ZERO-DIMENSIONAL SUBSETS OF HYPERSPACES

By

Alejandro ILLANES

Abstract. Let X be a metric continuum, let 2^X be the hyperspace of all the nonempty closed subsets of X and let $C(X)$ be the hyperspace of subcontinua of X. In this paper we prove:

THEOREM 1. If \mathcal{H} is a 0-dimensional subset of 2^X, then $2^X - \mathcal{H}$ is connected.

THEOREM 2. If \mathcal{H} is a closed 0-dimensional subset of $C(X)$ such that $C(X) - \{A\}$ is arcwise connected for each $A \in \mathcal{H}$, then $C(X) - \mathcal{H}$ is arcwise connected.

Theorem 2 answers a question by Sam B. Nadler, Jr.

Introduction

Throughout this paper X denotes a nondegenerate continuum, i.e., a compact connected metric space, with metric d. Let 2^X be the hyperspace of nonempty closed subsets of X, with the Hausdorff metric H, and let $C(X)$ be the hyperspace of subcontinua of X.

J. Krasinkiewicz proved in [5] that if \mathcal{H} is a 0-dimensional subset of $C(X)$, then $C(X) - \mathcal{H}$ is connected. In this paper we use Krasinkiewicz' result to prove the following theorem:

THEOREM 1. If \mathcal{H} is a 0-dimensional subset of 2^X, then $2^X - \mathcal{H}$ is connected.

On the other hand, in Krasinkiewicz' Theorem the word "connected" can not be replaced by "arcwise connected". Even if X is the sin($1/x$)-continuum and A is the limit segment, then $C(X) - \{A\}$ is not arcwise connected. In [7, Question 11.17], Nadler asked the following question: if \mathcal{H} is a compact 0-dimensional
subset of $C(X)$ and if $C(X) - \{A\}$ is arcwise connected for each $A \in \mathcal{H}$, does it follow that $C(X) - \mathcal{H}$ is arcwise connected? This question has been affirmatively answered for the following particular cases:

- if \mathcal{H} has two elements (Nadler and Quinn, [8, Lemma 2.4]),
- if \mathcal{H} is finite (Ward, [9])
- if \mathcal{H} is numerable (Illanes, [3], this result was rediscovered by Hosokawa in [1]).

Furthermore, in [3], the author showed that any two elements of $C(X) - \mathcal{H}$ can be joined by an arc which intersects \mathcal{H} only a finite number of times.

In this paper we finally solve the general question by proving the following theorem.

Theorem 2. If \mathcal{H} is a closed 0-dimensional subset of $C(X)$ such that $C(X) - \{A\}$ is arcwise connected for each $A \in \mathcal{H}$, then $C(X) - \mathcal{H}$ is arcwise connected.

Proof of Theorem 1

Throughout this section \mathcal{H} will denote a 0-dimensional subset of 2^X. By Krasinkiewicz' result in [5], $C(X) - \mathcal{H}$ is connected. Let \mathcal{L} be the component of $2^X - \mathcal{H}$ which contains $C(X) - \mathcal{H}$.

In order to prove that $2^X - \mathcal{H}$ is connected, it is enough to prove that \mathcal{L} is dense in 2^X. Since the subset of 2^X which consists of all the nonempty finite subsets of X is dense in 2^X, we only need to prove the following claim:

Claim. For each finite subset $F = \{p_1, \ldots, p_m\}$ of X and for each $\epsilon > 0$, there exists an element $L \in \mathcal{L}$ such that $H(F, L) < \epsilon$.

Let $F = \{p_1, \ldots, p_m\}$ and $\epsilon > 0$.

Take an order arc γ from a fixed one-point set $\{p_0\}$ to X (see [7, 1.2] for the definition of order arc). Since \mathcal{H} is 0-dimensional, there exists an element $M \in \gamma - \mathcal{H} \subset C(X) - \mathcal{H}$ such that $H(M, X) < \epsilon/2$ and M is nondegenerate. Choose points $q_1, \ldots, q_m \in M$ such that $d(p_i, q_i) < \epsilon/2$ for each $i \in \{1, \ldots, m\}$. Let $\{U_n\}_{n=1}^{\infty}$ be a sequence of proper open subsets of M such that $q_1 \in U_n$ for every $n \geq 1$, $U_1 \supset \text{cl}(U_2) \supset U_2 \supset \text{cl}(U_3) \supset U_3 \supset \cdots, \text{cl}(U_n) \rightarrow \{q_1\}$ (convergence in 2^X) and $M \neq \text{cl}(U_1) \subset \{x \in X : d(q, q_1) < \epsilon/2\}$.

Let $L_0 = \{q_1, \ldots, q_m\} \cup (\text{Bd}_{M}(U_1) \cup \text{Bd}_{M}(U_2) \cup \text{Bd}_{M}(U_3) \cup \ldots)$. Clearly, $L_0 \in 2^X$. Fix a nondegenerate subcontinuum D of $U_1 - \text{cl}(U_2)$. Then the set $\{L_0 \cup \{x\} \in 2^X : x \in D\}$ is a nondegenerate subcontinuum of 2^X. Since \mathcal{H} is 0-dimensional, there exists a point $x_0 \in D$ such that $L_0 \cup \{x_0\} \notin \mathcal{H}$.
Define $L = L_0 \cup \{x_0\}$. Then $L \in 2^X - \mathcal{H}$ and $H(F, L) < \epsilon$.

We will show that $L \in \mathcal{L}$.

For each $n \geq 1$, let $A_n = M - U_n \subset M - \text{cl}(U_{n+1})$. Take an order arc γ_n from A_n to M. Since $M - \text{cl}(U_{n+1})$ is an open subset of M, there exists a (non-degenerate) subarc σ_n of γ_n such that each of its elements is contained in $M - \text{cl}(U_{n+1})$ and $A_n \subset \sigma_n$. Consider the set $\theta_n = \{L \cup K : K \subset \sigma_n\}$. It is easy to show that θ_n is a (non-degenerate) order arc from $L \cup A_n$ to some element in 2^X.

Since \mathcal{H} is 0-dimensional, we can choose an element $B_n = L \cup K_n \in \theta_n - \mathcal{H}$, where $K_n \subset \sigma_n$. Notice that $A_n \subset K_n \subset A_{n+1}$.

Next, we will check that every component of B_n intersects L. Let C be a component of B_n. Since the subarc of σ_n which joins $L \cup A_n$ and B_n is an order arc, then (see [7, 1.8]), $C \cap (L \cup A_n) \neq \emptyset$. If $C \cap L = \emptyset$, we can take an element $x \in C \cap A_n$. Let C_1 be the component of A_n which contains x. Thus $C_1 \subset C$, and by ([7, 20.2]), $C \neq C_1 \cap \text{Bd}_M(U_n) \subset C \cap L$. This contradiction completes the proof that $C \cap L \neq \emptyset$.

As a consequence of the claim of the paragraph above, we obtain that every component of B_{n+1} intersects B_n.

Let $B_0 = L$. Notice that B_{n-1} is a proper subset of B_n for every $n \geq 1$. By [7, 1.8], there exists a map $\alpha_n : [0, 1] \to 2^M$ such that $\alpha_n(0) = B_{n-1}$, $\alpha_n(1) = B_n$, and if $0 \leq s < t \leq 1$, then $\alpha_n(s)$ is a proper subset of $\alpha_n(t)$.

For each $n \geq 1$, let $\alpha_n : [0, 1] \to 2^X$ be a map such that $\alpha_n(0) = \text{Bd}_M(U_{n+2})$, $\alpha_n(1) = M$ and if $0 \leq s < t \leq 1$, then $\alpha_n(s)$ is a proper subset of $\alpha_n(t)$. Since $\text{Bd}_M(U_{n+2}) \subset U_{n+1} - \text{cl}(U_{n+3})$, there exists $t_n > 0$ such that $\alpha_n(t_n) \subset U_{n+1} - \text{cl}(U_{n+3})$.

Let $\varphi_n : [0, 1] \times [0, 1] \to 2^M$ be given by $\varphi_n(s, t) = \alpha_n(st_n) \cup \beta_n(t)$. It is easy to check that φ_n is continuous, one-to-one, $\varphi_n(0, 1) = B_n$ and $\varphi_n(0, 0) = B_{n-1}$. Let $\mathcal{G}_n = \varphi_n([0, 1] \times [0, 1])$. Then \mathcal{G}_n is a 2-cell. By [2, Theorem 4], $\mathcal{G}_n - \mathcal{H}$ is connected and contains B_{n-1} and B_n.

Let $\mathcal{G} = \cup \{\mathcal{G}_n : n \geq 1\}$. Then \mathcal{G} is a connected subset of $2^X - \mathcal{H}$ and contains the element $B_0 = L$. On the other hand, since $A_n \to M$, and $A_n \subset B_n \subset M$ for each $n \geq 1$, we conclude that $B_n \to M$ and $M \in \text{cl}_{2^X}(\mathcal{G})$. This implies that $\mathcal{G} \subset \mathcal{L}$. Therefore, $L \in \mathcal{L}$. This completes the proof of the claim and thus the proof of Theorem 1.

Proof of Theorem 2

Throughout this section \mathcal{H} will denote a closed 0-dimensional subset of $C(X)$ such that $C(X) - \{A\}$ is arcwise connected for each $A \in \mathcal{H}$.

LEMMA 1. If $A, B \in C(X) - \mathcal{H}$, $A \cap B \neq \emptyset$, $A - B \neq \emptyset$ and $B - A \neq \emptyset$, then A and B can be joined by an arc in $C(X) - \mathcal{H}$.

PROOF. Fix a component C of $A \cap B$. Then C is a proper subcontinuum of both A and B. Let $\alpha, \beta : [0, 1] \to A \cup B$ be maps such that $\alpha(0) = C = \beta(0)$, $\alpha(1) = A$, $\beta(1) = B$ and $s < t$ implies that $\alpha(s)$ (resp., $\beta(s)$) is a proper subcontinuum of $\alpha(t)$ (resp., $\beta(t)$) (see [Nd78, 1.8]). Let $\mathcal{C} = [0, 1] \times [0, 1]$. Define $\varphi : \mathcal{C} \to C(A \cup B)$ by:

$$\varphi(s, t) = \alpha(s) \cup \beta(t).$$

Clearly, φ is continuous, $\varphi(1, 0) = A$ and $\varphi(0, 1) = B$. If D is a component of $\varphi^{-1}(\mathcal{H})$, then $\varphi(D)$ is a connected subset of \mathcal{H}. Thus $\varphi(D)$ has exactly one element. Therefore, D is a component of $\varphi^{-1}(E)$ for some $E \in \mathcal{H}$.

Since $\varphi(1, 0)$ and $\varphi(0, 1) \notin \mathcal{H}$ and \mathcal{H} is compact, there exists $0 < r < 1/2$ such that $\{(1 - r, 1] \times [0, r) \cup (0, r) \times [1 - r, 1]\} \cap \varphi^{-1}(\mathcal{H}) = \emptyset$.

Let $G_1 = ([0, 1 - r] \times \{0\}) \cup ([0, 1] \times [0, 1 - r])$ and $G_2 = ([1 - r, 1] \times \{1\}) \cup ([1, 1] \times \{1\})$. Let $G = G_1 \cup G_2 \cup \varphi^{-1}(\mathcal{H})$. Then G is a compact subset of \mathcal{C}.

We will see that no component of $\varphi^{-1}(\mathcal{H})$ intersects both G_1 and G_2. Suppose, to the contrary, that there exists a component D of $\varphi^{-1}(\mathcal{H})$ such that $D \cap G_1 \neq \emptyset$ and $D \cap G_2 \neq \emptyset$. Then there exists an element $E \in \mathcal{H}$ such that D is a component of $\varphi^{-1}(E)$. Let $z = (s, t) \in D \cap G_1$ and $w = (u, v) \in D \cap G_2$. Then $\alpha(s) \cup \beta(t) = \varphi(z) = \varphi(w) = \alpha(u) \cup \beta(v)$. Notice that $s = 0$ or $t = 0$. If $s = 0$, then $\varphi(z) \subset B$. This implies that $\alpha(u) \subset A \cap B$. Hence $\alpha(u) = C$. Thus $u = 0$. This is a contradiction since $w \in G_2$. A similar contradiction can be obtained assuming that $t = 0$. Therefore, no component of $\varphi^{-1}(\mathcal{H})$ intersects both G_1 and G_2.

We are ready to apply the Cut Wire Theorem ([7, 20.6]) to the compact space $\varphi^{-1}(\mathcal{H})$ and the closed sets $\varphi^{-1}(\mathcal{H}) \cap G_1$ and $\varphi^{-1}(\mathcal{H}) \cap G_2$. Thus there exist two disjoint closed sets H_1, H_2 in \mathcal{C} such that $\varphi^{-1}(\mathcal{H}) = H_1 \cup H_2$, $\varphi^{-1}(\mathcal{H}) \cap G_1 \subset H_1$ and $\varphi^{-1}(\mathcal{H}) \cap G_2 \subset H_2$. Define $L_1 = G_1 \cup H_1$ and $L_2 = G_2 \cup H_2$. Then L_1 and L_2 are disjoint closed subsets of \mathcal{C}. Thus there exist two disjoint open subsets U_1 and U_2 of \mathcal{C} such that $L_1 \subset U_1$ and $L_2 \subset U_2$.

Let U be the component of U_1 which contains G_1 and let M be the component of $\mathcal{C} - U$ which contains G_2. It is easy to prove that $\mathcal{C} - M$ is connected. Since \mathcal{C} is locally connected, M is closed in \mathcal{C} and $\text{Bd}_\mathcal{C}(M) \subset \text{Bd}_\mathcal{C}(U) \subset \text{Bd}_\mathcal{C}(U_1)$. Let $L = \text{Bd}_\mathcal{C}(M)$. Then $L \cap (L_1 \cup L_2) = \emptyset$. Since $G_1 \subset \mathcal{C} - M$, L separates G_1 and G_2 in \mathcal{C}. Since \mathcal{C} is unicoherent ([6, Thm. 2 II, §57, Ch. VIII]), L is a subcontinuum of \mathcal{C}.

Since $[0, r] \times [1 - r, 1]$ is a connected subset of \mathcal{C} that intersects both G_1
and \(G_2 \), we obtain this set intersects \(L \). Similarly \(L \) intersects \([1-r, 1] \times [0,r]\). Then the set \(L_0 = L \cup ([1-r, 1] \times [0,r]) \cup ([0,r] \times [1-r, 1]) \) is a subcontinuum of \(C = \varphi^{-1}(\mathcal{H}) \). Since \(C \) is locally connected, there exists an open connected (and then arcwise connected) subset \(V \) of \(C \) such that \(L_0 \subset V \subset C - \varphi^{-1}(\mathcal{H}) \). Let \(\lambda \) be an arc in \(V \) joining \((1,0)\) and \((0,1)\). Therefore, \(\varphi(\lambda) \) is a path in \(C(X) - \mathcal{H} \) joining \(A \) and \(B \).

Lemma 2. If \(A, B \in C(X) - \mathcal{H} \) and \(A \subset B \neq A \), then \(A \) and \(B \) can be joined by an arc in \(C(X) - \mathcal{H} \).

Proof. By [7, 1.8], there is an order arc from \(A \) to \(B \). That is, there is a map \(\alpha : [0,1] \to C(B) \) such that \(\alpha(0) = A \), \(\alpha(1) = B \) and if \(s < t \), then \(\alpha(s) \) is a proper subcontinuum of \(\alpha(t) \). Let \(\mathcal{G} = \alpha^{-1}(\mathcal{H}) \).

First, we will show that for any \(t \in \mathcal{G} \), there exists \(\epsilon_t > 0 \) such that \((t - \epsilon_t, t + \epsilon_t) \subset (0,1)\) and for every \(s \in (t - \epsilon_t, t) - \mathcal{G} \) and every \(r \in (t, t + \epsilon_t) - \mathcal{G} \), \(\alpha(s) \) and \(\alpha(r) \) can be joined by an arc in \(C(X) - \mathcal{H} \).

Since \(\alpha(t) \in \mathcal{H} \), \(C(X) - \{\alpha(t)\} \) is arcwise connected. Then there exists a one-to-one map \(\beta : [0,1] \to C(X) - \{\alpha(t)\} \) such that \(\beta(0) = A \) and \(\beta(1) = B \). Let \(u = \max\{v \in [0,1]; \beta(v) \subset \alpha(t) \} \) for each \(w \in [0,v] \). Then \(\beta(u) \) is a proper subcontinuum of \(\alpha(t) \). Since \(\beta \) is continuous, there exists \(z \in (u,1) \) such that the continuum \(C = \bigcup \{\beta(w) : u \leq w \leq z\} \) does not contain \(\alpha(t) \). Since \(\mathcal{H} \) is 0-dimensional, we may assume that \(C \notin \mathcal{H} \). By the definition of \(u \), \(C \) is not contained in \(\alpha(t) \).

We consider two cases:

Case 1. \(\alpha(t) \) is indecomposable.

By [7, 1.52.1 (2)], \(\beta(u) \) is contained in the composant of \(\alpha(t) \) which contains \(A \). Then there exists a proper subcontinuum \(D \) of \(\alpha(t) \) such that \(D \cap A \neq \emptyset \neq D \cap \beta(u) \). Growing \(D \) by using an order arc from \(D \) to \(\alpha(t) \), we may assume that \(D \) is not contained in \(C \) and \(D \notin \mathcal{H} \). Let \(\epsilon_t > 0 \) be such that \((t - \epsilon_t, t + \epsilon_t) \subset (0,1)\), \(\alpha(t - \epsilon_t) \) is not contained in \(D \), \(\alpha(t - \epsilon_t) \) is not contained in \(C \) and \(\alpha(t + \epsilon_t) \) does not contain \(C \).

In order to show that \(\epsilon_t \) has the required properties, let \(s \in (t - \epsilon_t, t) - \mathcal{G} \) and \(r \in (t, t + \epsilon_t) - \mathcal{G} \). Then \(\alpha(s) \cap D \neq \emptyset \) and \(\alpha(s) - D \neq \emptyset \).

If \(D - \alpha(s) \neq \emptyset \), then we may apply Lemma 1 to the pairs \(\alpha(s) \) and \(D \); \(D \) and \(C \); \(C \) and \(\alpha(r) \), and conclude that \(\alpha(s) \) and \(\alpha(r) \) can be joined by an arc in \(C(X) - \mathcal{H} \).
If \(D \subset \alpha(s) \), then we may apply Lemma 1 to the pairs \(\alpha(s) \) and \(C; C \) and \(\alpha(r) \), and conclude that \(\alpha(s) \) and \(\alpha(r) \) can be joined by an arc in \(C(X) - \mathcal{H} \).

Case 2. \(\alpha(t) \) is decomposable.

In this case \(\alpha(t) = E \cup F \), where \(E \) and \(F \) are proper subcontinua of \(\alpha(t) \). We may assume that \(E, F \notin \mathcal{H} \) and \(E - C \neq \emptyset \neq F - C \).

Let \(\epsilon_i > 0 \) be such that \((t - \epsilon_i, t + \epsilon_i) \subset (0, 1) \), \(\alpha(t - \epsilon_i) \) is not contained in any of the sets \(C, E \) and \(F \), and \(C \) is not contained in \(\alpha(t + \epsilon_i) \).

Let \(s \in (t - \epsilon_i, t) - \mathcal{G} \) and \(r \in (t, t + \epsilon_i) - \mathcal{G} \). Then \(\alpha(s) \) is not contained in any of the sets \(E, F \) and \(C \). Since \(\alpha(s) \) is a proper subcontinuum of \(\alpha(t) \), \(E - \alpha(s) \neq \emptyset \) or \(F - \alpha(s) \neq \emptyset \). Suppose, for example, that \(E \) is not contained in \(\alpha(s) \).

If \(E \cap C \neq \emptyset \), then we may apply Lemma 1 to the pairs \(\alpha(s) \) and \(E; C \) and \(C \) and \(\alpha(r) \), and conclude that \(\alpha(s) \) and \(\alpha(r) \) can be joined by an arc in \(C(X) - \mathcal{H} \).

If \(F \cap C \neq \emptyset \), then we may apply Lemma 1 to the pairs \(\alpha(s) \) and \(E; E \) and \(F \); \(F \) and \(C \) and \(\alpha(r) \), and conclude that \(\alpha(s) \) and \(\alpha(r) \) can be joined by an arc in \(c(X) - \mathcal{H} \).

This completes the proof of the existence of \(\epsilon_i \).

Now we are ready to prove Lemma 2.

Let \(t \in \mathcal{G} \) and let \(\epsilon_i > 0 \) be as before. We claim that if \(s, r \in (t - \epsilon_i, t + \epsilon_i) - \mathcal{G} \), then \(\alpha(s) \) and \(\alpha(r) \) can be joined by an arc in \(C(X) - \mathcal{H} \). Indeed, if \(t \) is between \(s \) and \(r \), this claim follows from the choice of \(\epsilon_i \), and if, for example, \(s, r < t \), then fix \(r_1 \in (t, t + \epsilon_i) - \mathcal{G} \). By the choice of \(\epsilon_i \), both pairs \(\alpha(s), \alpha(r_1) \) and \(\alpha(r), \alpha(r_1) \) can be joined by an arc in \(C(X) - \mathcal{H} \). Thus, \(\alpha(r), \alpha(s) \) can be joined by an arc in \(C(X) - \mathcal{H} \).

Given a number \(t \in [0, 1] - \mathcal{G} \), there exists \(\epsilon_i > 0 \) such that \((t - \epsilon_i, t + \epsilon_i) \cap \mathcal{G} = \emptyset \). In this case, if \(s, r \in (t - \epsilon_i, t + \epsilon_i) \cap [0, 1] \), then \(\alpha(s) \) and \(\alpha(r) \) can be joined by an arc in \(C(X) - \mathcal{H} \).

For the open cover \(\{(t - \epsilon_i, t + \epsilon_i) : t \in [0, 1]\} \), there exists \(\delta > 0 \) such that if \(s, r \in [0, 1] \) and \(|s - r| < \delta \), then \(s, r \in (t - \epsilon_i, t + \epsilon_i) \) for some \(t \in [0, 1] \).

Choose a partition \(0 = t_0 < t_1 < \cdots < t_m = 1 \) such that \(t_i - t_{i-1} < \delta \) and \(t_i \notin \mathcal{G} \) for each \(i = 1, 2, \ldots, m \).

Thus, for each \(i = 1, 2, \ldots, m \), \(\alpha(t_{i-1}) \) and \(\alpha(t_i) \) can be joined by an arc in \(C(X) - \mathcal{H} \). Therefore, \(A \) and \(B \) can be joined by an arc in \(C(X) - \mathcal{H} \).

Proof of Theorem 2. We consider two cases:
CASE 1. X is indecomposable.

In this case $C(X) - \{X\}$ is not arcwise connected (see [7, 1.51]). Then $X \notin \mathcal{H}$. Given an element $A \in C(X) - (\mathcal{H} \cup \{X\})$, by Lemma 2, A and X can be connected by an arc in $C(X) - \mathcal{H}$.

CASE 2. X is decomposable.

Let $X = E \cup F$, where E and F are proper subcontinua of X. Since \mathcal{H} is 0-dimensional, we may assume that E, $F \notin \mathcal{H}$. Given an element $A \in C(X) - (\mathcal{H} \cup \{X\})$, taking an order arc from A to X, we can find an element $B \in C(X) - \mathcal{H}$, such that A is a proper subcontinuum of B, $B \neq X$, $B - E \neq \emptyset$ and $B - F \neq \emptyset$. Notice that $E - B \neq \emptyset$ or $F - B \neq \emptyset$. Suppose, for example, that $E - B \neq \emptyset$. By Lemma 1, the pairs E, B and E, F can be joined by an arc in $C(X) - \mathcal{H}$, and by Lemma 2, A and B can be joined by an arc in $C(X) - \mathcal{H}$. Then A can be joined to both E and F in $C(X) - \mathcal{H}$. In the case that $X \notin \mathcal{H}$, by Lemma 2, X can be joined to both E and F in $C(X) - \mathcal{H}$. This completes the proof that $C(X) - \mathcal{H}$ is arcwise connected.

Acknowledgments

The author wishes to thank Jorge M. Martínez for the useful conversations they had.

References

Instituto de Matemáticas, UNAM
Circuito Exterior, Cd.
Universitaria, México
04510, D.F., MEXICO
e-mail address: illanes@gauss.matem.unam.mx