THREE-DISTANCE SEQUENCES WITH THREE SYMBOLS

By

Kuniko Sakamoto

Abstract. We will show that every 3 dimensional cutting sequence is a three-distance sequence, and there are uncountable many periodic or aperiodic three-distance sequences (with 3-symbols) which are not 3 dimensional cutting sequences.

1 Introduction

W. F. Lunnon and P. A. B. Pleasants [1] defined two-distance sequences and proved that each 2 dimensional (2D) cutting sequence (see below, for the definition) is a two-distance sequence and the converse also holds. The basic framework of their research is traced back to the one by M. Morse and G. A. Hedlund [4].

In this paper, we will discuss the relationships between 3 dimensional (3D) cutting sequences and three-distance sequences. We will show that every 3D cutting sequence is a three-distance sequence, and there are uncountable many periodic or aperiodic three-distance sequences which are not 3D cutting sequences.

First, we recall the definition of 2D cutting sequences. Although the definition given below is slightly different from that described in [1] or [5], the equivalence of 2D cutting sequences and two-distance sequences ([1, theorem 1]) holds by the same proof.

The set of the real numbers and the rational integers, and the non-negative rational integers are denoted by \mathbb{R}, \mathbb{Z}, \mathbb{Z}_+, respectively.

We consider the standard orthogonal coordinates x, y in the 2 dimensional Euclidean space \mathbb{R}^2, and take a line L in \mathbb{R}^2. We assume that the slope of the line L is non-negative, and L is not parallel to either axis. When the line L crosses a
vertical grid line or a horizontal one, we mark the point of the intersection and label it as A and B, respectively.

![Figure 1](image)

In the above labeling, we need to specify the way of labeling the intersection L ∩ Z².

Type 1:
#(L ∩ Z²) = 1. Label the point of the intersection L ∩ Z² by either of the two elements of \(S_2 = \{AB, BA\} \).

Type 2:
#(L ∩ Z²) ≥ 2. Observe that #(L ∩ Z²) = ∞.

1. Label all the points of the intersection L ∩ Z² by one of the two elements of \(S_2 \).
 In this way, we obtain two infinite periodic sequences associated with the line L.
2. Fix an arbitrary point P on L. The point P divides L into two half-lines \(L^+_P \) and \(L^-_P \). We label the integer points on \(L^+_P \setminus \{P\} \) by an element of \(S_2 \), and label the integer points on \(L^-_P \setminus \{P\} \) by another element of \(S_2 \). When P is an integer point, we label P by an element of \(S_2 \).

These give one or more two-way infinite sequences of symbols A and B. Such sequences are called the 2D cutting sequences obtained from L.

Remark 1.1. The labeling of Type 2 (2) is introduced to obtain the equivalence between 2D cutting sequences and two-distance sequences ([1]).

2 3D Cutting Sequence

In this section, we define 3D cutting sequences as a natural extension of 2D cutting sequences. We consider the standard orthogonal coordinates \(x, y, z \) in the 3 dimensional Euclidean space \(\mathbb{R}^3 \). Let \(P_{uv}(L) \) be the projection of a line L in \(\mathbb{R}^3 \).
on the uv-plane, where \(u, v \in \{ x, y, z \} \). We assume that each projection \(P_{uv}(L) \) has a non-negative slope, and \(L \) does not lie in any uv-hyperplane. Let \(\mathcal{H}_A \) (resp. \(\mathcal{H}_B, \mathcal{H}_C \)) be the collection of hyperplanes in \(\mathbb{R}^3 \) defined by

\[
x = r_x, \quad (\text{resp. } y = r_y, \ z = r_z)
\]

where \(r_x, r_y, r_z \in \mathbb{Z} \).

When \(L \) intersects with a hyperplane \(H_A \in \mathcal{H}_A \) (resp. \(H_B \in \mathcal{H}_B, \ H_C \in \mathcal{H}_C \)), label the point of the intersection \(H_A \cap L \) (resp. \(H_B \cap L, \ H_C \cap L \)) by \(A \) (resp. \(B, C \)).

Let \(\mathcal{L}_x \) (resp. \(\mathcal{L}_y, \mathcal{L}_z \)) be the collection of the lines defined by the equation

\[
y = r_y \quad \text{and} \quad z = r_z, \quad r_y, r_z \in \mathbb{Z}
\]

(resp. \(x = r_x \) and \(z = r_z, \quad r_x, r_z \in \mathbb{Z} \),

\[
x = r_x \quad \text{and} \quad y = r_y, \quad r_x, r_y \in \mathbb{Z}.
\]

We put \(\mathcal{L} = \mathcal{L}_x \cup \mathcal{L}_y \cup \mathcal{L}_z \) and the set \(\Lambda = \bigcup \mathcal{L} \) is called the grid of \(\mathbb{R}^3 \) in the present paper.

As we did in defining the 2D cutting sequences, we need to specify the way of labeling the points of the intersection of \(L \) and \(\Lambda \) or \(\mathbb{Z}^3 \). We divide our consideration into the following three cases. First notice that if \(L \cap \mathbb{Z}^3 \neq \emptyset \) then \(\#(L \cap \mathbb{Z}^3) = 1 \) or \(\infty \).

Case 1 \(L \cap \mathbb{Z}^3 \neq \emptyset \) and \(L \cap (\Lambda \setminus \mathbb{Z}^3) = \emptyset \).

Case 2 \(L \cap \mathbb{Z}^3 = \emptyset \) and \(L \cap (\Lambda \setminus \mathbb{Z}^3) \neq \emptyset \) and

Case 3 \(L \cap \mathbb{Z}^3 \neq \emptyset \) and \(L \cap (\Lambda \setminus \mathbb{Z}^3) \neq \emptyset \).
Case 1:

type 1: \#(L ∩ \mathbb{Z}^3) = 1.

Label the point of the intersection L ∩ \mathbb{Z}^3 by an element of S_3, where

$$S_3 = \{ABC, ACB, BAC, BCA, CAB, CBA\}.$$

In this way, we obtain the six infinite sequences associated with the line L.

type 2: \#(L ∩ \mathbb{Z}^3) = \infty.

Fix an arbitrary point P on L. The point P divides L into two half-lines L_+ and L_. Pick up two (possibly equal) elements X_+, X_- of S_3. Then label the points of the intersection (L_+ \setminus \{P\}) ∩ \mathbb{Z}^3 by X_+, and label the points of the intersection (L_- \setminus \{P\}) ∩ \mathbb{Z}^3 by X_-.

In this way, we obtain the 36 infinite periodic sequences associated with the line L.

Case 2:

type 1: Suppose that there exists a unique \ell ∈ \mathcal{L} which intersects with L.

We define S_u (u = x, y, z) as follows.

$$S_x = \{BC, CB\}, \quad S_y = \{AC, CA\}, \quad S_z = \{AB, BA\}.$$

When \ell ∈ \mathcal{L}_u, label the point of the intersection \ell ∩ L by an element of S_u.

In this way, we obtain two infinite periodic sequences associated with the line L.

type 2: Suppose that there exist two lines \ell, \ell' ∈ \mathcal{L} such that \ell ∩ L \neq \varnothing and \ell' ∩ L \neq \varnothing, and recall that L does not lie in any uv-hyperplane. Fix an arbitrary point P on L. The point P divides L into two half-lines L_+ and L_. Pick up two (possibly equal) elements X_u^+, X_u^- of S_u. Then label the point of the intersection (L_+ \setminus \{P\}) ∩ \ell, \ell ∈ \mathcal{L}_u by X_u^+, and the point of the intersection (L_- \setminus \{P\}) ∩ \ell', \ell' ∈ \mathcal{L}_u by X_u^-.

When \{P\} = L ∩ \ell, \ell ∈ \mathcal{L}_u, we label P by an element of S_u.

Case 3: First we observe that, \#{\ell ∈ \mathcal{L} : L ∩ (\ell \setminus \mathbb{Z}^3) \neq \varnothing} = \infty.

We define the following notation for the labeling in this case. Let W be the set of all finite sequences with symbols A, B, C. A function

$$D_u : W \to W$$

(u = x, y, z) is defined as follows: for w ∈ W, D_u(w) is a finite sequence with two symbols obtained by removing δ(u) from w, where
Also a function
\[
\delta(u) = \begin{cases}
A, & \text{if } u = x \\
B, & \text{if } u = y \\
C, & \text{if } u = z.
\end{cases}
\]

is defined as follows: for an element \(w = w_1 \cdots w_l \) of \(W \) (\(\{w_1, \ldots, w_l\} \subset \{A, B, C\} \)), \(F_u(w) = w_l \cdots w_1 \).

We fix an arbitrary point \(P \) on \(L \). The point \(P \) divides \(L \) into two half-lines \(L^+_p \) and \(L^-_p \).

type 1: \(\#(L \cap \mathbb{Z}^3) = 1 \).

Label the point of the intersection \(L^+_p \cap \mathbb{Z}^3 \) by an element \(X \) of \(S_3 \). For the labeling the intersection \(L \cap L^+_p \), we take the following two ways.

1. Label the intersection \(\ell \cap L^+_p \) and \(\ell' \cap L^-_p \) with \(\ell, \ell' \in L_u \) as \(D_u(X) \).
2. Label the intersection \(\ell \cap L^+_p \) with \(\ell \in L_u \) by \(D_u(X) \), and the intersection \(\ell' \cap L^-_p \) with \(\ell' \in L_u \) by \(F_u \circ D_u(X) \).

type 2: \(\#(L \cap \mathbb{Z}^3) = \infty \).

Pick up two (possibly equal) elements \(X^+, X^- \) of \(S_3 \). Label the points of the intersection \(L^+_p \cap \mathbb{Z}^3 \) by \(X^+ \) and \(L^-_p \cap \mathbb{Z}^3 \) by \(X^- \). Then label \(L^+_p \cap \ell \) with \(\ell \in L_u \) by \(D_u(X^+) \) and \(L^-_p \cap \ell' \) with \(\ell' \in L_u \) by \(D_u(X^-) \).

These give one or more bi-infinite sequences with symbols \(A, B, C \). Such sequences are called the **3D cutting sequences** obtained from \(L \).

Remark 2.1. The function \(D_u \) is naturally extended to a function \(D_u : \Sigma \to \Sigma \) of the set \(\Sigma \) of all infinite sequences with symbols \(A, B, C \).

If \(S \) is a 3D cutting sequence associated with a line \(L \), then \(D_u(S) \) is a 2D cutting sequence associated with the line \(P_{uv}(L) \), where \(\{u, v\} \subset \{x, y, z\} \). In this way, 2D cutting sequences are obtained from 3D cutting sequences.

3 Three-Distance Sequence

In this section, we define the notion of three-distance sequences with three symbols. The following definitions are the natural extensions of those for two-distance sequences with two symbols \(A, B \) [1].

Let \(S \) be a bi-infinite sequence with three symbols \(A, B, C \).

Definition 3.1. A word \(w \) in \(S \) is a finite string of consecutive symbols from \(S \).
Definition 3.2. The length $|w|$ of a word w is the total number of symbols which are contained in w.

Definition 3.3. The i-weight $|w|i$ of a word w ($i \in \{A, B, C\}$) is the number of the symbol i in the word w. Notice that $|w| = |w|A + |w|B + |w|C$.

Definition 3.4. A sequence S is called a three-distance sequence, if, for each $l \in \mathbb{Z}_+$ and for each $i \in \{A, B, C\}$, we have the inequality

$$\#\{|w|i : w \text{ is a word of } S \text{ and } |w| = l\} \leq 3.$$

Similarly we define m-distance sequences for infinite sequences with n symbols ($n \geq 2$).

Definition 3.5. An infinite sequence S with n symbols x_1, x_2, \ldots, x_n is called an m-distance sequence if, for each $l \in \mathbb{Z}_+$ and for each x_z ($1 \leq z \leq n$), we have the inequality

$$\#\{|w|_{x_z} : |w| = l\} \leq m.$$

By the definition, every $(m - 1)$-distance sequence is an m-distance sequence.

Lemma 3.1. Let S be an infinite sequence with n symbols x_1, x_2, \ldots, x_n.

1. If S is m-distance, then, for each $l \in \mathbb{Z}_+$ and for each x_z ($1 \leq z \leq n$), there exist $\mu \in \mathbb{Z}_+$ and m' with $0 \leq m' \leq m - 1$ such that

$$\{|w|_{x_z} : |w| = l\} = \{|w|_{x_z} : |w| = l\}.$$

2. If S is not m-distance, then there exist an $l \in \mathbb{Z}_+$ an $z \in \{1, \ldots, n\}$ and two words w_1, w_2 in S of length l, such that $|w_2|_{x_z} - |w_1|_{x_z} = m$.

Proof. Fix an arbitrary $l \in \mathbb{Z}_+$ and $z \in \{1, \ldots, n\}$. We put $\mu = \min\{|w|_{x_z} : |w| = l\}$ and $M = \max\{|w|_{x_z} : |w| = l\}$. Then for each word w such that $|w| = l$, $\mu \leq |w|_{x_z} \leq M$. When $M - \mu \leq 1$, there is nothing to prove. In what follows, we consider the case $M - \mu \geq 2$. The sequence S is written as

$$S = \cdots w_{-1}w_0w_1 \cdots w_lw_{l+1}w_{l+2} \cdots$$

Take two words w_1, w_1^+ in S, such that $|w_1|_{x_z} = \mu$, $|w_1^+|_{x_z} = M$. We assume, without loss of generality, that $w_1 = w_1w_2 \cdots w_{l-1}w_l$, $w_1^+ = w_1w_2 \cdots w_{l+1}w_{l+2} \cdots w_{l+1+d}w_{l+d}$, $d > 0$. We define

$$\chi(w_1) = w_2 \cdots w_{l+1},$$
and

$$\chi^c(w_1) = \chi^c(\chi^{c-1}(w_1)) = w_{1+c} \cdots w_{l+c}, \quad (c \in \mathbb{Z}_+)$$

If $$|\chi^{c}(w_1)|_{x_1} = |w_1|_{x_1}$$, for each $$c \geq 0$$, then $$S$$ is three-distance. If it is not the case, let

$$c_1 = \max\{c : |\chi^{c}(w_1)|_{x_1} = |w_1|_{x_1}\}.$$

By the definition, it follows that

$$|\chi^{c_1+1}(w_1)|_{x_1} = |w_1|_{x_1} + 1.$$

If $$|\chi^{c}(w_1)|_{x_1} \leq |w_1|_{x_1} + 1$$, for each $$c \geq c_1$$, then $$S$$ is three-distance. If it is not the case, we put

$$c_2 = \max\{c : |\chi^{c}(w_1)|_{x_1} \leq |w_1|_{x_1} + 1, c \geq c_1\}.$$

Then

$$|\chi^{c_2+1}(w_1)|_{x_1} = |w_1|_{x_1} + 2.$$

If $$|\chi^{c}(w_1)|_{x_1} \leq |w_1|_{x_1} + 2$$, for each $$c \geq c_2$$, then $$S$$ is three-distance. If it is not the case, let

$$c_3 = \max\{c : |\chi^{c}(w_1)|_{x_1} \leq |w_1|_{x_1} + 2, c \geq c_2\}.$$

Then

$$|\chi^{c_3+1}(w_1)|_{x_1} = |w_1|_{x_1} + 3.$$

We repeat this process up to $$M - \mu$$ steps. If $$S$$ is $$m$$-distance, then $$M - \mu < m$$. Then $$\mu$$ and $$m' := M - \mu$$ satisfy the conclusion of (1). If $$S$$ is not $$m$$-distance, then there exist an $$l \in \mathbb{Z}_+$$ and an $$x$$ such that $$\#\{w_{x_1} : |w| = l\} > m$$. Arguing as above, we may find two words $$w_1, w_2$$ in $$S$$ of length $$l$$, such that $$|w_2|_{x_1} - |w_1|_{x_1} = m$$.

This completes the proof.

Some examples of three-distance sequences with three symbols will be given in the next section.

4 3D Cutting Sequences and Three-Distance Sequences

Example 4.1. The line in $$\mathbb{R}^3$$ defined by the equation “$$x = y = z$$” yields a periodic 3D cutting sequence

$$(ABC)^\infty = \cdots ABCABCABC \cdots ABCABCABCABC \cdots.$$

It is easy to see that the above sequence is two-distance.
Table 1 is a list of the words in the above sequence of length up to 5, and their weights.

<table>
<thead>
<tr>
<th>Length</th>
<th>Words</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A, B, C</td>
<td>0, 1</td>
</tr>
<tr>
<td>2</td>
<td>AB, BC, CA</td>
<td>0, 1</td>
</tr>
<tr>
<td>3</td>
<td>ABC, BCA, CAB</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>ABCA, BCAB, CABC</td>
<td>1, 2</td>
</tr>
<tr>
<td>5</td>
<td>ABCAB, BCABC, CABCA</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

Table 2 is a list of the words in the above sequence of length up to 4, and their weights.

<table>
<thead>
<tr>
<th>Length</th>
<th>Words</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A, B, C</td>
<td>0, 1</td>
</tr>
<tr>
<td>2</td>
<td>AB, BA, BB, AC, CB, CA, BC</td>
<td>0, 1</td>
</tr>
<tr>
<td>3</td>
<td>ABC, CBB, BAB, BBA, BCB, CBC, BAC, CAB, CBA, BBC, BCA, ACB, ABB</td>
<td>0, 1</td>
</tr>
<tr>
<td>4</td>
<td>ACBB, ABCB, ACBC, ABCB, ABCB, BBBC, BBCA, BCAB, BCBB, BBAC, BCBA, BABC, BBBC, CBC, CAB, CBCA, CBBA, CBAB, CBAC, CBBA, CBBC</td>
<td>0, 1</td>
</tr>
</tbody>
</table>

We show that each 3D cutting sequence is three-distance.

The orthogonal projection on the u-axis \((u \in \{x, y, z\})\) in \(\mathbb{R}^3\) is denoted by \(P_u\). Let \(S\) be a 3D cutting sequence associated with a line \(L\) in \(\mathbb{R}^3\). Take an arbitrary word \(w = w_1 \cdots w_l\) in \(S\), \(\{w_1, \ldots, w_l\} \subset \{A, B, C\}\). And take the points...
Therefore, we have

\[m \text{, } m' \text{ which correspond to } w_1 \text{ and } w_l \text{ respectively, as the point of the intersection } L \cap H_i \text{, } H_i \in \mathcal{H}_l, l \in \{A, B, C\} \text{, or } L \cap \ell \text{, } \ell \in \mathcal{L} \text{, or } L \cap \mathbb{Z}^3. \text{ Let } M \text{ be the segment of } L \text{ whose end-points are } m \text{ and } m'. \text{ The length of the projection of } M \text{ on the } u\text{-axis is denoted by } P_u(M) \text{. Then we obtain the following inequalities.}

\[
\begin{align*}
|w|_A - 1 &\leq P_u(M) \leq |w|_A + 1 \\
|w|_B - 1 &\leq P_v(M) \leq |w|_B + 1 \\
|w|_C - 1 &\leq P_v(M) \leq |w|_C + 1
\end{align*}
\]

(4.0)

The symbols A, B, C correspond to x, y, z, respectively via the above inequality.

Theorem 4.1. Each 3D cutting sequence is three-distance.

Proof. Let S be a 3D cutting sequence associated with a line L in \(\mathbb{R}^3 \). We assume that there exist an \(i \in \{A, B, C\} \) and two words \(w_1, w_2 \) in S, such that \(|w_1| = |w_2| \) and \(|w_1| + 2 < |w_2|\). Then we obtain

\[0 < |w_1| + 1 < |w_2| - 1. \]

(4.1)

Let \(u \) be the coordinate corresponding to \(i \) via (4.0). And let \(M_1, M_2 \) be the segments of L whose end-points are the points corresponding to the first and last symbols of \(w_1, w_2 \) respectively. Then the slope of \(P_{uv}(L) \) is

\[\frac{P_v(M_1)}{P_u(M_1)} = \frac{P_v(M_2)}{P_u(M_2)}. \]

Let \(k \) be a symbol, \(k \in \{A, B, C\} \setminus \{i\} \) and v the coordinate corresponding to \(k \), \(v \in \{x, y, z\} \setminus \{u\} \). By using the inequalities (4.0) and (4.1), it follows that

\[
\frac{|w_1|_k - 1}{|w_1| + 1} \leq \frac{P_v(M_1)}{P_u(M_1)} = \frac{P_v(M_2)}{P_u(M_2)} \leq \frac{|w_2|_k + 1}{|w_2| - 1}.
\]

Therefore, we have

\[\frac{|w_1|_k - 1}{|w_1| + 1} \leq \frac{|w_2|_k + 1}{|w_2| - 1}. \]

(4.2)

From (4.1) and (4.2), we obtain

\[|w_1|_k - 1 < |w_2|_k + 1. \]

(4.3)

Let \(j \) be the symbol other then \(i, k \). Namely \(\{i, j, k\} = \{A, B, C\} \). Then,

\[
|w_1| = |w_1|_i + |w_1|_j + |w_1|_k = |w_2|_i + |w_2|_j + |w_2|_k
\]

\[
< |w_2|_i - 2 + |w_1|_j + |w_2|_j + 2 = |w_2|_i + |w_1|_j + |w_2|_k.
\]
Hence
\[|w_2|_j < |w_1|_j. \] (4.4)

By the symmetric argument, from (4.2), we have
\[\frac{|w_1|_j - 1}{|w_1|_j + 1} \leq \frac{|w_2|_j + 1}{|w_2|_j - 1}, \] (4.5)
and thus
\[|w_1|_j - 1 < |w_2|_j + 1. \] (4.6)

The inequalities (4.4) and (4.6) imply \(|w_1|_j - 1 < |w_2|_j + 1 < |w_1|_j + 1\). Hence, we have
\[|w_2|_j + 1 = |w_1|_j. \] (4.7)

Then, \(|w_1|_j + |w_1|_j = |w_1|_j + |w_2|_j + 1 < |w_2|_j + |w_2|_j - 1\). Therefore, we obtain
\[|w_1|_k > |w_2|_k. \] (4.8)

The inequalities (4.8) and (4.3) imply \(|w_1|_k - 1 < |w_2|_k + 1 < |w_1|_k + 1\). Hence we have
\[|w_2|_k + 1 = |w_1|_k. \] (4.9)

From (4.7) and (4.9),
\[
|w_1| = |w_1|_i + |w_1|_j + |w_1|_k \\
= |w_1|_i + |w_2|_j + |w_2|_k + 2 < |w_2|_i + |w_2|_j + |w_2|_k = |w_2|.
\]

This is the contradiction. Hence for each \(i \in \{A, B, C\}\), there exist no words \(w_1, w_2\) such that \(|w_2|_i - |w_1|_i| > 2\). So \(S\) is a three-distance sequence. Q.E.D

There exists a three-distance sequence which is not a 3D cutting sequence. We give such an example.

Example 4.3. A periodic infinite sequence which repeats the word AACABCAB

\[S = \cdots CABAACABCABAACAB \cdots = (AACABCAB)^\infty \]

is three-distance. We show that \(S\) is not a 3D cutting sequence. If \(S\) is a 3D cutting sequence associated with a line \(L\) in \(\mathbb{R}^3\), then by Remark 2.1, for each \(u\), \(\mathcal{D}_u(S)\) is a 2D cutting sequence associated with \(P_{uv}(L)\) (\(\{u, v\} \subset \{x, y, z\}\)). Here by [1, Theorem 1], \(\mathcal{D}_u(S)\) is a two-distance sequence. However,

\[\mathcal{D}_y(S) = \cdots CAAACACAAACA \cdots = (CAAACA)^\infty \]
is not two-distance with two symbols \(A, C\), since the \(C\)-weight of the words \(AAA, ACA, CAC\) of length 3 in \(D_{\gamma}(S)\) is 0, 1, 2 respectively. Thus \(D_{\gamma}(S)\) cannot be a 2D cutting sequence. Accordingly, \(S\) is a three-distance sequence which is not a 3D cutting sequence.

5 Three-Distance Sequences which are not 3D Cutting Sequences

In this section, we show that there exist infinitely many three-distance sequences which are not 3D cutting sequences. Let \(x_1, \ldots, x_n\) be the \(n\) symbols. We fix a bijection

\[f_n : \{1, 2, \ldots, n!\} \rightarrow S_n, \]

where

\[S_n = \{x_{\sigma_1} \cdots x_{\sigma_n} : \{\sigma_1, \ldots, \sigma_n\} = \{1, \ldots, n\}\}. \]

Note that \(\#(S_n) = n!\). For each bi-infinite sequence \(R_n = \cdots \rho_{-1}\rho_0\rho_1\rho_2 \cdots\) with \(\rho_v \in \{1, 2, \ldots, n!\}\) \((v \in \mathbb{Z})\), we define a bi-infinite sequence with \(n\) symbols \(x_1, \ldots, x_n\) as follows.

\[f_n(R_n) = \cdots f_n(\rho_{-1})f_n(\rho_0)f_n(\rho_1)f_n(\rho_2) \cdots. \]

The set of all such sequences is denoted by \(\Sigma_{t_n}\).

Proposition 5.1.

1. If \(n \leq 3\), then each sequence of \(\Sigma_{t_n}\) is three-distance.
2. If \(n \geq 4\), then each sequence of \(\Sigma_{t_n}\) is four-distance.

Proof. When \(n = 1\), there is nothing to prove. Assume \(n \geq 2\). Let \(S\) be an element of \(\Sigma_{t_n}\). Fix an arbitrary \(l \in \mathbb{Z}_+\). We put \(l = nt + r\) with \(t \in \mathbb{Z}_+\) and \(0 \leq r < n\). Let \(w\) be a word of \(S\) such that \(|w| = l\). When \(l = |w| < n\), we obtain \(|w|_{x_a} \leq 2 \quad (x_a \in \{x_1, \ldots, x_n\})\). Now suppose \(l \geq n\). We write \(w\) as \(w = w_1\overline{w}w_2\), where \(\overline{w} = f_n(\rho_v) \cdots f_n(\rho_{v+h}), \quad v \in \mathbb{Z}, \quad h \in \mathbb{Z}_+\), and \(w_1, w_2\) are the words of \(S\) such that \(w_1\) is a proper subword of \(f_n(\rho_{v-1})\) and \(w_2\) is a proper subword of \(f_n(\rho_{v+h+1})\). If \(|w_1| = |w_2| = 0\), then \(|w| = |\overline{w}| = nt\). If \(|w_a| \neq 0\) and \(|w_b| = 0\) \((a, b \in \{1, 2\})\), then \(|\overline{w}| = nt\) and \(1 \leq |w_a| = r < n\). If \(|w_1| \neq 0\) and \(|w_2| \neq 0\), then \(2 \leq |w_1| + |w_2| \leq 2n - 2\). Thus we have

\[nt + r - 2 \leq |\overline{w}| \leq nt + r - 2n + 2. \]

Since \(0 \leq r < n\), we obtain

\[nt - 2 \leq nt + r - 2 \leq |\overline{w}| \leq nt + r - 2n + 2 < nt - n + 2 = n(t - 1) + 2. \]
Namely

\[n(t-1) \leq nt - 2 \leq |\overline{w}| < n(t-1) + 2. \]

Therefore \(|\overline{w}| = n(t-1) \). First, we consider the case \(|\overline{w}| = nt \). Then \(|w_1| + |w_2| = r \) and \(|\overline{w}|_{x_a} = t, \ 0 \leq |w_1|_{x_a} + |w_2|_{x_a} \leq 2 \). Since \(|w|_{x_a} = |w_1|_{x_a} + |\overline{w}|_{x_a} + |w_2|_{x_a} \), we have

\[t \leq |w|_{x_a} \leq t + 2. \quad (5.10) \]

Next, we consider the case \(|\overline{w}| = n(t-1) \). Then \(|w_1| + |w_2| = n + r \) and \(0 \leq |w_1|_{x_a} + |w_2|_{x_a} \leq 2 \), and \(|\overline{w}|_{x_a} = t - 1 \). Thus we have

\[t - 1 \leq |w|_{x_a} \leq t + 1. \quad (5.11) \]

By inequalities (5.10) and (5.11), we obtain \(t - 1 \leq |w|_{x_a} \leq t + 2 \). Therefore \(S \) is at most four-distance. Furthermore, if \(n \geq 4 \), it is easy to create a four-distance sequence. Next, we consider the following case: \(n \leq 3 \).

Case 1: When \(n = 2 \), an arbitrary \(l \) is written as \(l = 2t \) or \(l = 2t + 1 \).

First, we assume \(l = |w| = 2t \). If \(|\overline{w}| = 2t \), then \(|w|_{x_a} = |\overline{w}|_{x_a} = t \). If \(|\overline{w}| = 2(t-1) \), then \(t - 1 \leq |w|_{x_a} \leq t + 1 \). Hence, we obtain \(t - 1 \leq |w|_{x_a} \leq t + 1 \).

Next, we assume \(l = |w| = 2t + 1 \). If \(|\overline{w}| = 2t \), then \(t \leq |w|_{x_a} \leq t + 1 \). We note that \(|\overline{w}| = 2(t-1) \) does not hold in this case. Because, if \(|\overline{w}| = 2(t-1) \), then we obtain \(|w_1| + |w_2| = 3 \). Hence \(|w_1| = 1 \) and \(|w_2| = 2 \), or \(|w_1| = 2 \) and \(|w_2| = 1 \). This is contrary to our assumption that \(w_1 \) and \(w_2 \) are proper subwords of \(f_n(p_{r-1}) \) and \(f_n(p_{r+h+1}) \), respectively.

Therefore, if \(n = 2 \), then \(S \) is three-distance.

Case 2: When \(n = 3 \), an arbitrary \(l \) is written as \(l = 3t \) or \(l = 3t + 1 \) or \(l = 3t + 2 \).

First, we assume \(l = |w| = 3t \). If \(|\overline{w}| = 3t \), then \(|w|_{x_a} = |\overline{w}|_{x_a} = t \). If \(|\overline{w}| = 3(t-1) \), then \(t - 1 \leq |w|_{x_a} \leq t + 1 \). Hence, we obtain \(t - 1 \leq |w|_{x_a} \leq t + 1 \).

Next, we assume \(l = |w| = 3t + 1 \). If \(|\overline{w}| = 3t \), then \(t \leq |w|_{x_a} \leq t + 1 \). If \(|\overline{w}| = 3(t-1) \), then \(t - 1 \leq |w|_{x_a} \leq t + 1 \). Hence, we have \(t - 1 \leq |w|_{x_a} \leq t + 1 \).

Assume \(l = |w| = 3t + 2 \). If \(|\overline{w}| = 3t \), then \(t \leq |w|_{x_a} \leq t + 2 \). We note that \(|\overline{w}| = 3(t-1) \) does not hold in this case. Because, if \(|\overline{w}| = 3(t-1) \), then we obtain \(|w_1| + |w_2| = 5 \). Hence \(|w_1| = 1 \) and \(|w_2| = 4 \), or \(|w_1| = 4 \) and \(|w_2| = 1 \), or \(|w_1| = 2 \) and \(|w_2| = 3 \), or \(|w_1| = 3 \) and \(|w_2| = 2 \). This is contrary to our assumption that \(w_1 \) and \(w_2 \) are proper subwords of \(f_n(p_{r-1}) \) and \(f_n(p_{r+h+1}) \), respectively.
Therefore, if $n = 3$, then S is three-distance. This completes the proof.

Example 5.1. When $n = 3$, $\#(S_3) = 6$. We put $\{x_1, x_2, x_3\} = \{A, B, C\}$. Let $f_3 : \{1, 2, \ldots, 6\} \rightarrow S_3$ be a bijection given by:

$1 \mapsto ABC, \quad 2 \mapsto ACB, \quad 3 \mapsto BAC, \quad 4 \mapsto BCA, \quad 5 \mapsto CAB, \quad 6 \mapsto CBA.$

By Proposition 5.1, an infinite sequence

$$R_3 = \cdots 52435364564311432253522451353624626625316243341334622466243235$$

$$543456625426166216231525522166544 \cdots,$$

produces a three-distance sequence $S \in \Sigma_{f_3}$,

$$S = \cdots CABACBBBCABACCABBCABCABCBABCABACABCA$$

$$BCBCA \cdots.$$

However,

$$D_x(S) = \cdots CBCBCBCCCBBCCBB \cdots$$

and

$$D_y(S) = \cdots CAACCAACCAACCAAC \cdots,$$

$$D_z(S) = \cdots ABABBABAABBABABAABBABAB \cdots$$

are not two-distances with two symbols BC, CA, AB respectively. Namely, there does not exist a line in \mathbb{R}^2 which has $D_u(S)$ as its 2D cutting sequence. Therefore S is a three-distance sequence which is not a 3D cutting sequence. From the above construction, it is easy to see that there are infinitely many such sequences.

The set of the elements of Σ_{f_3} which are not 3D cutting sequences is denoted by $\Sigma_{f_3}^\ast$.

Corollary 5.2. $\text{card } \Sigma_{f_3}^\ast = \text{card } \Sigma_{f_3} = \text{card } \mathbb{R}$.

Proof. The set of bi-infinite sequences with symbols 1, 2, \ldots, 6 is denoted by \mathcal{R}_3. For a sequence $R_3 = \cdots r_{-1}r_0r_1r_2 \cdots \in \mathcal{R}_3$ with $r_v \in \{1, 2, \ldots, 6\}$ ($v \in \mathbb{Z}$), we define the infinite sequence $R_3^\ast = \cdots r_{-1}135r_0r_1r_2 \cdots$. We put

$$\mathcal{R}_3^\ast = \{R_3^\ast : R_3 \in \mathcal{R}_3\}.$$
Then we have \(\text{card } R_3^+ = \text{card } R_3 = \text{card } \mathbb{R} \). Note that

\[
D_z \circ f_3(135) = D_z(f_3(1)f_3(3)f_3(5)) = D_z(\text{ABCBACCAB}) = \text{ABBAAB}.
\]

Hence, for any element \(R_3^+ \) of \(R_3^+ \), \(D_z \circ f_3(R_3^+) \) is not two-distance with two symbols \(A, B \). Thus \(D_z \circ f_3(R_3^+) \) cannot be a 2D cutting sequence. From Remark 2.1, we see \(f_3(R_3^+) \in \Sigma_{f_3} \). We put

\[
\Sigma_{f_3}(135) = \{ f_3(R_3^+) : R_3^+ \in R_3^+ \}.
\]

Note that \(\Sigma_{f_3}(135) \subset \Sigma_{f_3} \). Since there exists an injection:

\[
R_3^+ \rightarrow \Sigma_{f_3}(135), \quad R_3^+ \mapsto f_3(R_3^+),
\]

we have \(\text{card } \mathbb{R} \leq \text{card } \Sigma_{f_3}(135) \). Hence \(\text{card } \mathbb{R} \leq \text{card } \Sigma_{f_3} \). Therefore we obtain

\[
\text{card } \mathbb{R} \leq \text{card } \Sigma_{f_3} \leq \text{card } \Sigma \leq \text{card } \mathbb{R},
\]

and

\[
\text{card } \Sigma_{f_3} = \text{card } \Sigma = \text{card } \mathbb{R}.
\]

Q.E.D

References