Stress Resistance of Biofilm and Planktonic \textit{Lactobacillus plantarum} subsp. \textit{plantarum} JCM1149

Hiromi Kubota a,b,*, Shouko Senda a, Hajime Tokuda a, Hiroo Uchiyama b, Nobuhiko Nomura b

a Safety Science Research Laboratories, Kao Corporation, 2006 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan

b Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan

Running title: Stress Resistance of Biofilm and Planktonic \textit{L. plantarum}

Corresponding author:

Tel.: +81-(0)285 68 7402; fax: +81 (0)285 68 7403

\textit{E-mail address}: kubota.hiromi@kao.co.jp
ABSTRACT

The purpose of this study was to investigate the change in resistance of biofilm and planktonic food spoilage lactic acid bacteria (LAB) to environmental stresses, which strongly inhibit bacterial growth and are important in food preservation or in disinfection. The stress responses of biofilm and planktonic cells of Lactobacillus plantarum subsp. plantarum JCM1149, which was used as a model spoilage bacterium, in various organic acids (namely, acetic acid, citric acid, lactic acid, and malic acid), ethanol, and sodium hypochlorite, were investigated using survival tests. The bacterial cells in biofilms showed greater resistance to all treatments than the planktonic bacterial cells in either the stationary or logarithmic phase. The planktonic bacterial cells showed reduced resistance to acetic acid after the cell suspension was diluted; however, intriguingly, the bacterial cells in biofilms maintained their resistance to acetic acid even after they were suspended or the cell suspension was diluted. These findings suggested the risk for food spoilage due to LAB derived from biofilms and suspended or diluted in foods, and demonstrated the importance of controlling biofilms of LAB in the food industry.

Key words

acid resistance, ethanol resistance, sodium hypochlorite, biofilm, Lactobacillus plantarum
1. Introduction

Lactic acid bacteria (LAB) are noteworthy spoilage bacteria of foods and pose a constant concern for the food industry, while they are also well known as beneficial bacteria, which include probiotic bacteria that help to maintain a good enteral environment and produce biopreservatives. They cause contamination or deterioration of many types of food such as vinegar (Dakin and Radwell, 1971; Entani et al., 1986), meat products (Niven et al., 1949; Björkroth et al., 1997; Aymerich et al., 2003), pickles (Sheneman and Costilow, 1955), mayonnaise (Kurtzman et al., 1971), salad dressing (Kurtzman et al., 1971), marinated herring (Lyhs et al., 2001), cheese (Somers et al., 2001), miso (fermented soybean paste) (Nikkuni et al., 1996), and beer (Behr et al., 2006). In most cases, the spoilage LAB originate from the production line or raw materials and are resistant to environmental stresses. *Lactobacillus fructivorans* was isolated from spoiled mayonnaises of pH 3.7-3.8 (Kurtzman et al., 1971). *L. fructivorans* also spoiled *miso*, which contains salt (Nikkuni et al., 1996). *Lactobacillus acetotolerans* responsible for the spoilage of vinegar could survive in over 4% acetic acid (Entani et al., 1986). The beer spoilage bacterium *Lactobacillus brevis* that lacks the hop transport ability showed resistance to both acid and ethanol (Behr et al., 2006).

The stress responses and survival strategies of LAB in stressful environments have been reviewed (Cotter and Hill 2003; Van de Guchte et al., 2002). One of them is biofilm formation. Biofilm formation by *Lactobacillus* species has also been reported (Kawarai et al., 2007; Kubota et al., 2008; Lebber et al., 2007; Millsap et al., 1997; Somers et al., 2001;
Sturme et al., 2005; Tannock et al., 2005) and some reports have described the genes responsible for quorum sensing, adhesion or biofilm formation (Fujii et al., 2008; Lebber et al., 2007; Sturme et al., 2005; Tannock et al., 2005). Sturme et al. (2007) reviewed quorum sensing focusing on Lactobacillus plantarum WCFS1. However, the stress responses of LAB biofilms associated with food production and raw materials have not been studied in detail. The response of LAB biofilms to low pH was reported for the oral bacterium, Streptococcus mutans (Li et al., 2001). The two-component regulatory system in S. mutans is involved in both biofilm formation and acid resistance (Li et al., 2002). We have embarked on the study of LAB biofilms, particularly on biofilm formation by the LAB isolated from raw materials and on their changes in stress resistance (Kubota et al., 2008). We demonstrated that three Lactobacillus type strains and 43 LAB isolated from onions formed biofilms. We also showed that the bacterial cells in biofilms of L. plantarum either from culture collection or the isolates had greater resistance than planktonic bacterial cells to acetic acid and ethanol, which are strong growth inhibitors for bacteria and important in food preservation. The enhanced resistance to acid and ethanol in Lactobacillus biofilms was the first finding. In this study, we tested Lactobacillus plantarum subsp. plantarum JCM 1149 as a typical spoilage model species because it was isolated from acidic food, namely, pickled cabbage (Dellaglio et al., 1975), formed biofilms well and showed greater acid and ethanol resistance in biofilms (Kubota et al., 2008). To elucidate the difference in resistance between planktonic and bacterial cells in biofilms more closely, we have examined in detail the difference in resistance among bacterial cells in biofilms and planktonic bacterial cells in two different representative growth phases to various organic
acids, ethanol and sodium hypochlorite, which are used as typical food acidulants, preservatives, disinfectants, or known as fermentation products of LAB. In addition, we focused our attention on the change in resistance of the cells derived from biofilms and suspended or diluted in foods.

2. Materials and Methods

2.1 Bacterial strains and growth condition

Lactobacillus plantarum subsp. *plantarum* JCM 1149 obtained from the Japan Collection of Microorganisms (JCM) was used in the study. The strain was grown in de Man, Rogosa, Sharpe (MRS) broth (Oxoid Ltd., Cambridge, UK) and on MRS agar (Oxoid Ltd.). Inoculated plates were incubated for 1 to 3 days at 30 °C under anaerobic conditions created in an AnaeroPack Rectangular jar with an AnaeroPack-Anaero sachet (Mitsubishi Gas Chemical Company, Inc., Tokyo, Japan). Inoculated broths in glass tubes (Iwaki 18 ø × 150 mm, Asahi Techno Glass Co., Ltd., Tokyo, Japan) were incubated statically under aerobic conditions for 24 h at 35 °C.

2.2 Preparation of planktonic and biofilm cells for assay

To prepare planktonic cells, *L. plantarum* subsp. *plantarum* JCM 1149 cells were incubated statically in glass tubes containing 10 mL of MRS broth under aerobic conditions
for 24 h at 35 °C; the broths were centrifuged for 15 min at 2900 × g and the cells were resuspended in 0.85% saline to yield an initial concentration of 10⁹–10¹⁰ CFU/mL. To prepare biofilms, on the basis of the method of Sturme et al. (2005), the biofilms were grown and formed on glass cover slips (12 mm ø, Thermo Fisher Scientific, Waltham, MA, USA) in the wells of static 24-well polystyrene microtiter dishes (Iwaki 1820-042N, Asahi Techno Glass Co., Ltd.) containing 1 mL of MRS broth under aerobic conditions for 24 h at 35 °C. The broth was then removed, and the bacteria on the glass cover slips were carefully rinsed with 1 mL of 0.85% saline and the remaining materials were defined as biofilms. To prepare a dilute suspension of bacterial cells in biofilms, the biofilms on glass cover slips in 1 mL of 0.85% saline were dispersed by pipetting up and down over ten times and the cell suspension was diluted with 0.85% saline.

2.3 Assay for stress resistance to acids, ethanol, and sodium hypochlorite

To prepare organic acid solutions, acetic acid (Wako, Tokyo, Japan) was dissolved in 50 mM sodium acetate solution or ion-exchanged water. Citric acid (Wako), malic acid (Wako), and lactic acid (Wako) were dissolved in ion-exchanged water. Biofilms formed on glass cover slips and planktonic bacterial cells (10⁸–10⁹ CFU/mL) were placed in 1.1 mL of the acid solutions in 24-well polystyrene microtiter dishes (Iwaki 1820-042N, Asahi Techno Glass Co., Ltd.) for 30 min at room temperature; 0.85% (w/v) saline was used as control instead of the test solutions. The bacterial cells in biofilms placed in 1.1 mL of the acid solutions were suspended by pipetting up and down over ten times after the tests. The
suspensions were confirmed to show no large aggregations, and no bacterial cells remaining on the glass cover slips were observed by microscopy (data not shown). Aliquots (1 mL) were suspended in 9 mL of saline and aliquots (100 µL) of the suspension or diluted solution were plated onto MRS agar plates. The plates were incubated for 72 h at 30 °C under anaerobic condition and the number of viable cells was determined. To test survival in ethanol, biofilms on glass cover slips and planktonic bacterial cells (10^8-10^9 CFU/mL) were placed in 1.1 mL of 18-45% ethanol in 24-well polystyrene microtiter dishes (Iwaki) for 60 min at room temperature. The subsequent procedures were the same as in the test using acids. To test survival in sodium hypochlorite, biofilms and planktonic bacterial cells (10^8-10^9 CFU/mL) were placed in 1.1 mL of 10-275 ppm (effective chlorite concentration) sodium hypochlorite in 24-well polystyrene microtiter dishes (Iwaki) for 30 min at room temperature. Aliquots (1 mL) were suspended in 1 mL of equimolar sodium thiosulfate solution to inactivate sodium hypochlorite and aliquots (1 mL) of the suspension were suspended in 9 mL of saline. The subsequent procedures were the same as in the test using acids.

2.4 Data analysis

Viable cell counts were converted to colony forming units (CFU) per milliliter on the basis of 1.1 mL of the treatment solutions to compare the number of viable cells between biofilm and planktonic bacteria. The data presented are means ± standard deviations obtained from three independent experiments. The detection limit of all the stress resistance
assays except for those in sodium hypochlorite was 100 CFU per milliliter of 1.1 mL of the
treatment solutions. The detection limit of the assays in sodium hypochlorite was 200 CFU
per milliliter of 1.1 mL of the treatment solutions. The bacteria populations were converted
to log CFU per milliliter on the basis of the treatment solutions. The converted detection
limit was 2.0 log CFU/ml (100 CFU/ml) or 2.3 log CFU/ml (200 CFU/ml) on the basis of
the solutions. In some cases, one or two of three replications had populations below the
detection limit; in this case, the value “2.0” (except for the assay in sodium hypochlorite) or
“2.3” (for the assay in sodium hypochlorite) was entered in the calculation.

3. Results

3.1 Survival of biofilm and planktonic *L. plantarum* subsp. *plantarum* JCM 1149 in acetic
acid

Figure 1 shows percent survivals of biofilm and planktonic *L. plantarum* subsp. *plantarum* JCM 1149 in 8.2% acetic acid dissolved in 50 mM sodium acetate (pH 3.0). The
bacterial cells in biofilms grown for 24 h and the planktonic bacterial cells that were
incubated for 24 h corresponding to the stationary phase showed greater resistance to acetic
acid (pH 3.1) than the planktonic cells incubated for 4.5-14 h corresponding to the
logarithmic phase.

The percent survivals of planktonic and bacterial cells in biofilms in 0.85% saline
(control) and 5.5-11.0% (v/v) acetic acid dissolved in 50 mM sodium acetate (pHs 7.4
(saline) and 3.3-2.9 (acetic acid)) are shown in Fig. 2. Both the biofilm and planktonic cells in the stationary phase were more resistant to 5.5-9.0% acetic acid than the planktonic cells in the logarithmic phase. The bacterial cells in biofilms showed greater resistance even at higher concentrations (9.0-11.0%).

3.2 Survival of diluted suspensions of biofilm and planktonic *L. plantarum* subsp. *plantarum* JCM 1149 in acetic acid

The suspensions of the biofilm cells were confirmed to show no large aggregations by microscopy observation, which is similar to the case of planktonic cells (data not shown). The biofilms (10⁹ CFU/ml), the suspended cells (10⁹ CFU/ml) from the biofilms, and the planktonic bacterial cells (10⁹ CFU/ml) that were grown for 24 h, the state of which corresponds to the stationary phase, showed resistance to 8.2% acetic acid in 50 mM sodium acetate (pH 3.0) (Fig 3). The biofilm cells maintained their resistance to acetic acid even after they were suspended (10⁹ CFU/ml) or the cell suspension was diluted (10⁸ and 10⁷ CFU/ml). In contrast, the planktonic bacterial cells showed reduced resistance to acetic acid after the cell suspension was diluted (10⁸ and 10⁷ CFU/ml).

3.3 Survival of biofilm and planktonic *L. plantarum* subsp. *plantarum* JCM 1149 in various organic acids

Figure 4 shows the results of the survival tests using biofilm and planktonic *L.
3.4 Survival of biofilm and planktonic *L. plantarum* subsp. *plantarum* JCM 1149 in ethanol and sodium hypochlorite

The percent survivals of *L. plantarum* subsp. *plantarum* JCM 1149 in 18.0-45.0% ethanol are shown in Fig. 5a. The bacterial cells in biofilms showed greater resistance to 23.0-45.0% ethanol than the planktonic bacterial cells in both the logarithmic and stationary phases. The bacterial cells in biofilms could still survive in 45.0% ethanol, while the number of surviving planktonic cells was below the detection limit.

The percent survivals of *L. plantarum* subsp. *plantarum* JCM 1149 in 10-275 ppm (effective chlorite concentration) sodium hypochlorite are shown in Fig. 5b. The bacterial cells in biofilms showed greater resistance at all the concentrations tested than the planktonic bacterial cells in either the logarithmic or stationary phases.

4. Discussion
First, to determine the percent survivals of biofilm and planktonic cells, acetic acid solutions were adjusted to approximately pH 3.0 because the usual pH of acidic foods is over 3. The test concentration of acetic acid was decided as 8.2% on the basis of the following two reasons: 1) to compare percent survivals, the survival tests should be performed at a concentration lower than the minimum bactericidal concentration for a 30 min treatment of planktonic *L. plantarum*, which was approximately 10% at pH 3 determined in our preparatory test, and 2) for applications in food preservation, the data were obtained in the higher concentration range (7% - 9%) of vinegar that prevails on the market as food materials (3% - 10%).

The cells in a model food spoilage LAB, *L. plantarum* subsp. *plantarum* JCM 1149, which were grown for 24 h (corresponding to the stationary phase) by the static culture method and grown in the biofilms for the same period, showed resistance in 8.2% acetic acid solutions, and the cells in the biofilms showed greater stress resistance in more than 10% acetic acid solutions at the usual pH of acidic foods than the planktonic cells regardless of the growth phase. Moreover, we found that the biofilm cells (10⁹ CFU/ml) maintained their resistance to acetic acid even after they were suspended (10⁹ CFU/ml) or the cell suspension was diluted (10⁸ and 10⁷ CFU/ml). These results suggest the risk for food spoilage due to LAB derived from biofilm cells and suspended or diluted in foods. It provides instructive information for controlling *Lactobacillus* spoilage in food production.

There are two aspects of controlling spoilage bacteria in biofilms. One is to prevent biofilm formation, and the other is to effectively control the already formed biofilms. To prevent biofilm formation, it is important not to introduce spoilage bacteria, which have the
potential of forming biofilms on raw materials and in production environment, into food production. The genes responsible for quorum sensing, adhesion or biofilm formation of *Lactobacillus* species have already been reported (Fujii *et al.*, 2008; Lebber *et al.*, 2007; Sturme *et al.*, 2005; Tannock *et al.*, 2005). It is considered that control of these specific genes or other genes related to the formation of biofilms might control biofilm formation during food production process or fermentation in the future.

To effectively control the already formed biofilms, on the other hand, it is needed to understand the potentials of resistance to various stresses and elucidate the mechanism underlying stress responses. Understanding the potentials of acid resistance, the survivals at various concentrations of four organic acids (no pH adjustment, pHs below 2.5), which are general food acidulants, were examined. The bacterial cells in biofilms showed higher resistances to all the organic acids tested, notably to acetic acid and lactic acid, than the planktonic bacterial cells. To the best of our knowledge, this is the first report of such findings. Few reports show the results of survival tests on *L. plantarum* strains as we examined but some show the resistance of cells under growing condition. Twenty *L. plantarum* strains isolated from red wines showed high pH resistance and proliferated in the pH range from 3.2 to 3.6 under growing condition (G-Alegria *et al.*, 2004). The *L. plantarum* strain used in this study was also grown in this pH range and survived even below pH 2.5, and survived in the lower pH range by forming biofilms. The bacterial cells in biofilms also showed greater resistance at high concentrations of ethanol and sodium hypochlorite than the planktonic bacterial cells in both the logarithmic and stationary phases, suggesting the high risk for spoilage associated with LAB in biofilms during food
production. These results demonstrated the significance of focusing attention to biofilms formed by spoilage lactobacilli on the raw materials treated even with acids at low pH, ethanol and peroxidation stresses. We need to obtain in-depth data on the stress resistances of spoilage lactobacilli that form biofilms and elucidate the stress resistance mechanisms to determine the appropriate types and amounts of preservatives to ensure suitable tastes and flavors of food, while maintaining a balance with antibacterial effects.

In general, aside from the low pH stress, the antibacterial effectiveness of organic acids depends on the concentrations of their undissociated molecules, which are hydrophobic and can affect the hydrophobic membrane of cells thus providing a major antibacterial mechanism (Brown and Booth, 1991; Brul and Coote, 1999). Although the pH ranges of treatment acid solutions are from 2.5 to 1.4, the difference in resistance between biofilm and planktonic cells is pronounced in the case of acetic acid and lactic acid, whose undissociated molecules are more hydrophobic than the other two organic acids (Fig. 4). This difference in resistance could be caused by the biofilms gaining resistance against hydrophobic antibacterial materials. The result that the biofilm cells showed great ethanol resistance also indicated that the biofilms show enhanced resistance to hydrophobic materials. We also examined the effect of pH stress on the survival of the bacterium treated with 50 mM acetic acid-HCl buffer (pHs 3.5-1.0). The biofilm cells showed greater resistance at lower pHs (2.0-1.0) than the planktonic cells in both the logarithmic and stationary phases (Fig. 6). Comparison of this result with that obtained at approximately pH 3, as shown in Fig. 2, reveals that the biofilm cells have enhanced resistance to both hydrophobic undissociated molecules and proton (pH). From the scanning electron
microscopy observation of the cells after the survival and related tests, we hypothesized that three mechanisms could explain the resistance of biofilm cells: the cell membrane becomes more resistant; the biofilm is protected by extracellular polymeric secretions; and the three-dimensional structure of the biofilm protects the inner cells (Kubota et al., 2008). No results of this study are consistent with any of these possible mechanisms. Van de Guchte et al. (2002) reported that the acid resistance of LAB increases when adaptive responses can be induced by incubation at a nonlethal acidic pH during the logarithmic growth phase. Taranto et al. (2003) reported that the lipid composition of Lactobacillus reuteri CRL 1098 grown with bile salts changed in terms of the ratio of glycolipids/phospholipids. The changes in the lipid profile induced by bile salts, however, did not improve the resistance of the bacteria to freezing and acid stress. In our study, because the incubation pH of both biofilm and planktonic bacteria was 3.5 at both 12 h and 24 h, and there was no difference between biofilm and planktonic bacteria in terms of the production of organic acids such as acetic acid, lactic acid, and citric acid at each time (data not shown), the acids under growing conditions did not have much effect on the changes in resistance.

The dilute suspensions of the bacterial cells in biofilms showed resistance to acetic acid even though the diluted planktonic cells were less resistant. Although the physical characteristics of the biofilm and planktonic bacterial cells were the same, the dilute suspensions of only the bacterial cells in biofilms maintained their resistance to acetic acid. It is suggested that not only the structure of the biofilms but also the individual cells in the biofilms have an effect on the enhancement of the acid resistance of L. plantarum.
JCM1149. Li et al. (2002) reported that a two-component signal transduction system encoded by *hkII* and *rrII* represents a regulatory system involved in biofilm formation and acid resistance in *S. mutans*. Moreover, in *L. plantarum* JCM1149, individual cells in the biofilms could exhibit gene expressions and regulations that are different from those in planktonic bacteria. Our future works should focus on elucidating the mechanisms underlying stress responses of biofilms, developing the appropriate methods of controlling LAB biofilms, and preventing LAB-related spoilages in food products.

Acknowledgements

We would like to thank Mr. Mitsutoshi Kimura of Recruit R&D Staffing for providing technical assistance and Dr. Koji Yamazaki of Hokkaido University for helpful comments on the manuscript.

References

evaluate lactic acid bacterium contamination of vacuum-packaged sliced cooked

J. Appl. Bact. 34, 541-545.

Dellaglio, F., Bottazzi, V. and Vescovo, M., 1975. Deoxyribonucleic acid homology among
Lactobacillus species of the subgenus *Streptobacterium* Oral-Jensen. Int. J. Syst.

Entani, E., Masai, H. and Suzuki, K., 1986. *Lactobacillus acetotolerans*, a new species

Fujii, T., Ingham, C., Nakayama, J., Beerthuyzen, M., Kunuki, R., Molenaar, D., Sturme,
M., Vaughan, E., Kleerebezem, M. and de Vos, W., 2008. Two homologus *agr*-like
quorum-sensing systems cooperatively control adherence, cell morphology, and cell

G-Alegria, E., López, I., Ruiz, J. I., Sáenz, J., Fernández, E., Zarazaga M., Dizy, M., Torres,
C. and Ruiz-Larrea, F., 2004. High tolerance of wild *Lactobacillus plantarum* and
Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid
Lactobacillus species in urine and phosphate buffer to silicone rubber and glass under flow. Biomaterials 18, 87-91.

1 Microbiol. 71, 8419-8425.

and cholesterol induce change in the lipid cell. J. Appl. Microbiol. 95, 86-91.

3 Van de Guchte, M., Serror, P., Chervaux, C., Smokvina T., Ehrich, S.D. and Maguin E.,
Figure legends

Fig. 1. Percent survivals of biofilm and planktonic *Lactobacillus plantarum* subsp. *plantarum* JCM 1149 treated with acetic acid dissolved in 50 mM sodium acetate. Open bars indicate data for bacterial cells treated with saline and closed bars indicated those for the cells treated with 8.2% acetic acid. Error bars indicate standard deviations of three independent experiments. a: below 0.0001%.

Fig. 2. Viabilities of biofilm (●) and planktonic *Lactobacillus plantarum* subsp. *plantarum* JCM 1149 at stationary (◉) and logarithmic (○) phases in saline (0%) and acetic acid dissolved in 50 mM sodium acetate (pHs 3.3-2.9). Error bars indicate standard deviations of three independent experiments. a: below detection limit.

Fig. 3. Percent survivals of biofilm and planktonic *Lactobacillus plantarum* subsp. *plantarum* JCM 1149 in diluted cell suspensions treated with acetic acid. Open bars indicate data for planktonic bacterial cells and closed bars indicate those for the bacterial cells originating from biofilms. Error bars indicate standard deviations of three independent experiments.

Fig. 4. Viabilities of biofilm (●) and planktonic *Lactobacillus plantarum* subsp. *plantarum* JCM 1149 at stationary (◉) and logarithmic (○) phases in acetic acid (pHs 2.5-1.7) (a), citric acid (pHs 2.0-1.4) (b), lactic acid (pHs 2.3-1.5) (c), and malic acid (pHs...
2.1-1.5) (d). Error bars indicate standard deviations of three independent experiments. a: below detection limit.

Fig. 5. Viabilities of biofilm (●) and planktonic *Lactobacillus plantarum* subsp. *plantarum* JCM 1149 at stationary (●) and logarithmic (○) phases in ethanol (a) and sodium hypochlorite (b). Error bars indicate standard deviations of three independent experiments.

Fig. 6. Effect of pH on viabilities of biofilm (●) and planktonic *Lactobacillus plantarum* subsp. *plantarum* JCM 1149 at stationary (●) and logarithmic (○) phases. Error bars indicate standard deviations of three independent experiments. a: below detection limit.
Figures 1

Kubota H. et al., Fig. 1.

![Graph showing percent survival of planktonic bacteria and biofilms under different conditions.](image-url)
a) Acetic acid (%)

(b) Citric acid (%)

Population (log CFU/mL)

Acetic acid (%)
Kubota H. et al., Fig. 4.

c) Population (log CFU/mL) vs. Lactic acid (%)

(d) Population (log CFU/mL) vs. Malic acid (%)

(saline)
Kubota H. et al., Fig. 5.

a)

Population (log CFU/mL) vs. Ethanol (%)

(b)

Population (log CFU/mL) vs. Sodium hypochlorite (ppm)
Kubota H. et al., Fig. 6.