Low-frequency Raman spectra in LiNbO$_3$: Within and beyond the standard paradigm of ferroelectric dynamics

N. V. Surovtsev, A. M. Pugachev, V. K. Malinovsky, A. P. Shebanin, and S. Kojima

Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, 630090, Russia
Institute of Material Science, University of Tsukuba, Ibaraki 305-8573, Japan
United Institute of Geology, Geophysics, and Mineralogy, Russian Academy of Sciences, Novosibirsk, 630090 Russia

(Received 13 April 2005; revised manuscript received 21 June 2005; published 27 September 2005)

Low-frequency Raman spectra of stoichiometric LiNbO$_3$ crystals are investigated in the frequency range down to ~ 1 cm$^{-1}$ and in the temperature range of 300–1423 K. The central peak (quasielastic light scattering) is found and described for all temperatures studied and in both scattering geometries explored, zz- and xy-configurations. The central peak features follow the standard paradigm, predicting the critical narrowing of the width, only at $T \approx 1300$ K in the zz-configuration. At lower temperatures the inverse relaxation time increases with the temperature increase, in contradiction to the standard theoretical predictions. This experimental result was interpreted as the importance of local fluctuations of the order parameter. The ferroelectric dynamics of LiNbO$_3$ is described by the soft mode coupled to a relaxation, sharing both displacement and order-disorder features.

DOI: 10.1103/PhysRevB.72.104303 PACS number(s): 63.70.+h, 77.80.Bh, 77.84.Dy, 78.30.–j

I. INTRODUCTION

Lattice dynamics in ferroelectrics have some interesting features near the phase transition. These features have been the subject of intensive theoretical and experimental studies for a long time. Raman scattering is one of the most widely used experimental techniques of studying dynamics of ferroelectrics. There are two experimental features in Raman spectra which appear near the ferroelectric phase transition. First is the slowing down of the soft ferroelectrical mode. For crystals whose phase transition is governed by the evolution of the soft mode (displacement type of ferroelectrics), the temperature dependence of the soft mode frequency ω_f:

$$\omega_f(T) \propto \epsilon_r^{-1}(T)$$ (1)

is expected.1 Equation (1) reflects Lyddane-Sachs-Teller relations with disregarding temperature dependencies of the nonsoft mode frequencies and of the high-frequency dielectric constant. In Eq. (1), ϵ_r is the low-frequency dielectric constant along the ferroelectric axis. The phenomenological theories, assuming the linear temperature dependence of the quadratic term of the thermodynamical potential near the phase transition,2,3 predict the Curie-Weiss law for ϵ_r and

$$\omega_f^2(T) \propto T_c - T,$$ (2)

where T_c is the phase transition temperature.

The dependence of Eq. (2) is often smeared by the appearance of an intensive central peak, which is the second typical feature of inelastic light scattering spectra near the phase transition.4 This peak reflects some internal relaxational mode. The peak can appear in Raman scattering spectra via direct inelastic scattering of photons on a relaxational mode (direct mechanism) or as a low-frequency part of a damped harmonic oscillator coupled to a relaxational mode (indirect mechanism). If the relaxation mode is related to ferroelectric polarization, then critical slowing down is expected as the temperature approaches the phase transition. For crystals whose phase transition is governed by ordering of local dipoles (order-disorder type of ferroelectrics), the temperature dependence of the relaxation time τ of the mode associated with this ordering motion is predicted in the form2,3

$$\tau^{-1}(T) = \tau_0^{-1}[(T_c - T)/T_c].$$ (3)

Phenomenological derivation of Eq. (3) implies the linear temperature dependence near the phase transition for the quadratic term of the thermodynamical potential [as for Eq. (2)]. The second assumption here is that the relaxational mode seen in Raman scattering is the same as the mode governing ferroelectric polarization. In some sense, the relaxational mode is the macroscopic one in this case. Also, in derivation of Eq. (3) by a possible energy barrier between the fluctuating state and the equilibrium one, is neglected.

In most studies of Raman spectra of ferroelectrics, the adherence to Eq. (2) or Eq. (3) is verified. Within the standard paradigm of ferroelectric dynamics, this procedure allows researchers to suggest the type of ferroelectrics (displacement or order-disorder character).

However, Eqs. (2) and (3) are derived only for a temperature range close to the phase transition. The validity limit for these equations is an interesting and important question. For a particular substance, it can be solved experimentally by studying the deviation of the Raman spectra from the predictions of Eqs. (2) and (3). Information about ferroelectric dynamics beyond the validity of Eqs. (2) and (3) is very important for the development of the ferroelectric dynamics theory. For example, at temperatures not close to the phase transition, ferroelectric fluctuations manifested in Raman spectra would be ruled mainly by local short-lived fluctuations that would have features different from those of macroscopic polarization relaxation. In particular, the energy barrier between the excited state of a crystalline cell and the equilibrium one would be important.

Lithium niobate, LiNbO$_3$, is a very convenient material to study ferroelectric dynamics far from the phase transition.
This crystal has a single high-temperature phase transition occurring around 1470 K. The study of Raman spectra of LiNbO₃ has almost a 40 year history. However, in spite of numerous works in which inelastic light scattering in lithium niobate was studied, the investigations of Raman spectra in the temperature range near the phase transition are relatively scarce. To our knowledge only in three works Raman spectra of LiNbO₃ near the phase transition, up to 1100–1200 K, were analyzed from the view point of the soft mode or relaxational dynamics [Eqs. (2) and (3)]. In the first work, the ferroelectric transition was associated with zeroing of soft phonon modes, and it was shown that the “center-of-gravity” frequency of the zz-spectrum follows Eq. (2) with \(T_c = 1480 \) K. The use of the center-of-gravity frequency in this work instead of the soft mode frequency is caused by smearing of the soft mode peak in the low-frequency spectrum by the intensive central peak. In the work, this difficulty was overcome by the analysis of spectral data within the quality of the spectra fitting. A significant softening of the frequency Raman spectra in LiNbO₃, the existence of the central peak was also found at room temperature and lower. This peak has some features in comparison with those observed for the central peak at higher temperatures (in the works, the central peak parameters were determined starting from 500 K). In particular the central peak is present for all Raman scattering geometries, so it cannot be ascribed to direct scattering from pristine ferroelectric relaxation. Moreover, the low-temperature extrapolation of the relaxational time from the high-temperature data of Ref. 10 provides a much wider width of the central peak in comparison with experimental data. There is a need to “overlap” the high-temperature and low-temperature scenarios of the central peak behavior.

Thus, it is necessary to experimentally investigate the central peak in the Raman spectra of LiNbO₃, to cover the temperature range from room temperature to ~1400 K and include both scattering geometries where phonons of \(A_1 \) and \(E \) symmetries are allowed. The present work deals with this task.

II. EXPERIMENT

Near stoichiometric lithium niobate crystals were grown by the double crucible Czochralski method and purchased from Oxide Corporation. The nominal \([\text{Li}_2\text{O}]:[\text{Nb}_2\text{O}_5]\) ratio is 49.9:50.1. Single crystals of lithium niobate LiNbO₃, being parallelepiped samples of high quality cut along crystallographic axes, were used in our study. Light scattering spectra were measured by three spectral apparatuses. In all cases, inelastic light scattering was excited by an argon ion laser with a wavelength of 514.5 nm and a power of 100 mW.

(i) The spectra in the range of 0.1–17 cm⁻¹ were measured using a 3+3 pass tandem Fabry-Perot interferometer (Sandercock model) in a backscattering geometry. The samples were put into a tubular furnace with a temperature variation to 1423 K and stability of ±0.5 K. The scattering geometries used were \(x(zz)x \) and \(x(zy)x \). Two free spectral ranges (FSR) were used. FSR = 1.1 cm⁻¹ was applied mainly to get information about Brillouin lines, and FSR = 10 cm⁻¹ was used to study the central peak.

(ii) U1000 a double Raman spectrometer and a hand-made oven with a temperature variation to 1150 K were used to study the Raman spectra in the scattering geometries \(x(zz)y \) and \(z(zy)x \). At the low frequency range, the spectral slit of ~1 cm⁻¹ were used. The elastic line contribution due to the real instrumental response was typically negligible in comparison with the inelastic signal at \(\omega > 3 \) cm⁻¹ for the \(x(zz)y \) geometry and at \(\omega > 3.5 \) cm⁻¹ for \(z(zy)x \).

(iii) DFS-24 a double Raman spectrometer was equipped by a hand-made oven, which allowed us to reach a temperature of ~1423 K. This spectrometer was used to extend the temperature range in comparison with experiment (ii). Spectral slits of ~1 cm⁻¹ were used. At high temperatures, the limit of these studies is ~10 cm⁻¹; it will be shown in our work that this limitation can cause significant misestimation of the central peak width. It is necessary to reinvestigate low-frequency inelastic light scattering in LiNbO₃, including higher temperatures and lower frequencies.
The general view of Raman spectra is the same as in the previous works. Figure 1 shows the typical Raman spectra of lithium niobate in the \(x(zz)yz \) configuration at different temperatures [note, that the small peaks at \(\sim 150 \) and 200 cm\(^{-1} \) do not belong to \(A_1 \) (TO) modes and appear due to polarization selection breakdown]. The spectral density presentation \(I_n(\omega) = I(\omega)/(n+1)\omega \) is used in the figure to exclude the trivial temperature dependence for the vibrational spectra \{here, \(n = \exp(h\omega/kT) - 1 \) \} is the Bose factor\}. The spectral intensity for the spectra at different temperatures was normalized by the integral over the 0–400 cm\(^{-1} \) range without the frequency-independent background whose contribution is seen for the spectra at temperatures higher than 1350 K (we surmise that this contribution has the photoluminescence origin). The main temperature evolution of the spectra in Fig. 1 is related to the strong softening and broadening of two phonon modes as the temperature increases. The intensive central peak dominates in the Raman spectra at high temperatures. Moreover, the presence of the central peak is well seen even at low temperatures down to room temperature. The central peak at low temperatures was not reported in the previous works\(^6\)\(^8\)\(^10\) probably because of limitations of the spectral range and the experimental sensitivity.

The second important experimental feature of the central peak is its dependence on the polarization configuration. We found that the central peak is also present in the \(z(xy)zx \) configuration where phonons of \(E \)-symmetry are allowed for Raman scattering. It was reported in Ref. 10 that the central peak is absent for this geometry of the Raman scattering experiment. However, the Raman signal in the \(z(xy)zx \) configuration is more than one order lower in comparison with the \(x(zz)yz \) configuration, which hinders the central peak registration for the \(z(xy)zx \) geometry. Nevertheless, as is illustrated in the inset of Fig. 2, the central peak is also present in the \(z(xy)zx \) Raman spectra. The distinction from the central peak in the \(x(zz)yz \) configuration is that its contribution is lower.

The existence of the central peak even at relatively low temperatures was confirmed by the measurements with a Fabry-Perot interferometer. These spectra are in agreement with Raman spectrometer data as is illustrated in Fig. 3. To emphasize the low-frequency part of the spectra, logarithmic
scales are used in this figure. The gaps in the spectra near \(\sim 2 \text{ cm}^{-1} \) correspond to the cut spectral range where intensive Brillouin lines dominate.

It is well seen from Fig. 3 that the behavior of the central peak width contradicts the previous reports and the predictions of the standard theories. The width increases as the temperature increases at least up to \(T \sim 1200 \text{ K} \). To obtain a quantitative description of the central peak behavior, a fitting procedure is needed. As was discussed in the Introduction, different approaches were applied for the central peak fitting in the case of Raman spectra from LiNbO\(_3\), and sometimes the different behavior of the found parameters is attributed to the choice of the fitting procedure. We will discuss the outcomes of two different approaches to fitting, corresponding to direct and indirect mechanisms, and will show that the main experimental features are the same.

A. Direct mechanism analysis

We are starting from the description of the central peak by the direct mechanism. In this case, the spectrum is considered as a sum of damped harmonic oscillators and the relaxation mode. In this case, 11 parameters are needed to fit the Raman spectra of LiNbO\(_3\) in the frequency range of 0–400 cm\(^{-1}\): 3 parameters (position, amplitude, and width) for each phonon mode (252, 276, 300 cm\(^{-1}\)), and 2 parameters for the relaxation mode. It was found in the work\(^{10}\) that the use of only phonon modes and Debye relaxation is not sufficient for the perfect fitting of experimental spectra. The authors of this work introduced an additional phononlike mode attributed to a second-order process. In this case, the number of parameters becomes too large: 14. The problem of the large number of fitting parameters is especially topical for fitting high-temperature data, where the phonon modes become broad and hardly defined. If one is only interested in central peak parameters, an oversimplified but well working approach can be applied, fitting solely the central peak by a Debye relaxation. The most important advantage of this procedure is the minimum of number of fitting parameters needed. Also, this procedure facilitates the comparison between the Raman and Fabry-Perot experimental results. Figure 4 shows the results of fitting the central peak by the expression

\[
\chi_R^n(\omega) / \omega = 2A \frac{1}{\pi \gamma R \left(\frac{\omega}{\gamma R} \right)^2} + C, \tag{5}
\]

where \(A \) is the integral contribution of the relaxation mode in the Stokes part of the spectrum (in Figs. 4 and 5, the integral over spectral intensity is taken as the unit). \(\gamma_R \) is the half-width half-maximum corresponding to the inverse relaxation time, and the constant \(C \) is the simplest approximation for the contributions of the tails from the phonon modes and/or of the second order processes. Examples of fitting are shown in Fig. 3, where the fitting procedure was applied for Raman data in the range of 6–60 cm\(^{-1}\) (fitting curves are shown in an extended range for illustration).

It should be noted that the values of the parameters depend on the spectral range selected for fitting. The disagreement of the parameters for different fitting ranges is not crucial and originates mainly from the assumption that the contribution \(C \) is independent of frequency. In Fig. 4(b), the fitting parameters both for the Fabry-Perot interferometer experiment (fitting range 1–19 cm\(^{-1}\)) and for the Raman experiment (typical fitting range 6–60 cm\(^{-1}\)) are shown. It is well seen that, while the absolute values are somehow different, they follow the same behavior, differing only by a temperature-independent shift. This result confirms that the approximation of Eq. (5) offers a fairly accurate description of the main features of the central peak.

![Figure 4](image)

FIG. 4. Temperature dependences of the parameters for the central peak described by Eq. (5). (a) The integral intensity of the central peak in the \(x(zz)y \) and \(x(xy)x \) configurations (solid and open circles, respectively). The line is the curve \(\propto T \). (b) The relaxation width in \((zz) \)-experiments. The circles correspond to Raman experiment and the stars to the Fabry-Perot interferometer data. (c) The width of the central peak in the \(x(zz)y \) and \(z(xy)x \) configurations (solid and open circles, respectively).

![Figure 5](image)

FIG. 5. Temperature dependences of the parameters for the central peak described by Eq. (5). (a) Parameter \(C \) for the central peak in the \(z(xy)x \) configuration. The line is the curve \(\propto T \). (b) Ratio of \(C \) and \(A \) parameters versus temperature for the central peak in the \(x(zz)y \) configuration. The line is the curve \(\propto T \).
The integral intensity of the central peak (parameter \(A\)) sharply increases with the temperature in the configuration, where “ferroelectric” phonon modes of \(A\)-symmetry are allowed for Raman scattering. To visualize the whole temperature behavior of the parameter \(A\), the logarithmic scale for the intensity is used in Fig. 4(a). It is seen that a rather moderate temperature increase in relaxation intensity becomes much sharper in the temperature range above \(\sim 1000\) K. The behavior of relaxation intensity in the experimental configuration, where phonon modes of \(E\)-symmetry are allowed, is similar in the range up to \(\sim 1000\) K [Fig. 4(a)]. The minor difference is that the temperature dependence of relaxation intensity in “ferroelectric” spectra is slightly super-linear, while in “nonferroelectric” spectra it is slightly sub-linear. The main difference is the behavior in the range above \(\sim 1000\) K, where there is no sharp increase of relaxation intensity in “nonferroelectric” spectra.

One of the striking results is the temperature dependence of the central peak width, which has a nonmonotonic behavior. It increases moderately with temperature up to \(\sim 1000\) K and then starts to rise more sharply up to \(1200–1300\) K. And only above the temperature of \(\sim 1300\) K does the width decrease, following the standard model predictions. The width of the central peak in the \(z(xy)\) geometry shows only a moderate increase with temperature and no sharp increase above \(\sim 1000\) K.

It is interesting to investigate the temperature dependence of the constant \(C\) from Eq. (5). If the assumption of Ref. 10 is valid, and, therefore, \(C\) reflects mainly the second-order contribution, one should expect a quasilinear temperature dependence for \(C(T)\). This prediction is fair if the anharmonicity for the effective potential of vibrations is not changed significantly with temperature. As is shown in Fig. 5(a), indeed, \(C(T)\) is linear for the \(z(xy)\) configuration of the Raman experiment, corroborating the assumption of Ref. 10. However, in the case of the \(x(zz)\) experiment, \(C(T)\) increases much faster with temperature. A reasonable explanation would be that the factor of anharmonicity increases with temperature. It is well expected for “ferroelectric” modes since the anharmonicity is the driving factor of the ferroelectric transition. The temperature increase in relaxation intensity in some cases can be attributed to the increase in anharmonicity. By analogy with Fig. 5(a) it could be expected for the case of the \(x(zz)\) experiment that the ratio \(C/A\) is adequately described by a linear temperature dependence. As is seen from Fig. 5(b), indeed, this ratio follows the linear temperature dependence for the \(x(zz)\) configuration from room temperature to \(\sim 1000\) K. Above this temperature, this ratio rapidly decreases, reflecting the dominating contribution of the central peak to the Raman spectra.

B. Damped oscillator analysis

The second analysis of the experimental Raman spectra of the LiNbO\(_3\) crystal presented is the model of a damped harmonic oscillator coupled to a relaxation mode with the response function in the form of Eq. (4). We found that the quality of spectrum fitting is the same for the direct and indirect mechanisms of the relaxation mode manifestation in inelastic light scattering spectra. So, it is impossible to choose the correct mechanism only from the quality of fitting for the experimental spectra. The second note is that the second-order contribution in the presented analysis is taken into account in the simplest frequency-independent approximation. This allows us to minimize the number of fitting parameters. As can be seen from the results of the previous subsection, this approximation is rather sufficient. Following Ref. 8, we used the approximation that only one mode has the coupling with the relaxation mode, which is lowest at high temperatures, and other modes have not. In contrast to Ref. 8, but in agreement with Ref. 10, the assumption that there is no crossing of two lowest modes of \(A\)-symmetry in LiNbO\(_3\) was accepted in our analysis. The validity of this assumption will be evidenced by the results of the analysis.

Three examples of fitting are shown in Fig. 6. To demonstrate the description of the central peak at room temperature, the logarithmic scale is used for the intensity in the top part of Fig. 6 [small peak at 150 cm\(^{-1}\) do not belong to \(A_1\) (TO) modes and was cut from the experimental spectrum]. There is good agreement between the fitting curves and the experimental ones in Fig. 6. For illustration, the response of the soft mode in the absence of coupling with the relaxation mode (\(\delta=0\)) is also shown in Fig. 6. It is obvious that all fitting parameters in Eq. (4) are unambiguously defined from the experimental spectra at low temperatures owing to a significant spectral separation between the central peak and phonon modes. In the temperature range above \(\sim 1100\) K, the soft phonon mode is not well separated from the central peak (Fig. 6, bottom), and the fitting parameters are interrelated. Some additional assumptions or restrictions are needed to correctly fit the spectra at \(T>1100\) K. These assumptions can be found from the results of the analysis at \(T<1100\) K.
FIG. 7. Temperature dependence of the fitting parameters. The open symbols correspond to the fits where the parameter ω_1 was fixed, as is shown by the solid line in (a). (a) The frequency (circles and squares) and width γ (triangles and diamonds) for the two lowest A_1(TO) phonons. (b) Parameter δ. The solid line is the curve $\propto T$. (c) Inverse relaxation time γ_R. The triangles are the fits by the damped oscillator model and the circles by the “direct mechanism” analysis. The solid line is the fit by Eq. (6). The crossed diamonds are the data from Ref. 10. The dashed line is $\propto(1473-T)$.

1. The temperature range of 300–1100 K

The temperature dependences of fitting parameters are shown by solid symbols in Fig. 7. The behavior of the phonon frequencies ω_1, ω_2 and width γ_1, γ_2 for two lowest A_1(TO) modes are in very good agreement with the data presented in Ref. 10. This agreement is important since different mechanisms (direct and indirect) and different ways of accounting for the second-order contribution were applied in Ref. 10 and in the present work. The agreement confirms the high level of validity of the present analysis. The agreement with data of Ref. 8 is worse in the range 700–1100 K because of ignoring the second-order contribution in Ref. 8, which leads to the overestimated phonon width in this work.

The parameter $\delta(T)$ governing the relative contribution of the relaxation mode into the spectra shows approximately a linear increase with temperature up to ~ 700 K [Fig. 7(b)]. At higher temperatures $\delta(T)$ is temperature-independent. This behavior of $\delta(T)$ is in contrast to that reported in Ref. 8. We checked that the spectra digitized from Ref. 8 at several temperatures are in rather good agreement with our corresponding spectra. So, the main difference in the reported values of $\delta(T)$ is related to ignoring the second-order contribution and, we guess, to an inaccurate way of the parameter choice in Ref. 8. A scarce number of temperature values presented in Ref. 8 makes a more detailed comparison difficult.

The temperature dependence of the inverse relaxational time γ_R is shown in Fig. 7(c). These data are compared with the direct mechanism analysis. Good qualitative agreement is seen between the data, while there is a difference at the quantitative level. The difference can be attributed to different fitting ranges as was discussed in the previous subsection. $\gamma_R(T)$ demonstrates a moderate temperature increase, which becomes sharper above ~ 1000 K.

The found behavior $\gamma_R(T)$ differs from that reported in Ref. 10. The values of $\gamma_R(T)$ presented in Ref. 10 “from the fits with a large confidence” are shown in Fig. 7(c) for comparison. While the temperature range of the data from Ref. 10 is relatively short, 800–1100 K, it is well seen that they demonstrate a contrasty different temperature dependence with respect to the present work. The difference appeals to a comment. Partially, the difference found would be related to the specific way of taking into account the second-order contribution used in Ref. 10. It seems that more basic fits would show values of $\gamma_R(T)$ much closer to our data. We digitized the central peak curves plotted in Fig. 4 of Ref. 10, where they are presented for temperatures from 579 to 915 K. These spectra were fitted by Eq. (5), except for a few points near the elastic lines, where the dominating contribution of the elastic line is evident in Fig. 4 of Ref. 10. $\gamma_R(T)$ found in this fit is in excellent agreement with the data of the present work: γ_R monotonically increases from 13.5 cm$^{-1}$ at $T=579$ K to $\gamma_R=16.8$ cm$^{-1}$ at $T=915$ K. The second reason for the weakness for data in Ref. 10 is the contribution of the elastic line at the nearest frequencies and a rather short spectral range—the inverse relaxation time reported in Ref. 10 for T near 1100 K is smaller than the lowest limit of the spectral range studied.

The soft-mode frequency squared is shown in Fig. 8(a). Strong softening of ω_1^2 is seen from this picture. In the case of ferroelectrics of the displacement type, it should follow Eq. (2). In Ref. 10 the whole temperature range (300–1100 K) was applied for the description of ω_1^2 by Eq. (2) and a too high value $T_c \sim 1700$ K was found from the fit. However, as is well seen from Fig. 8(a), it seems to be a change in the temperature dependence near ~ 550 K, and Eq. (2) should be applied only for the higher temperature range. Indeed, in the range of 550–1100 K $\omega_1^2(T)$ is in good agreement with the behavior of Eq. (2) with $T_c=1473$ K, as is
shown in Fig. 8(a) by the straight line (we used the value of 1473 K as the temperature of the ferroelectric transition for the stoichiometric LiNbO₃, while other values are also reported in the literature varying typically by ~10–20 K). Thus, the behavior of the soft mode in the range up to ~1100 K follows well the displacement-type scenario for the phase transition. This result encouraged us to compare the dielectric data with the renormalized frequency \(\gamma_2 = \omega_2^1 - \gamma_1^2 \), which is expected to govern the low-frequency susceptibility.\(^{11}\) In Fig. 8(b), the inverse dielectric permittivity \(\varepsilon^{-1} \) measured at low frequency in the work\(^{14}\) (100 kHz) and the work\(^{15}\) (10 MHz) is presented. This figure displays good agreement for the temperature behavior of \(\varepsilon^{-1}(T) \) and \(\omega_2^1(T) \).

2. The temperature range of 1100–1423 K

As is discussed above, in this temperature range there is the problem of a too large number of fitting parameters in the case of a weakly structured spectrum. There is a need of ad hoc assumptions reducing the number. The behavior of \(\omega_2^i(T) \) following Eq. (2) in Fig. 8(a) allows us to extrapolate this behavior to higher temperatures. This assumption was used for the temperature range above 1100 K, and the parameters obtained from this fit are shown in Fig. 7 by open symbols. It is seen that the behavior of the parameters at \(T > 1100 \) K reasonably continues the lower temperature dependence. Above \(~1300\) K, the second phonon mode becomes strongly damped, and its spectral contour is ill-defined, that results in the necessity of reducing again the number of fitting parameters. For this temperature range, we used the simplest approximation of a frequency-independent contribution from the second ferroelectric mode in the low-frequency part of the Raman spectrum, and the highest temperatures (1300–1423 K) were fitted with this assumption. Since the credibility value of this assumption can crucially influence the parameters like the relative integral contribution of different modes, such parameters are not presented and are not discussed in this temperature range.

Since applying assumptions could distort the extracting results, we checked: What we obtain, if we suppose a contrasty different case that at \(T > 1100 \) K \(\omega_1 \) is temperature independent and equal to \(\omega_1(T=1100 \) K). It was found that the qualitative behavior of the parameters in most cases is the same with a significant difference, certainly, at the quantitative level. It confirms the high level of confidence for the results presented below. One exception is the behavior of \(\gamma_1 \), which continues the sharp rise for the case of the last assumption. For the main assumption, the temperature dependence of the parameter \(\gamma_1 \) follows the assumed behavior of \(\omega_1 \), keeping the ratio approximately \(\gamma_1/\omega_1 \sim 1 \) [Fig. 7(a)].

The whole temperature dependence of the inverse relaxation time mimics the behavior of \(\gamma_2 \) found in the direct mechanism analysis. In particular, it confirms the sharp decrease above \(~1300\) K. The decrease of \(\gamma_2 \) in approaching the ferroelectric transition temperature is compatible with the critical slowing down of \(\gamma_2(T) \propto (T_c - T) \) shown by the dashed line in Fig. 7(c) for \(T_c = 1473 \) K. Thus, independently of the fitting scenario [Figs. 5(b) and 7(c)], the main features of \(\gamma_2(T) \) are the same.

The behavior of \(\delta(T) \) in the range of 1100–1300 K is the temperature-independent continuation of the lower temperature course. Let us consider the question different answers to which were suggested in Refs. 8,10—whether there exists the crossing of two phonon lines of \(A \)-symmetry near 550 K or an anticrossing occurs. We used the second case in our analysis and checked the ratio of integral intensities between the lowest \((I_1) \) and second low one \((I_2) \) phonon modes. The results of the temperature dependence of the ratio \(I_1/I_2 \) are shown in Fig. 9. If the assumption is true, this ratio should be the same below and above the apparent crossing (certainly, this ratio near \(T \sim 550 \) K is ill-defined, causing a singularity, as is seen in Fig. 9). If the assumption is invalid and the real crossing occurs, then one should expect the inversion of the ratio from 3 at low temperatures to 1/3 at high temperatures. It is seen from Fig. 9 shows that the second case is not realized, and the ratio with a satisfactory precision is the same at high and low temperatures (the ratio for 80 K was calculated using the data from Ref. 12). Figure 9 shows two versions of the calculation: with \(I_1 \) including the central peak (indirect mechanism) and excluding it (direct mechanism). The first case was calculated merely equating the found parameter \(\delta \) to zero (examples are shown in Fig. 6). Therefore, our analysis supports the assumption of Ref. 10 about the anticrossing.

IV. DISCUSSION

In all variants of analysis applied to Raman spectra of LiNbO₃ crystal, the behavior of the inverse relaxational time compatible with Eq. (3) was found only in the temperature range above \(~1300\) K. It is interesting that 1300 K is exactly the temperature where the dielectric loss \(\tan \delta \) in LiNbO₃ changes its behavior from increasing with temperature to sharply decreasing.\(^{15}\) Also, 1300 K is a temperature where the spontaneous polarization \(P_s \) in LiNbO₃ changes its temperature behavior from an extremely weak temperature dependence at lower temperatures to a sharp decrease at \(T > 1300 \) K.\(^{16}\) Thus, the temperature of 1300 K is a particular temperature for LiNbO₃ crystal: only above this temperature the crystal is flexible with regard to spontaneous polarization...
fluctuations. In this respect, it is not surprising that collective
fluctuations implied in derivation of Eq. (3) are frozen below
\(T < 1300 \text{ K} \) and provide a minor contribution to the relaxa-
tional response manifested in Raman spectra.

The standard textbook theories predict the critical slowing
down near \(T_c \), Eq. (3), the inverse relaxation time decreasing
with the temperature increase at \(T < T_c \). However, in contrast
to the predictions, in our study the opposite behavior is found
for \(\gamma_r(T) \) in the wide temperature range 300–1300 K; the
inverse relaxation time increases with the temperature in-
crease. To our knowledge such behavior for the inverse re-
relaxation time was not reported before. The confrontation of
\(\gamma_r(T) \) behavior with the theories appeals to a revision of
the theoretical models of ferroelectric dynamics. The standard
approach predicting Eq. (3) should be extended to describe
the central peak in Raman spectra of LiNbO\(_3\) at \(T < 1300 \text{ K} \). One possible extension would be taking into ac-
count the possibility of local fluctuations, involving the mo-
tion of individual ions. These dynamics should be described
by the local energy barrier between two states, and the in-
verse relaxational time will follow the activation law
\[
\gamma_r = \gamma_o^2 \exp(U/kT).
\]

As is seen from Fig. 7(c), Eq. (6) with \(\gamma_o^2 = 50 \text{ cm}^{-1} \) and the energy barrier \(U/k=600 \text{ K} \) describes the experimental de-
pendence \(\gamma_r(T) \) reasonably well up to 1000–1100 K. At
higher temperatures, more complex interplay of different
modes must be taken into account. Note, that the combina-
tion of Eqs. (3) and (6) solely by an assumption of \(T_0^{-1} = \gamma_o \), is
not enough to describe the temperature dependence of the
central peak width, which is presented in Fig. 7(c). It seems
that the accounting of the local atomic displacements without
long-range order becomes the important direction for ferro-
electric field of research (for example, Ref. 17).

In the approach where the relaxation mode is coupled
with the soft phonon, parameter \(\delta \) should reflect both
the magnitude of the relaxational motion and the efficiency
of relaxation-phonon coupling. In this respect, the linear in-
crease at \(T < 600 \text{ K} \) could reflect the increase in efficiency of
relaxation-phonon coupling, which becomes approximately
temperature-independent at higher temperatures [Fig. 7(b)].
It is interesting that the temperature increase in \(\delta(T) \) was
predicted by the phonon anharmonicity model, suggested
for explanation of fast relaxation in glasses. In the frame-
work of this model, the temperature increase is terminated at
high temperatures due to high anharmonicity terms.

Another striking finding of the present work is the reno-
vation of the idea of the displacelike behavior in
LiNbO\(_3\). Indeed, the temperature behavior of the soft phonon
frequency is in excellent agreement with Eq. (2) in the range
of 550–1100 K [Fig. 8(a)]. Moreover, there is good agree-
ment between dielectric data and \(\omega_1^2(T) \) in the whole range
\(T < 1100 \text{ K} \) [Fig. 8(b)]. Thus, it can be maintained that the
driving mechanism approaching the ferroelectric transition in
LiNbO\(_3\) is the displacement one, if the temperature range \(T < 1100 \text{ K} \) is considered. In this case, the apparent increase in
spectral density seen in Fig. 4(a) under constant \(\delta \) at \(T > 600 \text{ K} \) [Fig. 7(b)] is related to softening \(\omega_1 \). Figure 10
illustrates a comparison of the apparent integral intensity of
the central peak with the relaxational intensity \(I_r \), found by
the fit within the damped oscillator analysis. In the latter
case, \(I_r \) was calculated as the difference between the total
integral of the fitting curve and that with \(\delta = 0 \). Also, the
relative contribution of the relaxation peak can be estimated
by the parameter \(\delta/\omega_0^2 \) (for example, Ref. 20). Good quali-
tative agreement between different parameters is seen in Fig.
10, where the logarithmic scale is used for the ordinate. The
solid curve in this figure corresponds to the estimation of
\(\delta/\omega_0^2 \), using the extrapolation to higher temperatures of the
temperature-independent value of \(\delta \) [Fig. 7(b)] and the be-
behavior of \(\omega_0^2 \propto (T-T_c) \) [Fig. 8(a)]. The solid curve in Fig. 10
reaches the value \(\sim 1 \) in the temperature range of \(\sim 1400 \text{ K} \)
and higher. It means that the relaxational motion dominates
in the total spectral intensity at high temperatures. Thus,
because of the coupling with relaxation the displacement sce-
nario evolution of the soft mode turns to the pure relaxa-
tional mode at high temperatures. The order-disorder type
of ferroelectric dynamics at \(T > 1300 \text{ K} \) is well seen for
\(\gamma_r(T) \).

Figure 2 evidences that the \(E \)-phonon modes are also
coupled to the relaxation mode, leading to the central peak
appearance. Moreover, the relative contribution of the central
peak to the Raman spectrum in the \(z\langle xy \rangle x \) configuration is
comparable with that in the \(x(zz)y \) configuration at \(T < 700 \text{ K} \). The absence of softening of the \(E \)-phonon modes,
however, leads to the absence of the increase in the central
peak intensity above 600 K [Fig. 4(a)]. Thus, it is the differ-
ce in the temperature dependence of the phonon modes that
is responsible for the different temperature behavior of the
central peak for “ferroelectric” and “nonferroelectric”
configurations of Raman experiment.

V. CONCLUSION

In the present work, a new study of the low-frequency
Raman spectra in the ferroelectric LiNbO\(_3\) crystal is pre-
sented with an emphasis on the central peak behavior. The
central peak is studied in much extended spectral and tem-
perature ranges than it was done before. Different ap-
proaches to the spectral analysis are presented and discussed.
The new set of the central peak features is as follows:
(i) The inverse relaxation time increases with temperature up to \(\sim 1300 \text{ K} \), and only above this temperature the critical slowing down is observed.

(ii) In analysis by the damped oscillator coupled with the relaxational mode, the apparent temperature increase of the central peak intensity at \(T > 600 \text{ K} \) is caused by the soft mode softening, while the coupling parameter \(\delta \) is temperature-independent.

(iii) The central peak is also seen in the \(z(xy)x \) configuration, but its temperature behavior is different from that for the \(zz \)-configuration above 600–700 K and can be attributed to the absence of strong softening of \(E \)-phonons.

The most striking feature is the confrontation between the observed increases of the inverse relaxation time and the theoretical predictions for a wide temperature range 300–1300 K. Careful consideration, done in the work, evidences that this behavior is not an artefact of the experiment or analysis. Thus, the outcoming result call to revising the previous descriptions of the central peak features and to extending the standard paradigm of ferroelectric dynamics. In particular, taking into account local fluctuations of the order parameter would help to explain the low-temperature behavior of the central peak, which can be described by an activation motion with a single energy barrier at \(T < 1000 \text{ K} \).

The ferroelectric dynamics of the LiNbO\(_3\) crystal is well interpreted by a scenario where the soft mode is coupled to the relaxational mode. At low temperatures, the evolution is mainly governed by the phonon softening. At high temperatures, resonancelike reasons lead to pumping the spectral density into the relaxational mode, and the order-disorder-type of dynamics rules the critical narrowing of the central peak.
