AREA-MINIMIZING OF THE CONE OVER SYMMETRIC R-SPACES

By

Daigo Hirohashi, Takahiro Kanno and Hiroyuki Tasaki

Introduction

Let B denote a submanifold of the unit sphere in \mathbb{R}^n and C_B the cone over B, which is the union of rays starting from the origin and passing through B.

A cone is called area-minimizing if the truncated cone C_B^1 inside the unit ball is area-minimizing among all surfaces with boundary B. The surfaces we will use are integral currents. A tangent cone to surface S at a point $p \in S$ can be thought of as the union of rays starting from p and tangent to S at p. This is the generalization of the notion of tangent plane. If the tangent cone at p is not a plane, then p is a singular point of S. If S is area-minimizing, then each tangent cone to S is area-minimizing. Thus in order to study area-minimizing surface with singularities, we need to know which cones are area-minimizing.

G. R. Lawlor proposed a criterion for area-minimization in [5]. His principal idea is to construct an area-nonincreasing retraction $\Pi: \mathbb{R}^n \to \mathbb{C}$. If S is another surface which has the same boundary as \mathbb{C}^1_B , it will follow that

$$\operatorname{vol}(S) \ge \operatorname{vol}(\Pi(S)) \ge \operatorname{vol}(C_B^1)$$

since $\Pi(S)$ must cover all of C_B^1 . Using this method, he gave a complete classification of area-minimizing cones C over products of spheres and the first example of minimizing cone over a nonorientable manifold. In order to construct the retraction he solved a differential equation with numerical analysis.

In this paper, we consider the canonical imbeddings of symmetric R-spaces which are linear isotropy orbits of symmetric pairs. Using root systems, we construct area-nonincreasing retractions concretely.

In section 1 we prepare some notation and terminology, and prove an essential theorem (Theorem 1.6) for construction of the retractions. In section 2 we describe the canonical imbeddings of symmetric *R*-spaces, and construct

retractions onto the cones over them. In section 3 we apply the result of section 2 to symmetric R-spaces associated with symmetric pairs of type B_l .

Concerning the cones over symmetric R-spaces, B. N. Cheng [1] proved the cone over U(n)/O(n) and U(n) are area-minimizing in R^{n^2+n} for $n \ge 7$ and R^{2n^2} , respectively, by calibration. G. R. Lawlor [5] proved the cone over SO(n) are area-minimizing in R^{n^2} . Using the criterion of Lawlor in [5], M. Kerckhove [4] proved the cone over an isolated orbit of the action of SU(n) on the unit sphere in the vector space of traceless n-by-n Hermitian symmetric matrices is area-minimizing for n > 2 and the cone over an isolated orbit of the adjoint action of SO(n) is area-minimizing for n > 3.

The authors would like to thank the referee for reading carefully the manuscript and for pointing out some mistakes in it.

1. Preliminaries

Let G be a compact connected Lie group and θ an involutive automorphism of G. We denote by G_{θ} the closed subgroup of all fixed points of θ in G. For a closed subgroup K of G which lies between G_{θ} and the identity component of G_{θ} , (G,K) is a Riemannian symmetric pair. Let g and f be the Lie algebras of G and G respectively. The involutive automorphism G of G induces an involutive automorphism of G, which is also denoted by G. Since G lies between G_{θ} and the identity component of G_{θ} , we have

$$\mathfrak{k} = \{ X \in \mathfrak{g} \,|\, \theta(X) = X \}.$$

An inner product \langle , \rangle on g which is invariant under the actions of Ad(G) and θ induces a bi-invariant Riemannian metric on G and G-invariant Riemannian metric on the homogeneous space M = G/K, which are also denoted by the same symbol \langle , \rangle . Then M is a compact Riemannian symmetric space with respect to \langle , \rangle . Conversely any compact symmetric space is constructed in this way. Put

$$\mathfrak{m} = \{ X \in \mathfrak{g} \mid \theta(X) = -X \}.$$

Since θ is involutive, we have an orthogonal direct sum decomposition of g:

$$g = f + m$$
.

This decomposition is called a canonical decomposition of the orthogonal symmetric Lie algebra (\mathfrak{g}, θ) .

Take and fix a maximal Abelian subspace \mathfrak{a} in \mathfrak{m} and a maximal Abelian subalgebra \mathfrak{t} in \mathfrak{g} including \mathfrak{a} . Let \mathfrak{c} be the center of \mathfrak{g} and $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$. We have an

orthogonal direct sum decomposition:

$$g = c + g'$$
.

We set

$$\mathfrak{a}' = \mathfrak{a} \cap \mathfrak{g}', \quad \mathfrak{c}_{\mathfrak{m}} = \mathfrak{c} \cap \mathfrak{m}.$$

We have an orthogonal direct sum decomposition:

$$a = c_m + a'$$
.

Put

$$\mathfrak{b} = \mathfrak{t} \cap \mathfrak{k}$$
.

Since t is θ -invariant we get an orthogonal direct sum decomposition of t:

$$t = b + a$$
.

For $\alpha \in t$ we put

$$\tilde{\mathfrak{g}}_{\alpha} = \{ X \in \mathfrak{g}^{\mathbb{C}} \mid [H, X] = \sqrt{-1} \langle \alpha, H \rangle X (H \in \mathfrak{t}) \}$$

and define the root system $\tilde{R}(q)$ of q by

$$\tilde{R}(\mathfrak{g}) = \{ \alpha \in \mathfrak{t} - \{0\} \mid \tilde{\mathfrak{g}}_{\alpha} \neq \{0\} \}.$$

We also denote \tilde{R} instead of $\tilde{R}(g)$. For $\alpha \in \mathfrak{a}$ we put

$$g_{\alpha} = \{X \in \mathfrak{g}^C \mid [H, X] = \sqrt{-1} \langle \alpha, H \rangle X (H \in \mathfrak{a})\}$$

and define the root system R(g, t) of (g, t) by

$$R(\mathfrak{g},\mathfrak{k}) = \{\alpha \in \mathfrak{a} - \{0\} \mid \mathfrak{g}_{\alpha} \neq \{0\}\}.$$

We also denote R instead of $R(\mathfrak{g}, \mathfrak{k})$. Put

$$\tilde{R}_0(\mathfrak{g}) = \tilde{R}(\mathfrak{g}) \cap \mathfrak{b}$$

and denote the orthogonal projection from t to a by $H \mapsto \overline{H}$. Then we have

$$R(\mathfrak{g},\mathfrak{k}) = \{\bar{\alpha}|\alpha\in\tilde{R}(\mathfrak{g})-\tilde{R}_0(\mathfrak{g})\}.$$

We extend a basis of $\mathfrak a$ to that of $\mathfrak t$ and define the lexicographic orderings > on $\mathfrak a$ and $\mathfrak t$ with respect to these bases. Then for $H \in \mathfrak t$, $\overline{H} > 0$ implies H > 0. We denote by $\tilde{F}(\mathfrak g)$ the fundamental system of $\tilde{R}(\mathfrak g)$ with respect to the ordering >. We also denote \tilde{F} instead of $\tilde{F}(\mathfrak g)$. Put

$$\tilde{F}_0(\mathfrak{g}) = \tilde{F}(\mathfrak{g}) \cap \tilde{R}_0(\mathfrak{g}).$$

Then the fundamental system F(g, f) of R(g, f) with respect to the ordering > is given by

$$F(\mathfrak{g},\mathfrak{k}) = \{\bar{\alpha} | \alpha \in \tilde{F}(\mathfrak{g}) - \tilde{F}_0(\mathfrak{g})\}.$$

We define positive root systems by

$$\tilde{R}_{+}(\mathfrak{g}) = \{ \alpha \in \tilde{R}(\mathfrak{g}) | \alpha > 0 \}$$

$$R_+(\mathfrak{g},\mathfrak{k}) = \{\alpha \in R(\mathfrak{g},\mathfrak{k}) | \alpha > 0\}.$$

We also denote \tilde{R}_+ and R_+ instead of $\tilde{R}_+(g)$ and $R_+(g, t)$. Then

$$R_{+}(\mathfrak{g},\mathfrak{k}) = \{\bar{\alpha}|\alpha\in\tilde{R}_{+}(\mathfrak{g}) - \tilde{R}_{0}(\mathfrak{g})\}$$

holds. We set

$$\mathfrak{k}_0 = \{ X \in \mathfrak{k} \mid [X, H] = 0 (H \in \mathfrak{a}) \}$$

and

$$\mathfrak{k}_{\alpha} = \mathfrak{k} \cap (\mathfrak{g}_{\alpha} + \mathfrak{g}_{-\alpha})$$

$$\mathfrak{m}_{\alpha} = \mathfrak{m} \cap (\mathfrak{g}_{\alpha} + \mathfrak{g}_{-\alpha})$$

for $\alpha \in R_+(\mathfrak{g}, \mathfrak{f})$. We have the following lemma ([2]).

LEMMA 1.1. (1) We have orthogonal direct sum decompositions:

$$\mathfrak{k}=\mathfrak{k}_0+\sum_{\alpha\in R_+}\mathfrak{k}_\alpha,\quad \mathfrak{m}=\mathfrak{a}+\sum_{\alpha\in R_+}\mathfrak{m}_\alpha.$$

(2) For each $\alpha \in \tilde{R}_+ - \tilde{R}_0$ there exist $S_\alpha \in \mathfrak{f}$ and $T_\alpha \in \mathfrak{m}$ such that

$$\{S_{\alpha}|\alpha\in\tilde{R}_{+},\bar{\alpha}=\lambda\},\quad \{T_{\alpha}|\alpha\in\tilde{R}_{+},\bar{\alpha}=\lambda\}$$

are respectively orthonormal bases of \mathfrak{t}_{λ} , \mathfrak{m}_{λ} and that for $H \in \mathfrak{a}$

$$[H, S_{\alpha}] = \langle \alpha, H \rangle T_{\alpha}, \quad [H, T_{\alpha}] = -\langle \alpha, H \rangle S_{\alpha}.$$

We denote $m_{\lambda} = \dim \mathfrak{m}_{\lambda} = \dim \mathfrak{t}_{\lambda}$ and call it the multiplicity of λ . We define a subset D of \mathfrak{a} by

$$D = \bigcup_{\alpha \in R} \{ H \in \mathfrak{a} \, | \, \langle \alpha, H \rangle = 0 \}.$$

Each connected component of $\mathfrak{a}-D$ is called a Weyl chamber. We define the fundamental Weyl chamber by

$$C = \{ H \in \mathfrak{a} \mid \langle \alpha, H \rangle > 0 \ (\alpha \in F(\mathfrak{g}, \mathfrak{f})) \}.$$

Its closure is given by

$$\bar{C} = \{ H \in \mathfrak{a} \mid \langle \alpha, H \rangle \ge 0 \ (\alpha \in F(\mathfrak{g}, \mathfrak{t})) \}.$$

For each subset $\Delta \subset F = F(\mathfrak{g}, \mathfrak{k})$ we define a subset C^{Δ} of \overline{C} by

$$C^{\Delta} = \{ H \in \overline{C} \mid \langle \alpha, H \rangle > 0 \ (\alpha \in \Delta), \langle \beta, H \rangle = 0 \ (\beta \in F - \Delta) \}.$$

We easily get the following lemma.

LEMMA 1.2. (1) For $\Delta_1 \subset F$

$$\overline{C^{\Delta_1}} = \bigcup_{\Delta \subset \Delta_1} C^{\Delta}$$

is a disjoint union. In particular $\overline{C} = \bigcup_{\Delta \subset F} C^{\Delta}$ is a disjoint union. (2) For $\Delta_1, \Delta_2 \subset F$, $\Delta_1 \subset \Delta_2$ if and only if $C^{\Delta_1} \subset \overline{C^{\Delta_2}}$.

For $\beta \in F$ we take $H_{\beta} \in \mathfrak{a}'$ satisfying the following condition.

$$\langle \alpha, H_{\beta} \rangle = \begin{cases} 1 & (\alpha = \beta) \\ 0 & (\alpha \neq \beta). \end{cases}$$

We have

$$\bar{C} = \mathfrak{c}_{\mathfrak{m}} \times \left\{ \sum_{\alpha \in F} t_{\alpha} H_{\alpha} \middle| t_{\alpha} \geq 0 \right\}$$

and for $\Delta \subset F$

$$C^{\Delta} = \mathfrak{c}_{\mathfrak{m}} imes \left\{ \sum_{lpha \in \Lambda} t_{lpha} H_{lpha} \middle| t_{lpha} > 0
ight\}.$$

For $H \in \mathfrak{m}$ we put

$$Z^H = \{ g \in G \mid \operatorname{Ad}(g)H = H \},\$$

$$Z_K^H = \{ k \in K \mid \mathrm{Ad}(k)H = H \}.$$

 $Z_K^H = Z^H \cap K$ holds. Z^H is a closed subgroup of G and Z_K^H is a closed subgroup of K. We can prove the following lemma by the standard argument of compact Lie groups, so we omit its proof.

LEMMA 1.3. Z^H is connected.

For $\Delta \subset F$ we put

$$N^{\Delta} = \{g \in G \mid \operatorname{Ad}(g)C^{\Delta} = C^{\Delta}\}$$

$$Z^{\Delta} = \{g \in G \mid \operatorname{Ad}(g)|_{C^{\Delta}} = 1\}$$

$$N_K^{\Delta} = \{k \in K \mid \operatorname{Ad}(k)C^{\Delta} = C^{\Delta}\}$$

$$Z_K^{\Delta} = \{k \in K \mid \operatorname{Ad}(k)|_{C^{\Delta}} = 1\}.$$

By the above definitions we have $N_K^{\Delta} = N^{\Delta} \cap K$ and $Z_K^{\Delta} = Z^{\Delta} \cap K$. Z^{Δ} is a closed subgroup of G and Z_K^{Δ} is a closed subgroup of K. If $H \in C^{\Delta}$, then

$$Z^{\Delta} \subset Z^H$$
, $Z_K^{\Delta} \subset Z_K^H$.

We put

$$egin{aligned} R^{\Delta} &= R \cap (F - \Delta)_{m{Z}} \ R_{+}^{\Delta} &= R^{\Delta} \cap R_{+} \ & \ \mathfrak{g}^{\Delta} &= \mathfrak{k}_{0} + \mathfrak{a} + \sum_{lpha \in R_{+}^{\Delta}} (\mathfrak{k}_{lpha} + \mathfrak{m}_{lpha}) \end{aligned}$$

and

$$\mathfrak{k}^{\Delta}=\mathfrak{g}^{\Delta}\cap\mathfrak{k}=\mathfrak{k}_{0}+\sum_{lpha\in\mathcal{R}_{+}^{\Delta}}\mathfrak{k}_{lpha}$$
 $\mathfrak{m}^{\Delta}=\mathfrak{g}^{\Delta}\cap\mathfrak{m}=\mathfrak{a}+\sum_{lpha\in\mathcal{R}_{+}^{\Delta}}\mathfrak{m}_{lpha}.$

We have an orthogonal direct sum decomposition:

$$\mathfrak{g}^{\Delta}=\mathfrak{k}^{\Delta}+\mathfrak{m}^{\Delta}.$$

Lemma 1.4. For $\Delta \subset F$ and $H \in C^{\Delta}$, we obtain the following equations.

- (1) $R_+^{\Delta} = \{ \alpha \in R_+ \mid \langle \alpha, H \rangle = 0 \}$
- (2) $R^{\Delta} = \{ \alpha \in R \mid \langle \alpha, H \rangle = 0 \}$
- (3) $g^{\Delta} = \{X \in g \mid [H, X] = 0\}$

PROOF. Any $\alpha \in R_+$ can be written as follows:

$$\alpha \in \sum_{\gamma \in F} n_{\gamma} \gamma \quad (n_{\gamma} \in \mathbb{Z}, n_{\gamma} \geq 0).$$

So we obtain

$$\langle \alpha, H \rangle = \sum_{\gamma \in F} n_{\gamma} \langle \gamma, H \rangle = \sum_{\gamma \in \Delta} n_{\gamma} \langle \gamma, H \rangle.$$

From this $\langle \alpha, H \rangle = 0$ if and only if $\alpha \in \mathbb{R}^{\Delta}_{+}$. Therefore we obtain

$$R_+^{\Delta} = \{ \alpha \in R_+ \mid \langle \alpha, H \rangle = 0 \}.$$

This implies

$$R^{\Delta} = \{ \alpha \in R \, | \, \langle \alpha, H \rangle = 0 \}.$$

Any $X \in \mathfrak{g}$ can be written as follows:

$$X = S_0 + \sum_{\alpha \in R_1} a_{\alpha} S_{\alpha} + T_0 + \sum_{\alpha \in R_1} b_{\alpha} T_{\alpha},$$

where $S_0 \in \mathfrak{k}_0$ and $T_0 \in \mathfrak{a}$. It follows from Lemma 1.1 and (1) that

$$[H,X] = \sum_{lpha \notin R_{\perp}^{\Lambda}} a_{lpha} \langle lpha, H \rangle T_{lpha} - \sum_{lpha \notin R_{\perp}^{\Lambda}} b_{lpha} \langle lpha, H \rangle S_{lpha}.$$

From this [H, X] = 0 if and only if $X \in \mathfrak{g}^{\Delta}$. Therefore we obtain

$$\mathfrak{g}^{\Delta} = \{ X \in \mathfrak{g} \, | \, [H, X] = 0 \}.$$

LEMMA 1.5. (1) Take $\Delta_1, \Delta_2 \subset F$, $H_1 \in C^{\Delta_1}$, $H_2 \in C^{\Delta_2}$ and $g \in G$. If $Ad(g)H_1 = H_2$, then $Ad(g)q^{\Delta_1} = q^{\Delta_2}$.

(2) If $\Delta \subset F$, then $N^{\Delta} \subset N(\mathfrak{g}^{\Delta})$. For any $H \in C^{\Delta}$, all of Z^{H} , Z^{Δ} , N^{Δ} and $N(\mathfrak{g}^{\Delta})$ are compact subgroups of G and all of their Lie subalgebras coincide with \mathfrak{g}^{Δ} .

PROOF. (1) By Lemma 1.4 g^{Δ_1} is the centralizer of H_1 . $Ad(g)g^{\Delta_1}$ is the centralizer of $Ad(g)H_1 = H_2$, so is equal to g^{Δ_2} .

(2) (1) with $\Delta_1 = \Delta_2 = \Delta$ implies $N^{\Delta} \subset N(\mathfrak{g}^{\Delta})$. Z^H and $N(\mathfrak{g}^{\Delta})$ are compact subgroups in G.

Since \mathfrak{g}^{Δ} is the centralizer of H by Lemma 1.4, the Lie algebra $\mathscr{L}(Z^H)$ of Z^H is equal to \mathfrak{g}^{Δ} .

We show that the Lie algebras $\mathscr{L}(Z^{\Delta})$, $\mathscr{L}(N^{\Delta})$ and $\mathscr{L}(N(\mathfrak{g}^{\Delta}))$ of Z^{Δ} , N^{Δ} and $N(\mathfrak{g}^{\Delta})$ are all equal to \mathfrak{g}^{Δ} . By their definitions $Z^{\Delta} \subset N^{\Delta} \subset N(\mathfrak{g}^{\Delta})$. Z^{Δ} , $N(\mathfrak{g}^{\Delta})$ is a closed subgroup of G, so we have $\mathscr{L}(Z^{\Delta}) \subset \mathscr{L}(N(\mathfrak{g}^{\Delta}))$. Any element X of \mathfrak{g}^{Δ} can be written as follows:

$$X = S_0 + \sum_{\alpha \in R_+^{\Delta}} a_{\alpha} S_{\alpha} + T_0 + \sum_{\alpha \in R_+^{\Delta}} b_{\alpha} T_{\alpha} \quad (S_0 \in \mathfrak{t}_0, T_0 \in \mathfrak{a}).$$

From this we get $X \in \mathcal{L}(Z^{\Delta})$, hence $g^{\Delta} \subset \mathcal{L}(Z^{\Delta})$. Therefore

$$\mathfrak{g}^{\Delta} \subset \mathscr{L}(Z^{\Delta}) \subset \mathscr{L}(N(\mathfrak{g}^{\Delta})).$$

Conversely we assume an element

$$X = S_0 + \sum_{\alpha \in R_+} a_\alpha S_\alpha + T_0 + \sum_{\alpha \in R_+} b_\alpha T_\alpha \quad (S_0 \in \mathfrak{f}_0, T_0 \in \mathfrak{a})$$

in g is contained in $\mathcal{L}(N(g^{\Delta}))$. Since

$$[H,X] = \sum_{\alpha \in R_{+}} a_{\alpha} \langle \alpha, H \rangle T_{\alpha} - \sum_{\alpha \in R_{+}} b_{\alpha} \langle \alpha, H \rangle S_{\alpha}$$

we obtain $X \in \mathfrak{g}^{\Delta}$. Therefore we get

$$\mathfrak{q}^{\Delta} = \mathscr{L}(Z^{\Delta}) = \mathscr{L}(N(\mathfrak{q}^{\Delta})).$$

 N^{Δ} satisfies $Z^{\Delta} \subset N^{\Delta} \subset N(\mathfrak{g}^{\Delta})$ and $\mathscr{L}(Z^{\Delta}) = \mathscr{L}(N(\mathfrak{g}^{\Delta}))$. So N^{Δ} is also a compact subgroup of G and $\mathscr{L}(N^{\Delta}) = \mathfrak{g}^{\Delta}$ holds.

Theorem 1.6. For any $\Delta \subset F$ and $H \in C^{\Delta}$

$$Z^{\Delta} = Z^H = N^{\Delta}, \quad Z_K^{\Delta} = Z_K^H = N_K^{\Delta}.$$

PROOF. By the definition we have $Z^{\Delta} \subset Z^H$ and by the above lemma their Lie algebras coincides. Moreover Z^H is connected by Lemma 1.3, so we obtain $Z^{\Delta} = Z^H$.

 Z^{Δ} and N^{Δ} are compact and have the same Lie algebra g^{Δ} . Since Z^{Δ} is the kernel of the homomorphism

Ad:
$$N^{\Delta} \rightarrow$$
 The permutation group of C^{Δ} ,

 Z^{Δ} is a normal subgroup of N^{Δ} and N^{Δ}/Z^{Δ} is a finite group. For any $g \in N^{\Delta}$, the action of $\mathrm{Ad}(g)$ on C^{Δ} has a finite order, that is, there is an integer N satisfying $\mathrm{Ad}(g)^N|_{C^{\Delta}}=1$. Take $H_0 \in C^{\Delta}$ and put

$$H_1 = \frac{1}{N}(H_0 + \mathrm{Ad}(g)H_0 + \cdots + \mathrm{Ad}(g)^{N-1}H_0).$$

Each $\operatorname{Ad}(g)^i H_0$ is contained in C^{Δ} and C^{Δ} is convex, so we get $H_1 \in C^{\Delta}$. Ad $(g)H_1 = H_1$ holds and $g \in Z^{H_1} = Z^{\Delta}$. Hence $N^{\Delta} \subset Z^{\Delta}$ and we obtain $Z^{\Delta} = N^{\Delta}$.

The second equation follows from the first one.

2. Construction of Retractions

The notation of the preceding section will be preserved. Let B be a compact submanifold of the unit sphere in \mathbb{R}^n . We call $C_B = \{tx | x \in B, t \geq 0\}$ the cone over B. C_B is said to be area-minimizing if $C_B^1 = \{tx | x \in B, 0 \leq t \leq 1\}$ has the least area among all surfaces with boundary B.

For an unit vector $H \in \overline{C}$, the orbit Ad(K)H is a submanifold of the unit sphere in m. Then the mapping

$$f: kZ_K^H \mapsto \mathrm{Ad}(k)H$$
,

is a diffeomorphism of the homogeneous space K/\mathbb{Z}_K^H to $\mathrm{Ad}(K)H$.

PROPOSITION 2.1. The orbit Ad(K)H is connected.

PROOF. Since $\mathfrak{m} = \bigcup_{k \in K_0} \operatorname{Ad}(k) \cdot \mathfrak{a}$, where K_0 be the identity component of K, for any $\operatorname{Ad}(k)H \in \operatorname{Ad}(K)H$ there exists an element $k_1 \in K_0$ such that $\operatorname{Ad}(k_1k)H \in \mathfrak{a}$. From Proposition 2.2 (p. 285) of [2], there exists a member of *Weyl group* whose action on \mathfrak{a} is represented by $\operatorname{Ad}(k_2)$ for some $k_2 \in K_0$ such that $\operatorname{Ad}(k_1k)H = \operatorname{Ad}(k_2)H$. If we put $k_0 = k_1^{-1}k_2 \in K_0$, then $\operatorname{Ad}(k)H = \operatorname{Ad}(k_0)H$ holds. Thus we get $\operatorname{Ad}(K)H = \operatorname{Ad}(K_0)H$ and it is connected.

From now on we assume that (G, K) is irreducible.

Let $F(g, f) = \{\alpha_1, \dots, \alpha_l\}$ be the fundamental root system and $\tilde{\alpha} = n_1\alpha_1 + \dots + n_l\alpha_l$ be the highest root of R(g, f). Select $\alpha_i \in F(g, f)$ such that $n_i = 1$, we put $\alpha_0 = \alpha_i$ and $A_0 = H_{\alpha_0}/|H_{\alpha_0}|$. It is known that f is an isometry of $K/Z_K^{A_0}$ with the normal homogeneous Riemannian metric multiplied some constant onto $Ad(K)A_0$ and that $K/Z_K^{A_0}$ is a symmetric space. We call this space a symmetric R-space, and f its canonical imbedding. Because $Ad(K)A_0$ is an isolated orbit, $Ad(K)A_0$ is a minimal submanifold of the unit sphere in m by a result of Hsiang [3]. Hence the cone $C_{Ad(K)A_0}$ is also a minimal submanifold of m ([6] p. 97, Prop. 6.1.1). The purpose of this article is to prove $C_{Ad(K)A_0}$ is an area-minimizing cone.

PROPOSITION 2.2. Let V and W be two vector spaces with inner products. Suppose $n = \dim W \le \dim V$. For a linear mapping F of V to W we put

$$JF = \sup\{|F(u_1) \wedge \cdots \wedge F(u_n)|\},\$$

where u_1, \ldots, u_n runs over all orthonormal vectors of V. If F is not surjective, then

JF = 0. If F is surjective, then JF coincides with

$$|F(v_1) \wedge \cdots \wedge F(v_n)|,$$

for an orthonormal base v_1, \ldots, v_n of $(\ker F)^{\perp}$.

Let B be a compact submanifold of the unit sphere in m. We call a differentiable retraction $\Phi: m \to C_B$ a area-nonincreasing if

$$J(d\Phi_x) \le 1. \tag{1}$$

for $x \in \mathfrak{m}$.

PROPOSITION 2.3. The cone C_B over a compact submanifold B of the unit sphere in \mathfrak{m} is area-minimizing if there exists an area-nonincreasing retraction $\Phi:\mathfrak{m}\to C_B$.

PROOF. Let S be a surface in m with boundary B. Since $C_B^1 \subset \Phi(S)$, we have $\operatorname{vol}(C_B^1) \leq \operatorname{vol}(\Phi(S))$. Let e_1, \ldots, e_n be an orthonormal frame of S, then

$$\operatorname{vol}(\Phi(S)) = \int_{S} |d\Phi(e_{1} \wedge \cdots \wedge e_{n})| d\mu_{S}$$

$$\leq \int_{S} J(d\Phi_{x}) d\mu_{S}$$

$$\leq \int_{S} d\mu_{S}$$

$$= \operatorname{vol}(S).$$

Consequently,

$$\operatorname{vol}(C_B^1) \le \operatorname{vol}(\Phi(S)) \le \operatorname{vol}(S).$$

This proves the proposition.

We shall now consider a way to construct area-nonincreasing retractions.

Lemma 2.4. Suppose ϕ is a mapping of \overline{C} into itself such that $\phi(C^{\Delta}) \subset \overline{C^{\Delta}}$ for each $\Delta \subset F(\mathfrak{g}, \mathfrak{k})$. Then ϕ extends to a mapping Φ of \mathfrak{m} as

$$\Phi(X) = \mathrm{Ad}(k)\phi(H),$$

for each $X = Ad(k)H \in \mathfrak{m} \ (k \in K, H \in \overline{C}).$

PROOF. Suppose $k_1, k_2 \in K$ and $H_1, H_2 \in \bar{C}$ satisfy $Ad(k_1)H_1 = Ad(k_2)H_2$. Then $Ad(k_2^{-1}k_1)H_1 = H_2 \in \mathfrak{a}$ and we have $H_1 = H_2$, because each orbit of the Weyl group on \mathfrak{a} intersects \bar{C} in exactly one point ([3], p. 293, Th. 2.22). Let

$$\Delta = \{ \alpha \in F \mid \langle \alpha, H_1 \rangle > 0 \}.$$

We have $H_1 \in C^{\Delta}$ and $\phi(H_1) \in \overline{C^{\Delta}}$ by the assumption of ϕ . Thus Theorem 1.6 implies

$$k_2^{-1}k_1 \in Z_K^{H_1} = Z_K^{\Delta},$$

therefore $Ad(k_2^{-1}k_1)\phi(H_1) = \phi(H_1)$.

From Lemma 2.4, we have the following.

PROPOSITION 2.5. Let $\phi: \bar{C} \to \{tA_0|t \geq 0\}$ be a differentiable mapping. Denote $\phi(x) = f(x)A_0$. If f satisfies $f(tA_0) = t$ $(t \geq 0)$ and $f|_{\{\alpha_0\}^{\perp}} \equiv 0$, then ϕ extends to a differentiable retraction $\Phi: \mathfrak{m} \to C_{\mathrm{Ad}(K)A_0}$.

In this case Φ is area-nonincreasing if and only if (1) holds for each $x \in C$.

We will compute $J(d\Phi_x)$ of Φ in Proposition 2.5 for $x \in C$.

Proposition 2.6. We denote $R_+(A_0) = \{\lambda \in R_+ | \langle \lambda, A_0 \rangle > 0\}.$

$$J(d\Phi_{x}) = |\operatorname{grad}(f)| \prod_{\lambda \in R_{+}(A_{0})} \left(\frac{\langle \lambda, A_{0} \rangle}{\langle \lambda, x \rangle} f(x) \right)^{m_{\lambda}}. \tag{2}$$

PROOF. If f(x) = 0, then the both sides of the equation are 0. So we consider the case $f(x) \neq 0$. By the definition of Φ , $d\Phi_x(\mathfrak{a}) \subset RA_0$. By using the equation

$$\frac{d}{dt}\bigg|_{t=0} \operatorname{Ad}(\exp tS_{\alpha})x = -\langle \alpha, x \rangle T_{\alpha},$$

for $\alpha \in \tilde{R}_+(\mathfrak{g}), \ \bar{\alpha} \neq 0$, we have

$$d\Phi_{\scriptscriptstyle X}(T_{\scriptscriptstyle lpha}) = rac{\langle lpha, \phi(x)
angle}{\langle lpha, x
angle} T_{\scriptscriptstyle lpha}.$$

From this we get

$$d\Phi_{x}\left(\sum_{\lambda\in R_{+}}\mathfrak{m}_{\lambda}\right)\subset\sum_{\lambda\in R_{+}(A_{0})}\mathfrak{m}_{\lambda},$$

so we can write

$$J(d\Phi_x) = J_1(x) \cdot J_2(x),$$
 $J_1(x) = J(d\Phi_x|\mathfrak{a}),$ $J_2(x) = J(d\Phi_x|\sum_{\mathfrak{m}_\lambda}).$

Take a unit vector v in a.

$$d\Phi_{x}(v) = d\phi_{x}(v)$$

$$= df_{x}(v)A_{0}$$

$$= \langle \operatorname{grad}(f), v \rangle A_{0}.$$

Therefore

$$J_1(x) = \max\{|d\Phi_x(v)| | v \in \mathfrak{a}, |v| = 1\}$$
$$= |\operatorname{grad}(f)|.$$

Secondly for $J_2(x)$, we see the kernel of $d\Phi_x|_{\sum \mathfrak{m}_{\lambda}}$. By the above expression of $d\Phi_x(T_{\alpha})$ we get

$$\ker\left(d\Phi_x\big|_{\sum\mathfrak{m}_\lambda}\right) = \sum_{\substack{\lambda \in R_+\\ \langle \lambda, A_0 \rangle = 0}} \mathfrak{m}_\lambda.$$

We can take $\{T_{\alpha}|\alpha\in\tilde{R}_{+}(\mathfrak{g}),\langle\alpha,A_{0}\rangle>0\}$ as an orthonormal base of $\ker\left(d\Phi_{x}|\sum_{\mathfrak{m}_{\lambda}}\right)^{\perp}$. It follows that

$$J_2(x) = \left| \bigwedge_{\substack{\alpha \in \tilde{R}_+ \\ \langle \alpha, A_0 \rangle > 0}} d\Phi_x(T_\alpha) \right| = \prod_{\lambda \in R_+(A_0)} \left(\frac{\langle \lambda, A_0 \rangle}{\langle \lambda, x \rangle} f(x) \right)^{m_\lambda},$$

where m_{λ} is the multiplicity of λ . So we have

$$J(d\Phi_{x}) = |\operatorname{grad}(f)| \prod_{\lambda \in R_{+}(A_{0})} \left(\frac{\langle \lambda, A_{0} \rangle}{\langle \lambda, x \rangle} f(x) \right)^{m_{\lambda}}.$$

3. Construction of Area-nonincreasing Retractions

THEOREM 3.1. The cones over

$$\frac{SO(2l+1)}{SO(2)\times SO(2l-1)}, \quad \frac{SO(l)\times SO(l+n)}{S'(O(l-1)\times O(l+n-1))}$$

corresponding to symmetric pairs

$$(SO(2l+1)^2, SO(2l+1)), (SO(2l+n), SO(l) \times SO(l+n)) (n \ge 2)$$

respectively are area-minimizing, where

$$S'(O(l-1)\times O(l+n-1))$$

$$= \left\{ \begin{pmatrix} \varepsilon & & & \\ & A & & \\ & & \varepsilon & \\ & & & B \end{pmatrix} \in SO(l) \times SO(l+n) \middle| \begin{array}{c} \varepsilon = \pm 1, A \in O(l-1), \\ B \in O(l+n-1) \end{array} \right\}.$$

PROOF. We consider symmetric pairs of type B_l . Let $\varepsilon_1, \ldots, \varepsilon_l$ be an orthonormal basis of the maximal Abelian subspace \mathfrak{a} such that all roots are

$$\pm \varepsilon_i \pm \varepsilon_j \ (1 \le i < j \le l), \quad \pm \varepsilon_i \ (1 \le i \le l).$$

Then for a suitable ordering

$$F(\mathfrak{g},\mathfrak{k}) = \{\alpha_1, \alpha_2, \dots, \alpha_{l-1}, \alpha_l\},$$

$$\alpha_i = \varepsilon_i - \varepsilon_{i+1} \ (1 \le i < l), \quad \alpha_l = \varepsilon_l,$$

$$H_{\alpha_i} = \varepsilon_1 + \dots + \varepsilon_i \ (1 \le i \le l),$$

$$\tilde{\alpha} = \alpha_1 + 2\alpha_2 + \dots + 2\alpha_l = \varepsilon_1 + \varepsilon_2$$

and we put

$$A_0 = \frac{H_{\alpha_1}}{|H_{\alpha_1}|} = \varepsilon_1.$$

We have

$$R_{+}(A_{0}) = \left\{ \sum_{i=1}^{l} \alpha_{i} \right\} \cup \left\{ \sum_{i=1}^{k-1} \alpha_{i} \middle| 2 \le k \le l \right\}$$
$$\cup \left\{ \tilde{\alpha} - \sum_{i=2}^{k} \alpha_{i} \middle| 2 \le k \le l-1 \right\} \cup \left\{ \tilde{\alpha} \right\}$$

Because the multiplicities of roots of same length coincide with each other, we can denote by m_1 the multiplicity of the $\sum_{i=1}^{l} \alpha_i$ and by m_2 the multiplicity of the rest. For $x = \sum_{i=1}^{l} x_i H_{\alpha_i} \in \bar{C}$ we define

$$f(x) = \sqrt{\langle \alpha_1, x \rangle \langle \tilde{\alpha}, x \rangle} = \sqrt{x_1(x_1 + 2x_2 + \dots + 2x_l)}$$

then it satisfies Proposition 2.5. Using (2), we calculate $J(d\Phi_x)$. Since

$$\frac{\partial f}{\partial x_1} = \frac{x_1 + \dots + x_l}{f},$$

$$\frac{\partial f}{\partial x_i} = \frac{x_1}{f} \quad (2 \le i \le l),$$

we get

$$J_1(x) = |\operatorname{grad}(f)| = \left| \sum_{i=1}^l \frac{\partial f}{\partial x_i} \alpha_i \right| = \sqrt{\frac{\langle \alpha_1, x \rangle^2 + \langle \tilde{\alpha}, x \rangle^2}{2\langle \alpha_1, x \rangle \langle \tilde{\alpha}, x \rangle}}.$$

We also obtain

$$J_2(x) = \left(\frac{f}{\langle \sum_{i=1}^{l} \alpha_i, x \rangle}\right)^{m_1} \times \prod_{k=2}^{l-1} \left(\frac{f^2}{\langle \sum_{i=1}^{k} \alpha_i, x \rangle \langle \tilde{\alpha} - \sum_{i=2}^{k} \alpha_i, x \rangle}\right)^{m_2}.$$

Therefore

$$J(d\Phi_{x}) = \sqrt{\frac{\langle \alpha_{1}, x \rangle^{2} + \langle \tilde{\alpha}, x \rangle^{2}}{2\langle \alpha_{1}, x \rangle\langle \tilde{\alpha}, x \rangle}} \left(\frac{\sqrt{\langle \alpha_{1}, x \rangle\langle \tilde{\alpha}, x \rangle}}{\langle \sum_{i=1}^{l} \alpha_{i}, x \rangle}\right)^{m_{1}} \times \prod_{k=2}^{l-1} \left(\frac{\langle \alpha_{1}, x \rangle\langle \tilde{\alpha}, x \rangle}{\langle \sum_{i=1}^{k} \alpha_{i}, x \rangle\langle \tilde{\alpha} - \sum_{i=2}^{k} \alpha_{i}, x \rangle}\right)^{m_{2}}.$$

For any k,

$$\begin{split} \left\langle \sum_{i=1}^{k} \alpha_{i}, x \right\rangle \left\langle \tilde{\alpha} - \sum_{i=2}^{k} \alpha_{i}, x \right\rangle \\ &= \left\langle \sum_{i=1}^{k} \alpha_{i}, x \right\rangle \langle \tilde{\alpha}, x \rangle - \left\langle \sum_{i=1}^{k} \alpha_{i}, x \right\rangle \left\langle \sum_{i=2}^{k} \alpha_{i}, x \right\rangle \\ &= \left\langle \alpha_{1}, x \right\rangle \langle \tilde{\alpha}, x \rangle + \left\langle \sum_{i=2}^{k} \alpha_{i}, x \right\rangle \langle \tilde{\alpha}, x \rangle - \left\langle \sum_{i=1}^{k} \alpha_{i}, x \right\rangle \left\langle \sum_{i=2}^{k} \alpha_{i}, x \right\rangle \\ &= \left\langle \alpha_{1}, x \right\rangle \langle \tilde{\alpha}, x \rangle + \left\langle \sum_{i=2}^{k} \alpha_{i}, x \right\rangle \left(\langle \tilde{\alpha}, x \rangle - \left\langle \sum_{i=1}^{k} \alpha_{i}, x \right\rangle \right) \\ &\geq \left\langle \alpha_{1}, x \right\rangle \langle \tilde{\alpha}, x \rangle, \end{split}$$

hence

$$\frac{\langle \alpha_1, x \rangle \langle \tilde{\alpha}, x \rangle}{\langle \sum_{i=1}^k \alpha_i, x \rangle \langle \tilde{\alpha} - \sum_{i=2}^k \alpha_i, x \rangle} \leq 1.$$

On the other hand

$$\left\langle \sum_{i=1}^{l} \alpha_{i}, x \right\rangle^{2} - \left\langle \alpha_{1}, x \right\rangle \left\langle \tilde{\alpha}, x \right\rangle$$

$$= \left\langle \sum_{i=1}^{l} \alpha_{i}, x \right\rangle^{2} - \left\langle \alpha_{1}, x \right\rangle \left\langle \sum_{i=1}^{l} \alpha_{i} + \sum_{i=2}^{l} \alpha_{i}, x \right\rangle$$

$$= \left\langle \sum_{i=1}^{l} \alpha_{i}, x \right\rangle \left\langle \sum_{i=2}^{l} \alpha_{i}, x \right\rangle - \left\langle \alpha_{1}, x \right\rangle \left\langle \sum_{i=2}^{l} \alpha_{i}, x \right\rangle$$

$$= \left\langle \sum_{i=1}^{l} \alpha_{i}, x \right\rangle^{2} \ge 0.$$

Therefore

$$\frac{\sqrt{\langle \alpha_1, x \rangle \langle \tilde{\alpha}, x \rangle}}{\langle \sum_{i=1}^{l} \alpha_i, x \rangle} \le 1.$$

We consider the case $m_1 \ge 2$ and let

$$A = J_1(x) \left(\frac{\sqrt{\langle \alpha_1, x \rangle \langle \tilde{\alpha}, x \rangle}}{\langle \sum_{i=1}^l \alpha_i, x \rangle} \right)^2.$$

If $A \le 1$ then $J(d\Phi_x) \le 1$.

$$A^{2} = \frac{\langle \alpha_{1}, x \rangle^{2} + \langle \tilde{\alpha}, x \rangle^{2}}{2\langle \alpha_{1}, x \rangle \langle \tilde{\alpha}, x \rangle} \frac{\langle \alpha_{1}, x \rangle^{2} \langle \tilde{\alpha}, x \rangle^{2}}{\langle \sum_{i=1}^{l} \alpha_{i}, x \rangle^{4}}$$
$$= \frac{8(\langle \alpha_{1}, x \rangle^{3} \langle \tilde{\alpha}, x \rangle + \langle \alpha_{1}, x \rangle \langle \tilde{\alpha}, x \rangle^{3})}{(\langle \tilde{\alpha}, x \rangle + \langle \alpha_{1}, x \rangle)^{4}}.$$

Here subtracting the numerator from the denominator we have

$$(\langle \tilde{\alpha}, x \rangle + \langle \alpha_1, x \rangle)^4 - 8(\langle \alpha_1, x \rangle^3 \langle \tilde{\alpha}, x \rangle + \langle \alpha_1, x \rangle \langle \tilde{\alpha}, x \rangle^3)$$
$$= (\langle \tilde{\alpha}, x \rangle - \langle \alpha_1, x \rangle)^4 \ge 0.$$

Therefore if $m_1 \ge 2$, we get $J(d\Phi_x) \le 1$.

There are two kind of symmetric pairs: (i) $m_1 = n$ $(n \ge 2)$, $m_2 = 1$ and (ii) $m_1 = m_2 = 2$.

(i) $(G, K) = (SO(2l + n), SO(l) \times SO(l + n))$. It is defined by the involution:

$$\theta(g) = I_{l,l+n}gI_{l,l+n} \quad (g \in SO(2l+n)), \quad I_{l,l+n} = \begin{pmatrix} -I_l & 0 \\ 0 & I_{l+n} \end{pmatrix}.$$

Then

$$g = \mathfrak{so}(2l+n) = \{X \in M_{2l+n}(\mathbf{R}) | X + {}^{t}X = 0\},$$

$$f = \mathfrak{so}(l) \times \mathfrak{so}(l+n) = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \middle| x \in \mathfrak{so}(l), y \in \mathfrak{so}(l+n) \right\},$$

$$m = \left\{ \begin{pmatrix} 0 & x \\ -{}^{t}x & 0 \end{pmatrix} \middle| x \in M_{l,l+n}(\mathbf{R}) \right\} \cong M_{l,l+n}(\mathbf{R}).$$

Since m is isomorphic to $M_{l,l+n}(\mathbf{R})$, we identify them. The action of K on m through this identification is

$$\operatorname{Ad}\begin{pmatrix} k & 0 \\ 0 & k' \end{pmatrix} \cdot x = kx^t k'.$$

We define an Ad(K)-invariant inner product on m by

$$\langle X, Y \rangle = \operatorname{Trace}({}^{t}XY) \quad (X, Y \in \mathfrak{m}).$$

Let

$$\mathbf{a} = \left\{ \begin{pmatrix} 0 & t \\ -^{t}t & 0 \end{pmatrix} \middle| t = \begin{pmatrix} t_{1} & & \\ & \ddots & \mathbf{0} \\ & & t_{l} \end{pmatrix}, t_{i} \in \mathbf{R} \right\}$$

$$\cong \left\{ t = \begin{pmatrix} t_{1} & & \\ & \ddots & \mathbf{0} \\ & & t_{l} \end{pmatrix} \right\}.$$

Then α is a maximal Abelian subspace in m. Next, we consider a root space decomposition of m with respect to α . Let E_{pq} be a matrix whose (p,q)-entry is 1 and all other entries are 0. Then

$$egin{aligned} arepsilon_p &= E_{pp}, \ & \mathfrak{m}_{arepsilon_p} &= \sum_{q=l+1}^{l+n} extbf{\emph{R}} E_{pq}, \ & \mathfrak{m}_{arepsilon_p - arepsilon_q} &= extbf{\emph{R}} (E_{pq} + E_{qp}), \ & \mathfrak{m}_{arepsilon_p + arepsilon_q} &= extbf{\emph{R}} (E_{pq} - E_{qp}). \end{aligned}$$

Since $A_0 = \varepsilon_1 = E_{11}$, we have

$$Z_K^{A_0} = S'(O(l-1) \times O(l+n-1)).$$

Hence the corresponding symmetric R-space is

$$\frac{SO(l)\times SO(l+n)}{S'(O(l-1)\times O(l+n-1))}.$$

(ii) $(G,K) = (SO(2l+1)^2, SO(2l+1))$. It is defined by the involution such that

$$\theta(g_1, g_2) = (g_2, g_1) \quad ((g_1, g_2) \in SO(2l+1)).$$

Then

$$g = \mathfrak{so}(2l+1) \times \mathfrak{so}(2l+1),$$

$$\mathfrak{f} = \{(x,x) | x \in \mathfrak{so}(2l+1)\},$$

$$\mathfrak{m} = \{(x,-x) | x \in \mathfrak{so}(2l+1)\} \cong \mathfrak{so}(2l+1).$$

Since m is isomorphic to $\mathfrak{so}(2l+1)$, we identify them. The action of K on m through this identification is

$$Ad(k) \cdot x = kx^t k \quad (k \in SO(2l+1), x \in \mathfrak{so}(2l+1)).$$

We define an Ad(K)-invariant inner product on m by

$$\langle X, Y \rangle = \frac{1}{2} \operatorname{Trace}({}^{t}XY) \quad (X, Y \in \mathfrak{m}).$$

Let

$$\mathfrak{a} = \left\{ t = \begin{pmatrix} t_1' & & & \\ & \ddots & & \\ & & t_l' & \\ & & & 0 \end{pmatrix} \middle| \begin{array}{l} t_i' = \begin{pmatrix} 0 & t_i \\ -t_i & 0 \end{array} \right\}, \ t_i \in \mathbf{R} \right\} \subset \mathfrak{m} \cong \mathfrak{so}(2l+1).$$

Then a is a maximal Abelian subspace in m. Next, we consider a root space decomposition of m with respect to a. Let $G_{pq} = E_{pq} - E_{qp}$. Then

$$egin{align*} arepsilon_p &= G_{2p-1,2p}, \ & \mathfrak{m}_{arepsilon_p} &= extbf{\emph{R}} G_{2p-1,2l+1} + extbf{\emph{R}} G_{2p,2l+1}, \ & \mathfrak{m}_{arepsilon_p - arepsilon_q} &= extbf{\emph{R}} (G_{2p-1,2q-1} - G_{2p,2q}) + extbf{\emph{R}} (G_{2p-1,2q} + G_{2p,2q-1}), \ & \mathfrak{m}_{arepsilon_p + arepsilon_q} &= extbf{\emph{R}} (G_{2p-1,2q-1} + G_{2p,2q}) + extbf{\emph{R}} (G_{2p-1,2q} - G_{2p,2q-1}). \end{aligned}$$

Since $A_0 = \varepsilon_1 = G_{12}$, we have

$$Z_K^{A_0} = SO(2) \times SO(2l - 1).$$

Hence the corresponding symmetric R-space is

$$\frac{SO(2l+1)}{SO(2)\times SO(2l-1)}.$$

References

- B. N. Cheng, Area-minimizing cone-type surfaces and coflat calibrations, Indiana Math. Univ. J. 37 (1988), 505-535.
- [2] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, (1978).
- [3] W. Y. Hsiang, On compact homogeneous submanifolds. Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 5-6.
- [4] M. Kerckhove, Isolated orbits of the adjoint action and area-minimizing cones, Proc. Amer. Math. Soc. 121 (1994), 497-503.
- [5] G. R. Lawlor, A sufficient criterion for a cone to be area-minimizing, Mem. Amer. Math. Soc. 91 no. 446, 1991.
- [6] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968), 62-105.

Institute of Mathematics University of Tsukuba Tsukuba, Ibaraki 305-8571 Japan daigo@math.tsukuba.ac.jp kanno@math.tsukuba.ac.jp tasaki@math.tsukuba.ac.jp