ON A CLASS OF EVEN-DIMENSIONAL MANIFOLDS STRUCTURED BY A \mathcal{T}-PARALLEL CONNECTION

By

Filip Defever1 and Radu Rosca

Abstract. Geometrical and structural properties are proved for a class of even-dimensional manifolds which are equipped with a \mathcal{T}-parallel connection.

1. Introduction

Riemannian manifolds (M, g) structured by a \mathcal{T}-parallel connection have been defined in [12]. We recall that if M is such a manifold carrying a globally defined vector field $\mathcal{T}(\mathcal{T}^a)$ and θ^a_b (resp. e_a) are the connection forms (resp. the vectors of an orthonormal basis), the connection forms satisfy

$$\theta^a_b = \langle \mathcal{T}, e_b \wedge e_a \rangle,$$

where \wedge is the wedge product. The equations (1) imply $\nabla_\mathcal{T} e_a = 0$ and this agrees with the definition of a \mathcal{T}-parallel connection.

In the present paper we assume that M is of even dimension $2m$. In Section 3 we prove that M is a space-form with the following properties:

(i) M carries a locally conformal symplectic form Ω having $\mathcal{T}^b = (x)$ as covector of Lee;

(ii) \mathcal{T} is closed torse forming

$$\nabla \mathcal{T} = (c + t) dp - x \otimes \mathcal{T},$$

where dp is the soldering form of M, c is a constant, $t = |\mathcal{T}|^2/2$, and $dx = 0$;

(iii) \mathcal{T} defines a relative conformal transformation of Ω [14] (see also [7]), i.e.

$$d(\mathcal{L}_\mathcal{T} \Omega) = 4(c + f)x \wedge \Omega,$$

where f is the principal scalar field on M.

Key words: structured manifold, \mathcal{T}-parallel connection

Math. Subject Classification: 53B20

Received May 16, 2000.
(iv) the components \mathcal{F}^a $(a = 1, \ldots, 2m)$ of \mathcal{F} are eigenfunctions of the Laplacian Δ and have all as eigenvalue f.

In Section 4 we consider the tangent bundle TM of the manifold M discussed in Section 3. Let $V(v^\alpha)$ be the Liouville vector field [3] on TM and ψ the associated Finslerian 2-form [3]; the following properties are proved

(i) the complete lift Ω^c [18] of Ω defines a conformal symplectic structure on TM and \mathcal{F} defines as for Ω a relative conformal transformation of Ω^c [14] [7];

(ii) $d(\mathcal{L}_\mathcal{F} \Omega^c) = 2(c + 1)x \cdot \Omega^c$,

and since $\mathcal{L}_\mathcal{F} \Omega^c = \Omega^c$, and $\mathcal{L}_\mathcal{F} \psi = \psi$, both Ω^c and ψ are homogeneous and of class 1;

(iii) if X is a skew-symmetric Killing vector field [15] having \mathcal{F} as generative, then Ω^c is invariant by X, i.e. $\mathcal{L}_X \Omega^c = 0$, and X defines also an infinitesimal conformal transformation of the canonical symplectic form $\Pi = f\psi$, i.e.

$$\mathcal{L}_X \Pi = -g(X, \mathcal{F})\Pi;$$

(iv) the vertical lift X^V of X defines a relative conformal transformation of the Finslerian form ψ, i.e.

$$d(\mathcal{L}_{X^V} \psi) = (dg(X, \mathcal{F}) + g(X, \mathcal{F})X^a) \cdot \psi.$$

2. Preliminaries

Let (M, g) be a Riemannian C^∞-manifold and let V be the covariant differential operator with respect to the metric tensor g. We assume that M is oriented and V is the Levi-Civita connection of g. Let $\Gamma TM = \Xi(M)$ be the set of sections of the tangent bundle, and

$\flat : TM \rightarrow T^*M$ and $\sharp : TM \rightarrow T^*M$

the classical isomorphisms defined by g (i.e. \flat is the index lowering operator, and \sharp is the index raising operator).

Following [11], we denote by

$$A^q(M, TM) = \Gamma \text{Hom}(\Lambda^q TM, TM),$$

the set of vector valued q-forms $(q < \text{dim} \, M)$, and we write for the covariant derivative operator with respect to V

$$d^V : A^q(M, TM) \rightarrow A^{q+1}(M, TM).$$ (2)
On a class of even-dimensional manifolds

It should be noticed that in general \(d^{V^2} = d^V \circ d^V \neq 0 \), unlike \(d^2 = d \circ d = 0 \). If \(p \in M \) then the vector valued 1-form \(dp \in A^1(M, TM) \) is the canonical vector valued 1-form of \(M \), and is also called the soldering form of \(M \) [2]. Since \(\nabla \) is symmetric one has that \(d^V(dp) = 0 \). A vector field \(Z \) which satisfies

\[
d^V(\nabla Z) = \nabla^2 Z = \pi \wedge dp \in A^2(M, TM), \quad \pi \in \Lambda^1 M, \tag{3}
\]
is defined to be an exterior concurrent vector field [13] (see also [10]). The 1-form \(\pi \) in (3) is called the concurrence form and is defined by

\[
\pi = \lambda Z^\lambda, \quad \lambda \in \Lambda^0 M. \tag{4}
\]

Let \(\emptyset = \{ e_a | a = 1, \ldots, 2m \} \) be a local field of orthonormal frames over \(M \) and let \(\mathcal{C}^\ast = \text{covect}\{ \omega^a \} \) be its associated coframe. Then E. Cartan's structure equations can be written in indexless manner as

\[
\nabla e = \Theta \otimes e, \tag{5}
\]

\[
d\omega = -\Theta \wedge \omega, \tag{6}
\]

\[
d\Theta = -\Theta \wedge \Theta + \Theta. \tag{7}
\]

In the above equations \(\Theta \) (resp. \(\Theta \)) are the local connection forms in the tangent bundle \(TM \) (resp. the curvature 2-forms on \(M \)).

3. Manifolds structured by a \(\mathcal{F} \)-parallel connection

Let \((M, g) \) be a \(2m \)-dimensional oriented Riemannian \(C^\infty \)-manifold and

\[
\mathcal{F} = \mathcal{F}^a e_a, \quad \mathcal{F}^\alpha = \mathcal{F}^a \omega^a \tag{8}
\]
be a globally defined vector field and its dual form respectively. Let \(\theta^a_{b} \ (a, b \in \{1, \ldots, 2m\}) \) be the local connection forms in the tangent bundle \(TM \). Then, by reference to [12], \((M, g) \) is structured by a \(\mathcal{F} \)-parallel connection if the connection forms \(\Theta \) satisfy

\[
\theta^a_{b} = \langle \mathcal{F}, e_b \wedge e_a \rangle, \tag{9}
\]
where \(\wedge \) means the wedge product of vector fields. Making use of Cartan's structure equations (5), we find by (8) and (9) that

\[
\theta^a_{b} = \mathcal{F}^b \omega^a - \mathcal{F}^a \omega^b, \tag{10}
\]
and in consequence of (10), the equations (5) take the form

\[
\nabla e_a = \mathcal{F}^a dp - \omega^a \otimes \mathcal{F}. \tag{11}
\]
Since one has that \(\theta_\nu^a(\mathcal{T}) = 0 \), then following [6] one may say that the connection forms \(\theta_\nu^a \) are relations of integral invariance for \(\mathcal{T} \).

From (11) it also follows that

\[\nabla_\mathcal{T} e_a = 0, \quad (12) \]

which expresses that all the vectors of the \(\mathcal{O} \)-basis \(\mathcal{O} = \{ e_a \} \) are \(\mathcal{T} \)-parallel and this legitimates our definition regarding the structure of \(M \). Further, making use of E. Cartan’s structure equations (6) one derives that

\[d\omega^a = \alpha \wedge \omega^a, \quad (13) \]

where we have set \(\alpha = \mathcal{T} \beta \). Hence, by (13) it follows that all the pfaffians \(\omega^a \) of the covector basis \(\mathcal{O}^* \) are exterior recurrent forms [1]. Consequently, the pfaffian \(\alpha \) can be seen to be in fact a closed form, i.e.

\[d\alpha = 0. \quad (14) \]

Since

\[\alpha = \mathcal{T} \beta = \sum \mathcal{T}^a \omega^a, \quad (15) \]

one has by (11) \(d\mathcal{T}^a \wedge \omega^a = 0 \), and by reference to [9], one may write

\[d\mathcal{T}^a = f \omega^a, \quad f \in \Lambda^0 M, \quad (16) \]

and call \(f \) the distinguished scalar on \(M \). By (16) and (14) it can now be seen that \(\alpha \) is also an exact form, and that one may set

\[\alpha = -\frac{df}{f}. \quad (17) \]

Further, taking the covariant differential of \(\mathcal{T} \), one finds by (11) and (16) that

\[\nabla \mathcal{T} = (f + 2t) dp - \alpha \otimes \mathcal{T}, \quad (18) \]

where we have set

\[2t = \| \mathcal{T} \|^2. \quad (19) \]

Hence, according to [17] (see also [16] [15] [9]), equation (18) expresses that \(\mathcal{T} \) is a torse forming vector field, which in addition, by (11), has the property to be closed; by (19) one may also write

\[dt = f \alpha. \quad (20) \]
Further, operating on (11) by the exterior covariant operator d^V, one gets

$$d^V(\nabla e_a) = \nabla^2 e_a = 2(f + t)\omega^a \wedge dp.$$ \hfill (21)

This reveals that all the constituents of the vector basis $\{e_a\}$ are exterior concurrent vector fields [13] with $2(f + t)$ as exterior concurrent scalar. Under these conditions it suffices to make use of the general formula

$$\nabla^2 Z = Z^a \Theta^b_a \otimes e_b,$$ \hfill (22)

where $Z \in \mathfrak{z}(M)$ and Θ^b_a are the curvature 2-forms on M, to derive

$$\Theta^b_a = 2(f + t)\omega^a \wedge \omega^b.$$ \hfill (23)

It is well known that the equation (23) shows that the manifold M under consideration is a space form of curvature $\kappa = -2(f + t)$

(see also [9]), and we agree to set

$$f + t = c = \text{const..}$$ \hfill (24)

In another perspective, we agree to call the 2-form Ω of rank $2m$ given by

$$\Omega = \sum \omega^i \wedge \omega^i, \quad i = 1, \ldots, m, \quad \text{i}^* = \text{i} + m,$$ \hfill (25)

the fundamental almost symplectic form of M. Taking the exterior derivative of Ω, and in view of (13), one finds that

$$d\Omega = 2\omega \wedge \Omega.$$ \hfill (26)

This affirms the fact that M is endowed with a locally conformal symplectic structure having ω as covector of Lee. Then, as is known [5], calling the mapping $Z \rightarrow -i_Z\Omega = ^bZ$ the symplectic isomorphism, one has

$$^b\mathcal{F} = \sum (\mathcal{F}^i \omega^i - \mathcal{F}^i \omega_i^*),$$ \hfill (27)

and by (16) one finds that

$$d(^b\mathcal{F}) = 2f\Omega.$$ \hfill (28)

Taking now the Lie derivative of Ω with respect to the Lee vector field \mathcal{F}, yields

$$\mathcal{L}_\mathcal{F}\Omega = 2c\Omega + 2\omega \wedge ^b\mathcal{F},$$ \hfill (29)
and by exterior differentiation one gets
\[d(\mathcal{L}_\tau \Omega) = 4(f + c)x \wedge \Omega. \] (30)

Hence, following a known definition [14] (see also [7]), the above equation means that \(\mathcal{T} \) defines a relative conformal transformation of \(\Omega \).

Recall now that if \(\tau \in \Lambda^0 M \) is any scalar field, then the Laplacian of \(\tau \) is expressed by
\[\Delta \tau = \delta df = -\text{div} df = -\text{div} \nabla \tau, \]
where \(\nabla \tau \) is the gradient of \(\tau \). Coming back to the case under discussion, then with the help of (16) one derives that
\[\nabla \mathcal{T}^a = f \mathcal{T}^a. \] (31)

This shows that \(\mathcal{T}^a \) is an eigenfunction of \(\Delta \) corresponding to the eigenvalue \(f \). Hence one may say that the vector field \(\mathcal{T} \) forms an eigenspace \(E^{2m} \) of eigenvalue \(f \).

Theorem 3.1. Let \(M \) be a 2m-dimensional Riemannian manifold structured by a \(\mathcal{T} \)-parallel connection and let \(\mathcal{T}(\mathcal{T}^a) \) be the vector field which defines this connection and \(\mathcal{T}^b \) the dual form of \(\mathcal{T} \). Any such manifold is a space-form and is endowed with a locally conformal symplectic form \(\Omega \) having \(\mathcal{T}^b \) as covector of Lee, i.e.
\[d\Omega = 2\mathcal{T}^b \wedge \Omega, \]
and \(\mathcal{T} \) defines a relative conformal transformation of \(\Omega \), i.e.
\[d(\mathcal{L}_\tau \Omega) = 4(c + f)\mathcal{T}^b \wedge \Omega, \]
where \(c \) is a constant and \(f \) is the distinguished scalar on \(M \). The vector field \(\mathcal{T} \) is closed torse forming and its components \(\mathcal{T}^a \) form an eigenspace \(E^{2m} \) of eigenvalue \(f \).

4. Geometry of the tangent bundle

Let now \(TM \) be the tangent bundle of the manifold \(M \) discussed in Section 3. Denote as usual by \(V(v^a) \) \((a \in \{1\ldots 2m\}) \) the Liouville vector field (or the canonical vector field [3]). Under these conditions, one may consider the set \(B^* = \{\omega^a, dv^a\} \) as an adapted cobasis in \(TM \). Following [3] one denotes by \(i_v \) the vertical derivation \((i_v \text{ is a derivation of degree 0 on } \Lambda TM) \), i.e.
\[i_v \lambda = 0, \quad i_v dv^a = \omega^a, \quad i_v \omega^a = 0. \] (32)
On a class of even-dimensional manifolds

Next, the complete lift of Ω is, as is known from [18], expressed by

$$\Omega^c = \sum (dv^i \wedge \omega^i + \omega^i \wedge dv^i). \tag{33}$$

Then, on behalf of (13), the exterior differential of Ω^c is given by

$$d\Omega^c = \alpha \wedge \Omega^c. \tag{34}$$

Hence, the complete lift Ω^c of Ω defines on TM a conformal symplectic structure, as Ω does on M. Moreover, similarly as for Ω, one can derive that

$$d(\mathcal{L}_V \Omega^c) = 2(c + 1)\alpha \wedge \Omega^c, \tag{35}$$

which proves that \mathcal{F} defines a relative conformal transformation of Ω^c.

Next, as is known [4], the Liouville vector field V is expressed by

$$V = \sum V^a \frac{\partial}{\partial v^a}, \tag{36}$$

and the basic 1-form

$$\mu = \sum V^a \omega^a \tag{37}$$

is called the Liouville 1-form. By (33) one has that

$$i_V \Omega^c = \sum (V^i \omega^i - V^i \omega^i), \tag{38}$$

and by (34) and (38) one gets

$$\mathcal{L}_V \Omega^c = \Omega^c. \tag{39}$$

Equation (39) shows that Ω^c is a homogeneous 2-form of class 1 [4] on TM.

Further, taking the exterior differential of the Liouville form μ, one derives that

$$d\mu = \alpha \wedge \mu + \psi, \tag{40}$$

where we have set

$$\psi = \sum dv^a \wedge \omega^a. \tag{41}$$

Then, since one first calculates that

$$i_V \psi = \mu, \quad \alpha(V) = 0, \tag{42}$$
one finally gets that

\[\mathcal{L}_\psi \psi = \psi, \tag{43} \]

which shows that, as \(\Omega^c \), the form \(\psi \) is also a homogeneous 2-form of class 1.

Moreover, by (32) one has that

\[i_\psi \psi = 0, \tag{44} \]

which together with (43) proves that \(\psi \) is a Finslerian form [3].

In another order of ideas, we recall that the vertical lift \(Z^V \) [18] of any vector field \(Z \) on \(M \) with components \(Z^a \) is expressed by

\[Z^V = \begin{pmatrix} 0 \\ Z^a \end{pmatrix} = Z^a \frac{\partial}{\partial v^a} \tag{45} \]

Therefore, in the case under consideration, one has

\[\mathcal{F}^V = \sum \mathcal{F}^a \frac{\partial}{\partial v^a}, \quad a \in \{1, \ldots, 2m\}, \tag{46} \]

and by (41) and (32), one finds that

\[i_\psi \psi = 0. \tag{47} \]

But, by (40) and (17), one has

\[i_{\mathcal{F}^V} \psi = \mathcal{F}^V \tag{48} \]

and one derives

\[\mathcal{L}_{\mathcal{F}^V} \psi = 0, \tag{49} \]

which shows that \(\psi \) is invariant by \(\mathcal{F}^V \).

Next, setting

\[II = f \psi, \tag{50} \]

it follows from (17) and (32) that

\[dII = 0. \tag{51} \]

Therefore, the exact symplectic 2-form \(II \) can be viewed as the canonical symplectic form of the manifold \(TM \). Since, as is known from [18], the Killing property for vector fields is invariant by complete liftings, we will now consider a skew-symmetric Killing vector field \(\mathcal{F}^V \) [12] on \(M \) having \(\mathcal{F} \) as generative. Hence, one must write

\[\nabla X = X \wedge \mathcal{F}, \tag{52} \]
On a class of even-dimensional manifolds

where \wedge denotes the wedge product of vector fields. Since by (11) one has that

$$\nabla X = \sum dX^a \otimes e_a + g(X, \mathcal{F}) \, dp - X^b \otimes \mathcal{F},$$

(53)

one gets from (52)

$$dX^a + g(X, \mathcal{F})\omega^a = X^a \alpha, \quad (\alpha = \mathcal{F}^b).$$

(54)

Then, since

$$X^b = \sum X^a \omega^a,$$

it follows from (13) that

$$dX^b = 2\alpha \wedge X^b,$$

(55)

which is in agreement with Rosca's lemma [15] concerning skew-symmetric Killing en conformal skew-symmetric Killing vector fields.

Next, since a problem of current interest consists of infinitesimal transformations due to the Lie derivatives, one finds in a first step

$$i_X \Omega^c = \sum (X^i dv^i - X^i dv^i).$$

(56)

Hence, taking the Lie derivative of the complete 2-form Ω^c, one deduces that

$$\mathcal{L}_X \Omega^c = 0,$$

(57)

and this reveals that Ω^c is invariant by X. We also notice that taking the Lie bracket $[\mathcal{F}, X]$ one gets by (53) and (18)

$$[\mathcal{F}, X] = -fX,$$

(58)

and this shows that \mathcal{F} defines an infinitesimal conformal transformation of X. Further, by (17), (41), (45) and (51), one calculates that

$$\mathcal{L}_X II = -g(X, \mathcal{F}) II,$$

(59)

and this affirms that X defines an infinitesimal conformal transformation of the canonical symplectic form on TM. Finally, let

$$X^V = \sum X^a \frac{\partial}{\partial v^a}$$

be the vertical lift of X. By (41) one has that

$$i_X \psi = \sum X^a \omega^a,$$

(60)
and, taking the Lie derivative with respect to \(X^V \), one derives consecutively that
\[
L_{X^V} \psi = g(X, \mathcal{T}) \psi + 3x \wedge X^\gamma, \tag{61}
\]
and
\[
d(L_{X^V} \psi) = (dg(X, \mathcal{T}) + g(X, \mathcal{T})X^\gamma) \wedge \psi. \tag{62}
\]
Hence, (62) shows that the vertical lift \(X^V \) of the Killing vector field \(X \) defines a relative conformal transformation of the Finslerian form \(\psi \).

Theorem 4.1. Let \(TM \) be the tangent bundle manifold, having as basis the \(2m \)-dimensional space-form manifold \(M(\Omega, \mathcal{T}, \mathcal{F}^\gamma = \alpha) \) discussed in Section 3. The complete lift \(\Omega^c \) of the conformal symplectic form \(\Omega \) defines also on \(TM \) a conformal symplectic structure and the structure vector field \(\mathcal{F} \) defines also a relative conformal transformation of \(\Omega^c \), i.e.
\[
d(\mathcal{L}_\mathcal{F} \Omega^c) = 2(c + 1)x \wedge \Omega^c.
\]
In addition, if \(V \) (resp. \(\psi \)) means the Liouville vector field on \(TM \) (resp. the Finslerian form), one has
\[
\mathcal{L}_V \Omega^c = \Omega^c, \quad \text{and} \quad \mathcal{L}_V \psi = \psi,
\]
which shows that both \(\Omega^c \) and \(\psi \) are homogeneous and of class 1. If \(X \) is a skew-symmetric Killing vector field having \(\mathcal{F} \) as generative, then \(\Omega^c \) is invariant by \(X \), i.e.
\[
\mathcal{L}_X \Omega^c = 0,
\]
and \(X \) defines also an infinitesimal conformal transformation of the canonical symplectic form \(\Pi = \frac{1}{2} \psi \) on \(TM \). Finally, the vertical lift \(X^V \) of \(X \) defines a relative conformal transformation of the Finslerian form \(\psi \).

References

On a class of even-dimensional manifolds

Filip Defever, Zuivere en Toegepaste Differentiaalmeetkunde, Departement Wiskunde K.U. Leuven, Celestijnenlaan 200 B, B-3001 Leuven, Belgium
Radu Rosca, 59 Avenue Emile Zola
75015 Paris, France