Cooperative formation of high-spin species in a photoexcited spin-crossover complex

<table>
<thead>
<tr>
<th>士者</th>
<th>Moritomo Y., Kamiya M., Nakamura A., Nakamoto A., Kojima N.</th>
</tr>
</thead>
<tbody>
<tr>
<td>記事のタイトル</td>
<td>journal or publication title</td>
</tr>
<tr>
<td>発行誌</td>
<td>Physical review B</td>
</tr>
<tr>
<td>発行号</td>
<td>volume 73</td>
</tr>
<tr>
<td>号</td>
<td>number 1</td>
</tr>
<tr>
<td>頁</td>
<td>page range 012103</td>
</tr>
<tr>
<td>年</td>
<td>year 2006-01</td>
</tr>
<tr>
<td>版</td>
<td>（C）2006 The American Physical Society</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2241/101630</td>
</tr>
<tr>
<td>doi</td>
<td>doi: 10.1103/PhysRevB.73.012103</td>
</tr>
</tbody>
</table>
Cooperative formation of high-spin species in a photoexcited spin-crossover complex

Y. Moritomo
Department of Physics, University of Tsukuba, Tsukuba 305-8571, Japan

M. Kamiya and A. Nakamura
Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan

A. Nakamoto and N. Kojima
Graduate School of Arts and Science, University of Tokyo, Tokyo 158-8902, Japan
(Received 18 August 2005; published 24 January 2006)

The dynamics of the photoinduced phase transition was investigated in a prototypical spin crossover complex, \([\text{Fe(ptz}_3]_3[\text{BF}_4]_2\) (ptz=1-propyltetrazole), under photoexcitation at 77 K near the transition temperature \((T_c=130 \text{ K})\). When the excitation power \(I\) exceeds \(\approx 1 \text{ mW/mm}^2\), we observed an “acceleration” of the creation rate of the density \(n_{\text{HS}}\) of the high-spin (HS) species after a characteristic incubation period. The “acceleration” is interpreted in terms of the negative pressure effect; the photocreated HS species with a larger ionic radius expands the volume to cause the structural phase transition.

DOI: 10.1103/PhysRevB.73.012103

PACS number(s): 64.90.+b, 68.18.Jk

The photoinduced phenomena\(^1\) have been extensively investigated both from the fundamental and technical points of view. In an extreme case, the photoexcitation causes the macroscopic structural change, or the so-called photoinduced phase transition (PIPT). So far, a long list of researchers have reported on persistent PIPTs in spin-crossover complexes,\(^2\)-\(^7\) mixed-valence gold complex, \(\text{Cs}_2\text{Au}_2\text{Br}_6\) (Ref. 8) transition metal cyanides,\(^9\)-\(^14\) iodine-bridged binuclear Pt compounds,\(^15\) organic radical crystal, \(\text{TTTA}\) (1,3,5-trithia-2,4,6-triazapentalenyl),\(^16\) polydiacetylene crystal,\(^17\) and so on. Most of these materials\(^14\)-\(^17\) respond nonlinearily with the excitation power \(I\), suggesting that cooperative interaction originated by the electron correlation and/or the electron-lattice coupling plays a key role at the PIPT process. For example, Koshino and Ogawa\(^18\) theoretically proposed domino effects in a one-dimensional system; a photoinduced local structural change causes a global structural change when the intersite interaction is short-ranged and moderately strong. Thus, the clarification of the dynamical process of the PIPT is one of the hottest topics in solid state physics.

Among the materials that show PIPT, the spin crossover complex consists of the divalent Fe\(^{2+}\) ions surrounded by the ligand molecules and the counterions. This compound was most intensively investigated\(^19\)-\(^21\) in the past few decades due to the following reasons. First, the role of photoexcitation is quite simple; the photonexcitation converts the low-spin (LS; \(t_{2g}^6\)) Fe\(^{2+}\) site into the high-spin (HS; \(t_{2g}^5e_{g}^1\)) state via an intersystem crossing. Secondly, the density \(n_{\text{HS}}\) of the HS species is easily estimated from the dipole-forbidden transition of the LS Fe\(^{2+}\) ion. Recently, Ogawa\textit{et al.}\(^19\) have investigated the dynamical behavior of \(n_{\text{HS}}\) of \([\text{Fe}(2\text{-pic}_3]_3\)Cl\(_2\text{ EtOH}\) at 2.2 K far below the transition temperature \((T_c=114\text{–}121 \text{ K})\) for the thermally-induced LS-HS phase transition. They reported a nonlinear increase of \(n_{\text{HS}}\) after an incubation period. This suggests that some cooperative interaction governs the PIPT process,\(^22\) even though the large quantum efficiency \((\Phi\approx 34 \text{ site/photon})\) was not quantitatively explained. Contrary to this observation, Enachescu\textit{et al.}\(^20\) have carefully re-examined the Ogawa’s work, and reached a different conclusion that \(\Phi\approx 1 \text{ irrespective of the excitation power } I\). They further concluded that the observed \(n_{\text{HS}}\)-\(t\) curve can be quantitatively reproduced by a simple rate equation,\(^2\)

\[
\frac{dn_{\text{HS}}}{dt} = \Gamma(1 - n_{\text{HS}}) - n_{\text{HS}}k_0 \exp(- \alpha n_{\text{HS}}),
\]

where \(\Gamma\), \(k_0\), \(\alpha\) is the conversation efficiency, the bare relaxation rate and the avalanche factor, respectively. Thus, the dynamics of the PIPT process is still controversial even in the spin crossover complex.

Here, our strategy to extract the cooperative effect in the PIPT process is to enhance the intersite interaction by approximating the energy level of the metastable state to that of the ground state. For this purpose, we have investigated the PIPT process in the most prototypical spin crossover complex, \([\text{Fe(ptz}_3]_3[\text{BF}_4]_2\) near \(T_c\) for the LS-HS phase transition. As we had expected, we observed an “acceleration” of the creation rate of the density \(n_{\text{HS}}\) after a characteristic incubation period when \(I\) exceeds \(\approx 1 \text{ mW/mm}^2\). Based on the quantitative analysis of the \(n_{\text{HS}}\)-\(t\) curves, we propose that the photocreated HS species with a larger ionic radius induces a negative pressure to cause the structural phase transition.

Single crystals of \([\text{Fe(ptz}_3]_3[\text{BF}_4]_2\) were prepared in the manner of the procedure described in Ref. 23. The typical size of the crystals was \(4 \times 4 \times 0.05 \text{ mm}^3\). We measured the temperature dependence of magnetic susceptibility, and confirmed that our crystal shows the thermally induced LS-HS phase transition at \(T_c=130 \text{ K}\). At the phase transition, the color of the crystal changes from transparent purple (the LS phase) to transparent and colorless (the HS phase). We emphasize that the cell volume discontinuously increases by 3\% at the LS-HS phase transition,\(^24\) reflecting the fact that the ionic radius \((r_{\text{HS}}=0.78 \text{ Å})\) of the HS Fe\(^{2+}\) ion is larger than...
that (r_LS = 0.61 Å) of the LS Fe^{2+} ion. The density n_{HS} of the HS species can be precisely estimated from the intensity of the intra-atomic absorption of the LS species located at ≈ 2.3 eV. We used an Ar \pel{ion} laser (514.5 nm) and a cw yttrium aluminum garnet (YAG) laser (532 nm) as the excitation and probe light sources, respectively. The intensity of the excitation light was continuously controlled with a circular neutral density filter. The excitation light illuminated the sample so that the excitation light (3 mm\(b\)) completely overlaps the probe light (1 mm\(b\)). The intensity of the transmitted probe light was digitally recorded as a function of time. In order to make the measurement efficient, the magnitude of I as well as the on/off action of the excitation light was controlled by a personal computer. We further measured the temperature at the sample surface under photoexcitation, and confirmed that the temperature rise is less than 2 K even at the maximum excitation condition (I = 7.0 mW/mm\(^2\)).

We show in Fig. 1(a) the prototypical n_{HS}-t curves of [Fe(ptz)\(n\)](BF\(_4\))\(_2\) measured at 77 K. \(n_{HS} = 1\) means that all the Fe\(^{2+}\) sites take the HS state. In the strong excitation condition (for example, see the 2.0 mW/mm\(^2\) data), n_{HS} superlinearly increases with time, and then becomes almost constant. Hereafter, we describe this constant value as \(\langle n_{HS} \rangle\). We note that \(\langle n_{HS} \rangle\) is not necessarily in unity in the photoexcited steady state, because the photocrearion process of the HS species balances with their thermal relaxation processes of them. Actually, the relaxation speed [see Fig. 1(b)] is comparable with the creation speed. This makes a sharp contrast with the low temperature experiment reported by Enachescu et al.,\(^{20}\) in which \(n_{HS}\) seems to approach unity in every excitation condition (see Fig. 2 of Ref. 20). In the intermediated case (for example, see the 1.6 mW/mm\(^2\) data), \(n_{HS}\) nonlinearly increases after the characteristic incubation period, and then becomes constant. In Fig. 2, we show the microscope image of the [Fe(ptz)\(n\)](BF\(_4\))\(_2\) single crystal taken at one second intervals after the photoexcitation of 1.7 mW/mm\(^2\). The color shows negligible change until 3 s after the photoexcitation [Fig. 2(a)–2(c)], but drastically brightens up at \(t = 4\) s [Fig. 2(d)] and \(t = 5\) s [Fig. 2(e)]. Such an incubation behavior implies that some cooperative interaction dominates the PIPT process.

In Fig. 3, we plotted \(\langle n_{HS} \rangle\) in the photoexcited steady state against I. The increasing (decreasing) speed of each I-step was about 1 s. The magnitudes of \(\langle n_{HS} \rangle\) were measured 30 s after the increase (decrease) of I. In the weak excitation region (I < 1 mW/mm\(^2\), \(\langle n_{HS} \rangle\) increases linearly with I, reflecting the fact that the creation rate of the HS species is proportional to I. With further increases of I beyond ≈ 1 mW/mm\(^2\), however, \(\langle n_{HS} \rangle\) steeply increases to reach ~1. We interpreted this threshold behavior in terms of the dynamical phase transition\(^{21}\) of the photoexcited steady state from the \(\langle n_{HS} \rangle = 0\) state (I = 2 mW/mm\(^2\)) to the \(\langle n_{HS} \rangle \approx 1\) (I = 2 mW/mm\(^2\)) state. We further observed optical hysteresis\(^{26}\) between the I-increasing run and the I-decreasing run, perhaps due to the significant structural change at the PIPT of [Fe(ptz)\(n\)](BF\(_4\))\(_2\).\(^{25}\)

Now, let us qualitatively analyze the experimentally obtained \(n_{HS}-T\) curve (see Fig. 1) with a simple rate equation [Eq. (1)]. The first term, \(I'(1-n_{HS})\), represents the photo-
To capture the intrinsic spatial fluctuation of n_{HS}.

\[T_c \approx 130 - 30x. \]

Here, note that the ionic radius ($r_{Zn} = 0.74 \text{ Å}$) of the Zn$^{2+}$ ion is larger than that ($r_{Fe} = 0.61 \text{ Å}$) of the LS Fe$^{2+}$ ion, and hence, the Zn$^{2+}$ impurities expand the lattice to stabilize the HS phase with larger cell volume. We think that a similar strain is induced by the photocreated HS species, because its ionic radius ($r_{Ptz} = 0.78 \text{ Å}$) is larger than that ($r_{Zn} = 0.61 \text{ Å}$) of the LS Fe$^{2+}$ ion. Then, the photocreated HS species also suppress T_c via the stress effect, analogously to the case of the Zn$^{2+}$ impurity. In other words, the photocreated HS species induces the negative pressure within the system. In an extreme case, the system would reach the phase boundary between the LS phase and the HS phase, and show the structural phase transition. In this picture, the present PIPT process can be described as follows: the HS species gradually accumulate by the photocreation process in the incubation period, and then, the system shows the phase transition into the HS state when $n_{HS}(t)$ reaches a critical value.

The above-mentioned physical impurity effect is apparently analogous to the domino effect on the point that the photoinduced local structural change causes a global structural change. The model, however, is based on the one-dimensional system, and is not applicable to the present three-dimensional system. In addition, the condition that a single photocreated structural change causes a global structural change becomes more severe in the high-dimensional system due to the surface energy loss at the phase boundary. In contrast, we consider that the aggregate of the photocreated HS species modify the energy of the metastable HS phase relative to the ground LS phase, and eventually exchange the two energy levels to cause a global phase transition.

In Fig. 5, we show the creation rate dn_{HS}/dt against n_{HS} at several excitation conditions. We found that the dn_{HS}/dt curves show broad maxima at $n_{HS} = 0.3$, irrespective of I. [Note that the scale of the horizontal axis of Fig. 5 is two orders larger than that of Fig. 4.] This suggests that the critical density, where the system reaches the phase boundary, is located at $n_{HS} = 0.3$. Here, we emphasize that the physical impurity has a dynamic nature, and migrates in the crystal via the creation/relaxation process. Then, the HS-rich regions are spontaneously created in the crystal due to the intrinsic spatial fluctuation of n_{HS}. Such HS-rich regions...
could show the phase transition before the spatial average of \(n_{\text{HS}} \) reaches the critical value. This may be the origin for the gradual increase of \(\text{dn}_{\text{HS}}/dt \), as observed in Fig. 5. We, however, cannot observe any trace of the spatial fluctuation in the microscopic images (see Fig. 2), whose spatial resolution is \(\sim 10 \ \mu\text{m} \). This suggests that the size of the spatial fluctuation is much less than \(\sim 10 \ \mu\text{m} \).

In summary, we have systematically investigated the temporal behavior of \(n_{\text{HS}} \) of the photoexcited \([\text{Fe(ptz)}_6]([\text{BF}_4])_2\) near \(T_C \) for the LS-HS phase transition, as a function of excitation power \(I \). We observed an acceleration of the creation rate \(\text{dn}_{\text{HS}}/dt \) after the characteristic incubation period when \(I \) exceeds \(\sim 1 \ \text{mW/mm}^2 \). We interpreted the acceleration in terms of the negative pressure effect induced by the photo-created HS species.

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education Science, Sports and Culture of Japan and from the Yazaki Foundation. The authors thank Dr. T. Kawamoto and Prof. T. Ogawa for fruitful discussions.

1 Relaxation of Excited States and Photoinduced Structural Transitions, edited by K. Nasu (Springer-Verlag, Berlin, 1997).
27 The quantum efficiency (\(\Phi=0.3 \) sites/photon) is different from the value (\(\Phi=0.8 \) sites/photon) reported in Ref. 34. This is because we have derived \(\Phi \) from the initial creation ratio \(\text{dn}_{\text{HS}}/dt \) at \(n_{\text{HS}}=0 \), not from the fitting of the overall \(n_{\text{HS}}-t \) behavior. We emphasize that the quantum efficiency (\(\Phi=13 \) sites/photon) would become an unphysical value, if we reproduced the magnitude of \(n_{\text{HS}} \) within the frame of Eq. (1).
35 We observed no trace of the spatial fluctuation of \(n_{\text{HS}} \) in our microscope image. This suggests that the size of the fluctuation would be less than \(\sim 10 \ \mu\text{m} \).