Oxygen Exchange at the Internal Surface of Amorphous SiO$_2$ Studied by Photoluminescence of Isotopically Labeled Oxygen Molecules

<table>
<thead>
<tr>
<th>著者</th>
<th>Kajihara Koichi, Miura Taisuke, Kamioka Hayato, Hirano Masahiro, Skuja Linards, Hosono Hideo</th>
</tr>
</thead>
<tbody>
<tr>
<td>言語</td>
<td>日文</td>
</tr>
<tr>
<td>公開年</td>
<td>2009</td>
</tr>
<tr>
<td>巻</td>
<td>102</td>
</tr>
<tr>
<td>号</td>
<td>17</td>
</tr>
<tr>
<td>頁</td>
<td>175502</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2241/102772</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1103/PhysRevLett.102.175502</td>
</tr>
</tbody>
</table>

Copyright © 2009 The American Physical Society
Oxygen Exchange at the Internal Surface of Amorphous SiO$_2$ Studied by Photoluminescence of Isotopically Labeled Oxygen Molecules

Koichi Kajihara,1,2,* Taisuke Miura,3 Hayato Kamioka,4 Masahiro Hirano,1,6 Linards Skuja,1,5 and Hideo Hosono1,6

1Transparent Electro-Active Materials Project, ERATO-SORST, Japan Science and Technology Agency, in Frontier Research Center, S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
2Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji 192-0397, Japan
3Research & Development Division, OMRON Laserfront Inc., 1120 Shimokuzawa, Sagamihara 229-1198, Japan
4Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
5Institute of Solid State Physics, University of Latvia, Kengaraga iela 8, LV1063 Riga, Latvia
6Materials and Structures Laboratory & Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

(Received 12 February 2009; published 27 April 2009)

The exchange between lattice and interstitial oxygen species in an oxide was studied by the 16O-18O isotope shift of the $a^1\Delta_g(v = 0) \rightarrow X^3\Sigma_g^-(v = 1)$ infrared photoluminescence band of the oxygen molecules (O$_2$) incorporated into the interstitial voids of amorphous SiO$_2$ (a-SiO$_2$) by thermal annealing in O$_2$ gas. A large site to site variation of the oxygen exchange rate, originating from structural disorder of a-SiO$_2$, is found. The average exchange rate has an activation energy of ~ 2 eV, which is much larger than that for the diffusion of interstitial O$_2$ (~ 0.8–1.2 eV). The average exchange-free diffusion length of interstitial O$_2$ exceeds ~ 1 μm below 900 °C, providing definite evidence that oxygen diffuses as interstitial molecules in a-SiO$_2$.

DOI: 10.1103/PhysRevLett.102.175502

PACS numbers: 61.72.jj, 65.60.+a, 66.30.hh, 78.55.Qr

Various properties of oxides relevant to practical applications, such as electrical and ionic conductivity, optical transparency, and catalytic activity, are closely related to the oxygen transfer between the oxides themselves and ambient oxygen molecules (O$_2$). The interaction of O$_2$ with oxide surfaces has been studied extensively [1–3]. Amorphous SiO$_2$ (a-SiO$_2$) is unique among oxides due to its low density and interstitial voids which may be treated as “internal surfaces.” The oxygen transfer occurring at the internal surfaces between the molecules in a “quasigas phase” and the surrounding lattice oxygen in the a-SiO$_2$ network is of fundamental interest because it is intrinsic, that is, unaffected by passivated dangling bonds and adatoms covering the outer surfaces. Moreover, the diffusion of interstitial O$_2$ in a-SiO$_2$ is technologically important as it is a key step in growing dielectric a-SiO$_2$ films on silicon microelectronic circuits [4,5]. It is considered that interstitial O$_2$ diffuses without significant exchange with the surrounding a-SiO$_2$ network [6–10]; however, some oxygen exchange has been found to occur [11–13]. The details have remained uncertain primarily because the concentration of interstitial O$_2$ is several orders of magnitude smaller than that of the background oxygen network atoms, and at the time of these studies, experimental techniques that are able to distinguish interstitial O$_2$ from the background were absent.

Oxygen molecules dissolved in solids and liquids can be selectively detected via their characteristic infrared (IR) photoluminescence (PL) due to the transition from the first singlet excited state $a^1\Delta_g$ to the triplet ground state $X^3\Sigma_g^-$ of O$_2$ (pure electronic band, PEB) [14,15]. This method has been useful in the study of the diffusion and reactions of O$_2$ in a-SiO$_2$ [16–18]. We demonstrate here that the oxygen exchange between interstitial O$_2$ and the a-SiO$_2$ network is quantitatively studied by combining the PL method with an isotope labeling technique. Since the shape and peak position of PEB are insensitive to isotopic substitution [19], the isotopologues of interstitial O$_2$ are distinguished using the PL band due to the transition from the a state to the first vibronic level of the X state $X^3\Sigma_g^-(v = 1)$ (vibrational sideband, VSB), which is much weaker than PEB but undergoes a single isotope shift.

High-purity synthetic a-SiO$_2$ specimens ($10 \times 6.5 \times 0.4–0.5$ mm3 with two optically polished faces) containing $\sim 2 \times 10^{18}$ cm$^{-3}$ SiOH groups were sealed in an SiOH-free (SiOH $\leq 10^{17}$ cm$^{-3}$) silica tubes with 18O$_2$ (18O isotopic purity $\approx 99\%$) or 16O$_2$ gas of 0.9 atm at room temperature. The sealed silica tube, each containing eight specimens, were thermally annealed between 500 and 900 °C. Before and after the thermal annealing, the isotopic composition of O$_2$ gas in the silica tube was monitored by conventional Raman spectrometry [20] and was nearly unchanged [21]. The O$_2$-loaded samples were taken out of the tube, and the PL bands were excited at 765 nm using an AlGaAs laser diode (~ 1.5 W at the sample position) via the forbidden transition to the second singlet excited state $b^1\Sigma_g^+$ of interstitial O$_2$. Since VSB is very weak, the eight specimens were stacked to facilitate the detection. The sample stack was irradiated normal to the polished face and the backscattered PL emission was re-
nealed in with the isotopic substitution. To evaluate the possible variation in the PL quantum yield.

Figure 1 shows PL spectra for samples thermally annealed in 16O or 18O. The 16O2 loading was performed for 72 h at 700 °C, whereas the 18O2 loading was done with a shorter time at lower temperature (12 h at 500 °C) to maximize the 18O fraction in interstitial O2. The spectra were normalized to the intensity of PEB at λ=7855 cm$^{-1}$ [15,23], showing a negligible shift upon 18O substitution. VSB of interstitial 16O2 PL was observed at ν_{66} = 6308 cm$^{-1}$, and the band shape was simulated well with a pseudo Voigt function. In the 18O2-loaded sample, VSB was shifted to a higher energy side along with a ~20% increase in the normalized amplitude. This band is mainly due to interstitial 18O2 because the peak position agrees well with that expected from the atomic mass ratio between 16O and 18O and the PEB and VSB positions of interstitial 16O2 (ν_{66} = 6352 cm$^{-1}$ for 16O18O and ν_{88} = 6397 cm$^{-1}$ for 18O2). However, its shape was slightly asymmetric due to small amounts of 16O18O and 18O2 formed by oxygen exchange with the α-SiO2 network. The observed spectrum was decomposed into three VSBs of 16O2, 16O18O, and 18O2 to evaluate the respective isotopic fractions f_{66}, f_{68}, and f_{88} ($f_{66} + f_{68} + f_{88} = 1$) as follows. The peak positions of VSBs were fixed at ν_{66}, ν_{68}, and ν_{88}. The peak amplitude and width of 18O2 VSB as well as f_{66} and f_{88} were treated as variables. The peak amplitude and width of 16O18O VSB were assumed to be given by linear interpolations of those of 16O2 and 18O2 VSBs. This procedure confirmed the high 18O purity ($f_{88} + f_{68}/2 \sim 0.97$) of O2 in the 18O2-loaded sample and determined the peak parameters of VSBs of interstitial 18O2 and 16O18O that are needed for the following concentration analysis based on VSBs.

Figure 2 shows the VSB spectra for the samples thermally annealed at 700 °C in 16O2 or 18O2 for up to 72 h. The spectra of the 18O2-loaded samples clearly consisted of three VSBs of 16O2, 16O18O, and 18O2. The 18O fraction of interstitial O2 ($f_{88} + f_{68}/2$) decreased monotonically with an increase in annealing time, confirming the transfer of 18O from the α-SiO2 network to interstitial O2. Figure 3 summarizes variation of f_{66} and f_{88} with time and temperature of 18O2 loading. f_{66} and f_{88} evaluated by peak decomposition of the VSB spectra are denoted as filled symbols.

The total concentration of interstitial O2, C_T, was determined by comparing the PEB intensity with that of a reference sample of known interstitial 16O2 concentration [18]. The PL quantum yield of PEB is proportional to the decay constant τ [22], and τ_{68} and τ_{88} were found to be ~1.7 and ~2.5 times larger than τ_{66}, respectively. This uneven PL quantum yield was corrected by multiplying the PEB intensity with the factor $\tau_{66}/(f_{66}\tau_{66} + f_{68}\tau_{68} + f_{88}\tau_{88})$. The O2 concentrations evaluated with this procedure agree with those calculated from the Arrhenius relations of the solubility S and diffusion coefficient D determined from measurements above 800 °C [17,18]. Thus, the Arrhenius relations were used to produce D, S, and C_T values in the following numerical simulation of the oxygen exchange.

The exchange of an interstitial O2 molecule with the α-SiO2 network may be a reversible second order reaction, transferring only an oxygen atom in each exchange event [11,24],

\begin{equation}
^{18}\text{O}^{16}\text{O} + \equiv\text{Si}-^{16}\text{O} - \equiv \rightarrow^{16}\text{O}^{18}\text{O} + \equiv\text{Si}-^{18}\text{O} - \equiv,
\end{equation}

\begin{equation}
^{16}\text{O}^{18}\text{O} + \equiv\text{Si}-^{16}\text{O} - \equiv \rightarrow^{16}\text{O}^{16}\text{O} + \equiv\text{Si}-^{18}\text{O} - \equiv.
\end{equation}
We defined the exchange rate constant of Eq. (1) forward and Eq. (2) backward reactions as k. Then the rate constant of the Eq. (1) backward and Eq. (2) forward reactions apparently becomes $k/2$ as only one oxygen atom in 18O contributes to these reactions. k may be affected by the local configuration of the glass network, which differs from site to site due to the variation in the Si-O-Si angle and the local network topology [25,26]. We assumed that the network oxygen atoms have nonequal exchange rates k with a Gaussian probability distribution against logk [27], and each k has an Arrhenius-type dependence on the absolute annealing temperature T with common preexponential rate constant. This distribution was approximated by a finite number i of components [28], each having exchange rate k_i. The concentrations of the network 16O and 18O atoms for the component i (N_i and N_i') were normalized by the total concentration as $N^T = \sum (N_i + N_i') = 4.41 \times 10^{22} \text{ cm}^{-3}$ [29]. The temporal and spatial variations of interstitial 16O$_2$, 16O18O, and 18O$_2$ C concentrations (C, C^*, and C^{**}) were calculated by numerically solving following simultaneous one-dimensional diffusion-exchange equations.

$$\frac{\partial C^T}{\partial t} = D \frac{\partial^2 C^T}{\partial x^2}, \quad (3)$$

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} + \sum_i k_i \left(\frac{C}{2} N_i - CN_i^* \right), \quad (4)$$

$$\frac{\partial C^{**}}{\partial t} = D \frac{\partial^2 C^{**}}{\partial x^2} + \sum_i k_i \left(-C^{**} N_i + \frac{C}{2} N_i^* \right), \quad (5)$$

$$\frac{\partial N_i^*}{\partial t} = -\frac{\partial N_i}{\partial t} = k_i \left(\frac{C}{2} N_i + C^{**} N_i - CN_i^* - \frac{C}{2} N_i^* \right). \quad (6)$$

VSB spectra (Fig. 2, solid lines) were calculated from the solutions and fitted to the observed spectra. A boundary condition was set as $C^T = C^{**} = 0.9ST/298$ at the sample surfaces, taking into account that (i) solubility of O$_2$ depends linearly on the O$_2$ pressure inside the silica tube [17,30], which is roughly proportional to T, (ii) dissolution of O$_2$ is much faster than the subsequent diffusion of interstitial O$_2$ [16,17], and (iii) the 18O fraction of O$_2$ gas in the tube remained close to 1 during the thermal annealing.

As shown in Fig. 3, the solutions of the rate equations Eqs. (3)–(6) (solid lines) agreed well with the experimental variation of f_{68} and f_{88} (filled symbols) when k is distributed; it was not possible to obtain a good fit using a single k value. The full width at half maximum of the distribution of logk was ~ 9.7 at 500°C and ~ 6.4 at 900°C, indicating that a part of network oxygen atoms are much more reactive than the remaining network oxygen atoms. These more reactive sites easily release 18O and enhance the formation of interstitial 16O18O and 18O$_2$ in an early stage of the oxygen loading. Later in the reaction, however, such sites have been occupied by 18O while the remaining sites release 16O more gradually, slowing the increase in f_{68} and f_{88}.

The average exchange rate constant k_a for systems with a k distribution may be represented by the simple weighted average of k_i as $k_a = \sum k_i (N_i + N_i')/N_T$. Figure 4 shows the dependence of k_a on T, where k_a ranged from $\sim 10^{-28}$ to $\sim 10^{-23} \text{ cm}^3 s^{-1}$ according to the change in T between 500 and 900°C. The activation energy for k_a, which may be given by assuming a linear relation between logk_a and T^{-1}, was ~ 2.1 eV. Secondary ion mass spectroscopy profiling studies have reported similar values (~ 2.6 [12] and ~ 1.7 eV [13]), although they assumed first-order exchange reactions. These values are larger than the activation energy for the permeation of interstitial O$_2$ in a-SiO$_2$ (~ 0.8–1.2 eV [17,30,31]), suggesting that the oxygen exchange is not the bottleneck for the permeation. In contrast, they are much smaller than the energies of the O-O bond in O$_2$ (~ 5.1 eV), and Si-O bond (~ 4.7 eV), and the
activation energy for the viscous flow of a-SiO$_2$ (∼5–7 eV [32–34]) that is required for network rearrangement. Thus, the observed activation energy may correspond to the energy needed to form an activation complex during the oxygen exchange.

The average time interval of the oxygen exchange for an interstitial O$_2$ molecule may be given by $(k_aN^2)^{-1}$, yielding $\sim 3 \times 10^3$ s at 500 °C and ~ 6 s at 900 °C. Using this value, the average exchange-free diffusion length l of an interstitial O$_2$ molecule in one dimension may be calculated by

$$l = \frac{2(D\pi)^{1/2}}{n} = 2\left(\frac{D}{\pi k_a N^2}\right)^{1/2}. \quad (7)$$

Calculated l values are plotted in Fig. 4; they were ~ 40 μm at 500 °C and ~ 2 μm at 900 °C, demonstrating that l is far larger than the scale of the ring and cage structures of the a-SiO$_2$ network (∼1 nm [26,29]).

In summary, we developed a photoluminescence technique to quantitatively study 18O-labeled interstitial O$_2$ in amorphous SiO$_2$, which offers a direct way to investigate their property and intrinsic reactivity. The obtained results provide insight into interactions of O$_2$ with oxides.