ON THE STRUCTURE OF TAKAHASHI MANIFOLDS

By
Beatrice Ruini—Fulvia Spaggiari

Abstract. We study the topological structure of the closed orientable 3-manifolds obtained by Dehn surgeries along certain links, first considered by Takahashi in [23]. The interest about such manifolds arises from the fact that they include well-known families of 3-manifolds, previously studied by several authors, as the Fibonacci manifolds [7], [10], [11], the Fractional Fibonacci manifolds [14], and the Sieradski manifolds [5], [6], respectively. Our main result states that the Takahashi manifolds are 2-fold coverings of the 3-sphere branched along the closures of specified 3-string braids. We also describe many of the above-mentioned manifolds as n-fold cyclic branched coverings of the 3-sphere.

1. Introduction and main results

The goal of the paper is to study the topological structure of the closed connected orientable 3-manifolds obtained by Dehn surgeries along certain chains of unknotted oriented circles in the oriented 3-sphere. Our results complete in a sense the ones of a previous paper of Takahashi [23]. It turns out that the above manifolds contemporarily include well-known families of manifolds, treated in the literature (see references), as the (Fractional) Fibonacci manifolds and the Sieradski manifolds. So we can re-obtain several results of the quoted papers as simple corollaries of our main theorem. To state it we first consider the link L_{2n} resp. L_n' with $2n$ resp. n components, $n \geq 2$, each of which is unknotted oriented and linked with exactly two adjacent components as shown in Figure 1a resp. 1b.

1991 Mathematics Subject Classification. 57N10, 57R65, 57M12, 20F36.
Key words and phrases. 3-Manifolds, Dehn surgery, Group presentations, Branched coverings, Braids, Orbifolds, RR-systems.
Work performed under the auspices of the G.N.S.A.G.A. of the C.N.R. (National Research Council) of Italy and partially supported by the Ministero per la Ricerca Scientifica e Tecnologica of Italy within the project “Classificazione e Proprietà geometriche delle Varietà Reali e Complesse”.
Received September 22, 1997
Revised May 7, 1998
In components

Figure 1a: the link L_{2n}.

2n components

n components

Figure 1b: the link L'_{n}.
Let us denote by $M(p_1/q_1, \ldots, p_n/q_n; r_1/s_1, \ldots, r_n/s_n)$ resp. $M'(a_1/b_1, \ldots, a_n/b_n)$ the closed connected orientable 3-manifold obtained by Dehn surgery along $L_{2}n$ resp. L_{n}' with surgery coefficients p_i/q_i and r_i/s_i resp. a_i/b_i, $i = 1, 2, \ldots, n$, according to Figure 1. In [23] Takahashi gave finite presentations of the fundamental group of the manifolds $M(p_i/q_i; r_i/s_i)$, so for convenience we refer to such manifolds as the Takahashi manifolds.

These presentations actually coincide with the standard ones of the Fibonacci groups

$$F(2, 2n) = \langle x_1, x_2, \ldots, x_{2n} : x_i x_{i+1} = x_{i+2} \ (\text{indices mod } 2n) \rangle$$

resp. the Fractional Fibonacci groups

$$F^{k/l}(2, 2n) = \langle x_1, x_2, \ldots, x_{2n} : x_i^{l} x_{i+1}^{k} = x_{i+2}^{l} \ (\text{indices mod } 2n) \rangle$$

when $p_i/q_i = 1$ and $r_i/s_i = -1$ resp. $p_i/q_i = k/l$ and $r_i/s_i = -k/l$ for every $i = 1, 2, \ldots, n$. It is well-known that the above presentations correspond to spines of closed orientable 3-manifolds, called the Fibonacci manifolds and the Fractional Fibonacci manifolds, respectively. It was also proved that the Fibonacci manifolds resp. the Fractional Fibonacci manifolds are two-fold cyclic coverings of the 3-sphere branched over the Turk's head links Th_n resp. the links $Th_{n}^{k/l}$, that are the closures of the 3-string braids $(\sigma_1 \sigma_2^{-1})^n$ resp. $(\sigma_1^{k/l} \sigma_2^{-k/l})^n$ (see [7], [10], [11] and [14]). Our main theorem extends these results to the case of Takahashi manifolds.

Theorem 1. For any coprime integers p_i and q_i resp. r_i and s_i, $i = 1, 2, \ldots, n$, and for any integer $n \geq 2$, the Takahashi manifold $M(p_1/q_1, \ldots, p_n/q_n; r_1/s_1, \ldots, r_n/s_n)$ is the two-fold cyclic covering of the 3-sphere branched along the closure of the rational 3-string braid

$$\sigma_1^{p_1/q_1} \sigma_2^{r_1/s_1} \cdots \sigma_1^{p_n/q_n} \sigma_2^{r_n/s_n}.$$

We also obtain finite presentations of the fundamental group of the manifolds $M'(a_1/b_1, \ldots, a_n/b_n)$, and further prove that these manifolds are still examples of Takahashi manifolds. Our presentations coincide with the standard ones of the Sieradski groups

$$S(n) = \langle x_1, x_2, \ldots, x_n : x_i x_{i+2} = x_{i+1} \ (\text{indices mod } n) \rangle$$

when $a_i/b_i = -1$, for every $i = 1, 2, \ldots, n$. It was proved that $S(n)$ corresponds to a spine of the n-fold cyclic covering of the 3-sphere branched over the trefoil knot (see [5], also for other types of generalizations).
The following extends this result to the case of manifolds $M'(a_i/b_i)$.

Theorem 2. For any coprime integers a_i and b_i, $i = 1, 2, \ldots, n$, and for any integer $n \geq 2$, the manifold $M'(a_1/b_1, \ldots, a_n/b_n)$ is homeomorphic to the Takahashi manifold $M(p_1/q_1, \ldots, p_n/q_n; r_1/s_1, \ldots, r_n/s_n)$, where $r_i/s_i = 1$ and $p_i/q_i = a_i/b_i + 2$, and so it is the two-fold cyclic covering of the 3-sphere branched along the closure of the rational 3-string braid

$$\sigma_1^{a_1/b_1+2} \sigma_2 \cdots \sigma_1^{a_n/b_n+2} \sigma_2.$$

Finally we remark that the link L_{2n} is hyperbolic (see [1], p. 222) so according to the Thurston-Jørgensen theory of hyperbolic surgery (see [24]) we get the following result:

Theorem 3. For any integer $n \geq 2$, and for all but a finite number of pairs (p_i, q_i) and (r_i, s_i), the Takahashi manifolds $M(p_1/q_1, \ldots, p_n/q_n; r_1/s_1, \ldots, r_n/s_n)$ are hyperbolic.

2. The Takahashi manifolds

The following was proved by Takahashi in [23].

Theorem 4. The fundamental group of the 3-manifold $M(p_i/q_i; r_i/s_i)$ obtained by Dehn surgery along the oriented link L_{2n} with surgery coefficients p_i/q_i and r_i/s_i, $i = 1, 2, \ldots, n$, admits the finite presentation

$$\Pi_1(M(p_i/q_i; r_i/s_i)) = \langle x_1, x_2, \ldots, x_{2n} : x_2^{s_i} x_i^{p_i+1} x_2^{r_i} \sigma_2^{x_{2i} x_2^{r_i} x_2^{p_i+1}} \rangle \quad (\text{indices mod } n).$$

Generalizing an example given in [23] (case $n = 3$) yields the following

Theorem 5. The fundamental group of the 3-manifold $M'(a_1/b_1, \ldots, a_n/b_n)$ obtained by Dehn surgery along the oriented link L'_n with surgery coefficients a_i/b_i, $i = 1, 2, \ldots, n$, admits the finite presentation

$$\Pi_1(M'(a_1/b_1, \ldots, a_n/b_n)) = \langle x_1, x_2, \ldots, x_n : x_i^{a_i+b_i} x_i^{b_i} x_i^{-b_i} x_i^{b_i+1} = 1 \rangle \quad (\text{indices mod } n).$$
On the structure of Takahashi

Proof. Let

\[\Pi_1(S^3 \setminus L'_n) = \langle u_1, u_2, \ldots, u_n, w_1, w_2, \ldots, w_n : w_iu_{i-1} = u_{i-1}u_i \ (R_i) \]

\[u_iw_{i+1} = w_{i+1}w_i \ (Q_i) \]

(indices mod n)

be the Wirtinger presentation of the link group of L'_n where the generators u_i, w_i are taken as shown in Figure 1b. If m_i and l_i denote the meridian and the longitude, respectively, of the i-th component of L'_n, then we have

\[m_i = u_i, \quad l_i = w_{i+1}u_{i-1}, \quad [m_i, l_i] = 1. \]

The presentation of $\Pi_1(M'(a_1/b_1, \ldots, a_n/b_n))$ comes from the one of $\Pi_1(S^3 \setminus L'_n)$ by adding the relations $m_i^{a_i}l_i^{b_i} = 1$, for any $i = 1, 2, \ldots, n$.

Since a_i and b_i are coprime integers, there exist two integers c_i and d_i such that

\[b_ic_i - a_id_i = 1 \]

for every $i = 1, 2, \ldots, n$.

Setting

\[x_i = m_i^{c_i}l_i^{d_i}, \]

it follows that

\[m_i = x_i^{b_i} \]

\[l_i = x_i^{-a_i} \]

\[u_i = x_i^{b_i}, \]

and hence

\[w_i = l_{i-1}u_{i-2}^{-1} = x_{i-1}^{-a_{i-1}}x_{i-2}^{-b_{i-2}} \ (S_i). \]

Now relations R_i and S_i directly imply

\[x_i^{a_i+b_i}x_{i+1}^{b_i}x_i^{-b_i}x_{i-1}^{-b_i} = 1, \]

where the indices are taken mod n as usual. Finally, using these relations and S_i, one can verify that relations Q_i become identities for every $i = 1, 2, \ldots, n$. Thus the proof is completed.

\[\square \]

Now we are going to prove that the finite group presentations of Theorems 4 and 5 correspond to spines of the represented manifolds. For that, we first recall
some definitions about RR-systems (see [20]). Let D be a regular hexagon in the plane E^2. For each pair of opposite faces construct a finite set (possibly empty), station say, of parallel line segments, called tracks, through D with endpoints on these opposite faces. Let $\{D_i : i = 1, 2, \ldots, s\}$ be a set of disjoint regular hexagons in E^2. A route is an arc whose interior lies in $E^2 \setminus \bigcup_{i=1}^{s} D_i$ connecting endpoints of tracks. A RR-system is the union in E^2 of a finite set of hexagons with stations and a finite set of disjoint routes in $S^2 \setminus \bigcup_{i=1}^{s} D_i$ such that each endpoint of every track intersects exactly one route in one of its endpoints. A RR-system gives rise to a family of group presentations whose generators $x_i \ (i = 1, 2, \ldots, s)$ are in one-to-one correspondence with the hexagons D_i. In each hexagon we start from some vertex of the boundary and proceed clockwise (according to an orientation of S^2) along an edge which corresponds to a station m_i of D_i. Orient the tracks of this station so that the positive direction is toward this edge. Label the stations corresponding to the second and third edges encountered by $m_i + n_i$ and n_i respectively, and orient the tracks of these stations toward the respective edges. By walking along each closed arc (made by tracks and routes) we write a word on generators $x_i \ (i = 1, 2, \ldots, s)$ in the following way: as we enter in each hexagon D_i we give the name of the station as exponent of x_i with sign $+1$ resp. -1 if our direction of travel concords resp. opposes the orientation of the tracks (see [20] for more details). Osborne and Stevens proved in [20] that a finite group presentation with the same number of generators and relations corresponds to a spine of a closed connected orientable 3-manifold if and only if it arises from an RR-system. Since the group presentation of Theorem 4 resp. 5 is induced by the RR-system depicted in Figure 2 (as communicated us by Hog-Angeloni [12]) resp. 3, we get the following

Theorem 6. The finite group presentation

$$\langle x_1, x_2, \ldots, x_{2n} : x_2^r x_1 x_2^r = x_1, x_2, \ldots, x_{2n} : x_i x_{i+1} = x_{i+2} \ (\text{indices mod } 2n) \rangle$$

resp.

$$\langle x_1, x_2, \ldots, x_n : x_i^{a_i+b_i} x_{i+1}^{-b_i} x_i^{b_i} x_{i-1}^{-1} = 1 \rangle$$

corresponds to a spine of the 3-manifold $M(p_1/q_1, \ldots, p_n/q_n; r_1/s_1, \ldots, r_n/s_n)$ resp. $M'(a_1/b_1, \ldots, a_n/b_n)$.

We observe that if $p_i = q_i = s_i = 1$ and $r_i = -1$, for any $i = 1, 2, \ldots, n$, then $\Pi_1(M(1, \ldots, 1; -1, \ldots, -1)) = \langle x_1, x_2, \ldots, x_{2n} : x_i x_{i+1} = x_{i+2} \ (\text{indices mod } 2n) \rangle$ is the Fibonacci group $F(2, 2n)$, first introduced by Conway in [8].
On the structure of Takahashi
If \(p_i = k, r_i = -k \) and \(q_i = s_i = l \), for any \(i = 1, 2, \ldots, n \), then
\[
\Pi_1(M(k/l, \ldots, k/l; -k/l, \ldots, -k/l)) = \langle x_1, x_2, \ldots, x_{2n} : x_i^{k}x_{i+1}^k = x_{i+2}^l \rangle
\]
(indices mod 2n)
is the Fractional Fibonacci group \(F^{k/l}(2, 2n) \), studied by Kim and Vesnin in [14].

If \(a_i = -1 \) and \(b_i = 1 \), for any \(i = 1, 2, \ldots, n \), then
\[
\Pi_1(M'(a_1, b_1, \ldots, a_n, b_n)) = \langle x_1, x_2, \ldots, x_n : x_i^2x_{i+2} = x_{i+1}^2 \rangle
\]
is the Sieradski group (see [22] and [5]).

Now we apply the Kirby-Rolfsen calculus on links with coefficients (see [15], [16] and [21]) to prove the following result.

Theorem 7. The manifold \(M'(a_1/b_1, \ldots, a_n/b_n) \) is homeomorphic to the Takahashi manifold \(M(p_1/q_1, \ldots, p_n/q_n; r_1/s_1, \ldots, r_n/s_n) \) if \(r_i/s_i = 1 \) and \(p_i/q_i = a_i/b_i + 2 \) for any \(i = 1, 2, \ldots, n \).

Proof. Let us consider the link \(L_{2n} \) of Figure 1a with surgery coefficients \(r_i/s_i = 1 \), for any \(i = 1, 2, \ldots, n \) and twist about each component of \(L_{2n} \) with coefficient \(r_i/s_i = 1 \) in the left-hand sense (\(\tau = -1 \)). We obtain the link \(L' \) with \(n \) components of Figure 1b and surgery coefficients \(a_i/b_i = p_i/q_i - 2 \), for any \(i = 1, 2, \ldots, n \). The sequence of surgery moves is illustrated in Figure 4.

3. Branched coverings

In this section we are going to prove Theorem 1. For this we use a well-known result of Montesinos (Theorem 1 of [19]) which states that a closed orientable 3-manifold, obtained by Dehn surgery along a strongly-invertible link \(L \) of \(n \) components, is a 2-fold cyclic covering of \(S^3 \) branched over a link of at most \(n + 1 \) components. Following [4] and [9], let \(\sigma_{t/h}^i \) denote the rational \(t/h \)-tangle, whose incoming arcs are \(i \)-th and \((i + 1) \)-th strings (Here \(t \) and \(h \) are coprime integers). If \(t/h \) is written as a continued fraction
\[
t/h = \frac{1}{c_1 + \frac{1}{\ddots + \frac{1}{c_2}}}
\]
and \(t, h, c_1, \ldots, c_z \) are positive integers with \(c_z \geq 2 \), then the rational \(t/h \)-tangle is defined as in Figure 5.
Figure 4.
On the structure of Takahashi

Figure 5: the rational t/h-tangle with $t, h > 0$.

Proof of Theorem 1. The link L_{2n} is strongly-invertible. In fact there exists an involution $p : S^3 \to S^3$ whose axis r intersects each component of the link L_{2n} in two points (see Figure 6a).

The Montesinos theorem assures that $M(p_1/q_1, \ldots, p_n/q_n; r_1/s_1, \ldots, r_n/s_n)$ is a two-fold covering of the 3-sphere branched along the link constructed as follows.

Figure 6a: the strongly-invertible link L_{2n}.
Let N_i be a tubular neighbourhood of the i-th component of the link L_{2n}, for each $i = 1, 2, \ldots, 2n$. If $\pi : S^3 \to S^3/p$ is the canonical projection, then $\pi(N_i)$ is the trivial tangle which consists of a 3-ball B_i where $\pi(r \cap N_i)$ are two arcs. Let us denote by $B'_j, j=1$ resp. $B'_j, j=2,\ldots, n$ with the underlying 3-ball B_i. The manifold $M(p_1/q_1, \ldots, p_n/q_n; r_1/s_1, \ldots, r_n/s_n)$ is the 2-fold branched covering of

$$\left(\bigcup_{i=1}^{2n} B'_i \right) \cup_{\pi} \left(S^3 \setminus \bigcup_{i=1}^{2n} N_i \right)$$

where the branch set is a link formed by arcs of tangles B'_i and $\pi(r \cap (S^3 \setminus U_{i=1}^{2n} N_i))$. Using Reidemeister moves, one can easily see that the branch set is

$$\sigma_1^{p_1/q_1} \sigma_2^{r_1/s_1} \ldots \sigma_1^{p_n/q_n} \sigma_2^{r_n/s_n}$$

as shown in Figure 6b.

Corollary 8. If $p_i/q_i = p/q$ and $r_i/s_i = r/s$, for every $i = 1, 2, \ldots, n$, then the Takahashi manifold $M(p/q,r/s) = M(p/q, \ldots, p/q; r/s, \ldots, r/s)$ is the two-fold covering of the 3-sphere branched over the link $(\sigma_1^{p/q} \sigma_2^{r/s})^n$, and then n-fold cyclic covering of the 3-sphere branched over the link $(\sigma_1^{p/q} \sigma_2^{r/s})^2$.

In particular we obtain as corollaries some results proved in [14], [11], [10], and [7].
COROLLARY 9. If \(p_i/q_i = k/l \) and \(r_i/s_i = -k/l \), for every \(i = 1, 2, \ldots, n \), then the Takahashi manifold \(M(k/l, -k/l) = M(k/l, \ldots, k/l; -k/l, \ldots, -k/l) \) is the Fractional Fibonacci manifold defined in [14], and so it is the two-fold covering of the 3-sphere branched over the link \((\sigma_1^{k/l} \sigma_2^{-k/l})^n \) and the \(n \)-fold cyclic covering of the 3-sphere \(S^3 \) branched over the link \((\sigma_1^{k/l} \sigma_2^{-k/l})^2 \).

Some particular case of Corollary 9 was also treated in [17] and [18].

COROLLARY 10. If \(p_i/q_i = 1 \) and \(r_i/s_i = -1 \), for every \(i = 1, 2, \ldots, n \), then the Takahashi manifold \(M(1, -1) = M(1, \ldots, 1; -1, \ldots, -1) \) is the Fibonacci manifold considered in [10], [7], [11], and so it is the two-fold covering of the 3-sphere branched over the link \((\sigma_1 \sigma_2^{-1})^n \) and the \(n \)-fold cyclic covering of the 3-sphere branched over the figure-eight knot \((\sigma_1 \sigma_2^{-1})^2 \).

Now Theorems 1 and 7 directly imply Theorem 2, and the following corollaries (compare also with [5]).

COROLLARY 11. If \(a_i/b_i = k/l \), for any \(i = 1, 2, \ldots, n \), then the Takahashi manifold \(M'(k/l, \ldots, k/l) \) is the 2-fold covering of \(S^3 \) branched over the closed 3-string braid \((\sigma_1^{k/l+2} \sigma_2)^n \), and the \(n \)-fold cyclic covering of \(S^3 \) branched over the link \((\sigma_1^{k/l+2} \sigma_2)^2 \).

COROLLARY 12. If \(a_i/b_i = -1 \), for any \(i = 1, 2, \ldots, n \), then we have the Sieradski manifold \(M'(-1, \ldots, -1) \) which is the 2-fold covering of \(S^3 \) branched over the torus link \((\sigma_1 \sigma_2)^n = K(n, 3) \) and the \(n \)-fold cyclic covering of \(S^3 \) branched over the trefoil knot \((\sigma_1 \sigma_2)^2 \).

We note that the 3-string braid \(\sigma_1^{p_1} \sigma_2^{p_1'} \cdots \sigma_1^{p_n} \sigma_2^{p_n'} \) is a 6-plat (see [2]) so it may be represented as a 3-bridge link. By Theorem 5 of [3] we obtain the following

COROLLARY 13. The manifold \(M(p_1, \ldots, p_n; r_1, \ldots, r_n) \) has Heegaard genus \(\leq 2 \). In particular, the Fibonacci manifolds and the Sieradski manifolds have Heegaard genus \(\leq 2 \).

4. Orbifolds

Let \(L(1/q, 1/s, n)(2) \) resp. \(L(1/q, 1/s, 2)(n) \) be the orbifold whose underlying space is \(S^3 \) and whose singular set is the link \(L(1/q, 1/s, n) := \sigma_1^{1/q} \sigma_2^{1/s} \cdots \sigma_1^{1/q} \sigma_2^{1/s} \).
Let $y(l/q, l/s)(2, ri)$ be the orbifold whose underlying space is the 3-sphere and whose singular set is the two-component link $\mathcal{L}(l/q, l/s)$ shown in Figure 7a, with branch indices 2 and n on its components (which are equivalent).

The following extends Theorem 3.2 of [14].

Theorem 14. *The following diagram of cyclic branched coverings holds:*
M(1/q, 1/s) \rightarrow M(1/q, 1/s)
\downarrow \quad \downarrow ^n
L(1/q, 1/s, n)(2) \rightarrow L(1/q, 1/s, 2)(n)
\downarrow ^n \quad \downarrow ^2
\mathcal{L}(1/q, 1/s)(2, n) \rightarrow \mathcal{L}(1/q, 1/s)(2, n).

Proof. The statement follows from the following easily verifiable facts:

1) The manifold $M(1/q, 1/s)$ admits a $(\mathbb{Z}_2 \oplus \mathbb{Z}_n)$-action which is induced by the natural $(\mathbb{Z}_2 \oplus \mathbb{Z}_n)$-symmetry of the link L_{2n};

2) The quotient orbifolds $M(1/q, 1/s)/(\mathbb{Z}_2 \oplus \mathbb{Z}_n)$, $M(1/q, 1/s)/\mathbb{Z}_2$, and $M(1/q, 1/s)/\mathbb{Z}_n$ are equivalent to $\mathcal{L}(1/q, 1/s)(2, n)$, $L(1/q, 1/s, n)(2)$ and $L(1/q, 1/s, 2)(n)$, respectively.

Hence we have the following sequences of maps

$$M(1/q, 1/s) \xrightarrow{\quad ^2 \quad} L(1/q, 1/s, n)(2) \xrightarrow{\quad ^n \quad} \mathcal{L}(1/q, 1/s)(2, n)$$

and

$$M(1/q, 1/s) \xrightarrow{\quad ^n \quad} L(1/q, 1/s, 2)(n) \xrightarrow{\quad ^2 \quad} \mathcal{L}(1/q, 1/s)(2, n)$$

which induce the subgroup embeddings

$$\Pi_1(M(1/q, 1/s)) \subset \Pi_1(L(1/q, 1/s, n)(2)) \subset \Pi_1(\mathcal{L}(1/q, 1/s)(2, n))$$

and

$$\Pi_1(M(1/q, 1/s)) \subset \Pi_1(L(1/q, 1/s, 2)(n)) \subset \Pi_1(\mathcal{L}(1/q, 1/s)(2, n)),$$

where

$$[\Pi_1(\mathcal{L}(1/q, 1/s)(2, n)) : \Pi_1(L(1/q, 1/s, n)(2))]$$

$$= [\Pi_1(L(1/q, 1/s, n)(2)) : \Pi_1(M(1/q, 1/s))] = n$$

and

$$[\Pi_1(L(1/q, 1/s, n)(2)) : \Pi_1(M(1/q, 1/s))]$$

$$= [\Pi_1(\mathcal{L}(1/q, 1/s)(2, n)) : \Pi_1(L(1/q, 1/s, 2)(n))] = 2.$$
For $q = l$ and $s = -l$ we re-obtain Theorem 3.2 of [14] since $\mathcal{L}(1/l, -1/l)$ coincides with the link $\mathcal{L}^{1/l}$ defined in [14], and shown in Figure 7b for convenience.

References

On the structure of Takahashi

Dipartimento di Matematica,
Università di Modena,
Via Campi 213/B, 41100 Modena,
Italy
E-mail of the correspondent author: ruini@unimo.it