]$ with respect to C_1^* under the condition of $g_0 = 0.3$ and $C_2^* = 456.0$. From this figure, it can be seen that $\delta \phi$ possesses the stable fixed point at 0. Hence, the walking direction can be controlled stably by (53) and (54).

Fig. 9 depicts the phase portrait of θ and ϕ under the condition that $C_1^* = 0.02$, $C_2^* = 456.0$, $h = 0.428$, $l_0 = 0.455$, $g_0 = 0.3$, and $\sigma = 1$. As can be seen from these portraits, the proposed walk direction control achieves the desired two-cycle trajectory of the phase space of ϕ. In a practical use, the robot updates ϕ_1^d regularly according to the information of a target direction given by a controller or a user.

As a result, it is conceivable that the robot gets close to the target gradually, and reach the desired direction finally. The convergence of the trajectory is confirmed by the phase portrait of θ in Fig. 9. Thus, the trajectory in the 3-D space composed of θ, $\dot{\theta}$, and ϕ also converges to a sole trajectory.

IV. EXPERIMENT

A. Experimental Setup

Fig. 10 depicts the overview of our robot “Gorilla Robot III (Multi-Locomotion Robot)” [9] and its link structure. The robot is about 1.0 m tall, weighs about 24.0 kg, and consists of 25 links and 24 motors including two grippers. The real-time operating system VxWorks (wind river systems) runs on a Pentium III PC for processing sensory data and generating its behaviors. Each joint is driven by an ac servo motor through the harmonic drive gear, partially through a timing belt. Maximum output power of the motor is 30 W. The power supply and the computer are installed outside of the robot for weight saving.

B. Experimental Result

We validated the proposed algorithm with the Gorilla Robot III. The experiment was conducted on the level ground with maximum ±1.0 cm irregularity under the condition that the desired direction is straight ($\phi_1^d = 0$). As a result of the experiment, 3-D dynamic walking in 0.14 m step length and 0.26 m/s walking velocity was realized. Although the ground has maximum ±1.0 cm irregularity in the experimental environment and the information of the ground shape was not given to the robot, the robot achieved the stable walking. Fig. 11 shows snapshots of the experiment. Also, Figs. 12 and 13 show the joint angles and joint torques of the experiment, respectively. It is confirmed from Fig. 12 that the cyclic trajectories change to large ones gradually.

C. Energy Efficiency

The biped walk of the Gorilla Robot III is also evaluated based on the dimensionless specific mechanical cost of transport, $C_{\text{mt}} = \frac{\text{consumed mechanical energy}}{\text{weight \times distance traveled}}$ [10]. The C_{mt} affords to compare energy efficiency between robots with different sizes and weights. The mechanical work in one cycle of a walking, E, is calculated as follows:

$$E = \int_0^T \sum_{i=1}^N \delta (\tau_i, \dot{\theta}_i) \, dt$$

where $\delta (x) = \begin{cases} x, & \text{if } x > 0 \\ 0, & \text{if } x \leq 0 \end{cases}$ (56)

T is the cycle time of a walk, N is the number of actuators, and τ_i and $\dot{\theta}_i$ are the joint torque and the angular velocity of the ith joint. After convergence of the motion, the C_{mt} of the robot is 0.15, while the C_{mt} of Honda humanoid ASIMO [11], which realized a stable 3-D dynamic walking by applying zero moment point (ZMP) based control, is estimated to be about 1.6 in [10]. The efficiency of our walk is therefore more than ten times as high as one of the ZMP-based walk. In addition to this consideration, we conducted the experiment of linear inverted pendulum model (LIPM) based walking [12] as another...
example of the comparing method. Figs. 14 and 15 show the snapshots and
data of the experiment, respectively. From the experimental data, C_{int} of the LIPM-based walking is estimated to be about 0.57. Table I shows C_{int} of each method. These results validate the efficiency of the proposed method.

V. CONCLUSION

This paper proposed the 3-D biped dynamic walking algorithm based on the PDAC. The robot dynamics are modeled as an autonomous system of a 3-D inverted pendulum by applying the PDAC. We numerically presented that two conservative quantities named PDAC constant determine the velocity and the walking direction of the biped walk. We also proposed the two controllers for two PDAC constants and confirmed a convergence of the two constants in numerical simulations. We presented that two conservative quantities named PDAC constant determine the velocity and the walking direction of the biped walk. We numerically presented that two conservative quantities named PDAC constant determine the velocity and the walking direction of the biped walk. We also proposed the two controllers for two PDAC constants and confirmed a convergence of the two constants in numerical simulations. Finally, experimental results validated the performance and the energy efficiency of the proposed algorithm.

table

<table>
<thead>
<tr>
<th>Method (Hardware)</th>
<th>C_{int}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDAC-based method (Gorilla Robot)</td>
<td>0.15</td>
</tr>
<tr>
<td>LIPM-based method (Gorilla Robot)</td>
<td>0.57</td>
</tr>
<tr>
<td>ZMP-based method (ASIMO)</td>
<td>1.6 (from [10])</td>
</tr>
</tbody>
</table>

Grip Control Using Biomimetic Tactile Sensing Systems

Nicholas Wettels, Avinash R. Parnandi, Ji-Hyun Moon, Gerald E. Loeb, and Gaurav S. Sukhatme

Abstract—We present a proof-of-concept for controlling the grasp of an anthropomorphic mechatronic prosthetic hand by using a biomimetic tactile sensor, Bayesian inference, and simple algorithms for estimation and control. The sensor takes advantage of its compliant mechanics to provide a noise-robust method to calculate tangential forces. Biologically inspired algorithms and heuristics are presented that can be implemented online to support rapid, reflexive adjustments of grip.

Index Terms—Biomimetic, dexterous manipulators, grip control, tactile sensor.

REFERENCES