GLOBAL SOLVABILITY FOR THE GENERALIZED DEGENERATE KIRCHHOFF EQUATION WITH REAL-ANALYTIC DATA IN \mathbb{R}^n

By
Fumihiko HIROSAWA

1. Introduction

Kirchhoff equation was proposed by Kirchhoff in 1883 to describe the transversal oscillations of a stretched string and it is expressed as follows

$$\partial_t^2 u(t, x) - \left(\varepsilon^2 + \frac{1}{2l} \int_0^l |\partial_x u(t, x)|^2 dx \right) \partial_x^2 u(t, x) = 0,$$

where $t > 0$, $l > 0$, $\varepsilon > 0$ and $x \in [0, l]$. In 1940 S. Bernstein [B] proved the global solvability for analytic initial data and local solvability for C^m-class initial data to the following initial boundary value problem:

$$\begin{cases}
\partial_t^2 u(t, x) - \left(a + b \int_0^{2\pi} |\partial_x u(t, x)|^2 dx \right) \partial_x^2 u(t, x) = 0 & (t > 0, x \in [0, 2\pi]), \\
u(t, x) = 0 & (t \geq 0, x = 0, 2\pi), \\
u(0, x) = u_0(x), \quad \partial_t u(0, x) = u_1(x),
\end{cases}$$

where $a > 0$ and $b > 0$. In 1971, T. Nishida [Nd] proved Bernstein’s result in case of $a = 0$. Equation (1.2) can be regarded as the following more generalized equation:

$$\begin{cases}
\partial_t^2 u(t, x) - M \left(\int_{\Omega} |\nabla_x u(t, x)|^2 dx \right) \Delta_x u(t, x) = 0 & (t > 0, x \in \Omega), \\
u(0, x) = u_0(x), \quad \partial_t u(0, x) = u_1(x), \quad x \in \Omega \subset \mathbb{R}^n,
\end{cases}$$

with boundary condition

$$u(t, x) = \varphi \quad \text{on} \ [0, \infty) \times \partial \Omega.$$
In case of (1.2), $\Omega = [0, 2\pi]$, $\phi = 0$ and $M(\eta) = a + b\eta$. In 1975, S. I. Pohožaev [P] proved the existence and uniqueness of time global real-analytic solution for the problem (1.3)−(1.4) under the assumption of $n \geq 1$ and $M(\eta) \in C^1([0, \infty))$ where Ω is bounded and $\phi = 0$.* On the other hand, in case that $\Omega = \mathbb{R}^n$, Y. Yamada [Yd] proved the existence and uniqueness of global solution of (1.3) in 1980. In 1984, K. Nishihara [Nh] showed the global existence of the quasi-analytic solution in case that $M(\eta)$ is locally Lipschitz continuous and non-degenerate. In that year, A. Arosio and S. Spagnolo [AS] proved the existence of time global 2π-periodic solution for real-analytic data in case that $\Omega = [0, 2\pi]^n$ under some assumptions for $M(\eta) \in C^0$. In 1992, P. D'Ancona and S. Spagnolo [DS] relaxed the assumptions in [AS] to any $M(\eta) \in C^0$. Moreover, the equation (1.3)−(1.4) can be generalized as

$$\left\{ \begin{array}{l} \partial_t^2 u(t, x) + M((Au(t, \cdot), u(t, \cdot))) Au(t, x) = f(t, x) \quad (t > 0, x \in \Omega), \\ u(0, x) = u_0(x), \quad \partial_t u(0, x) = u_1(x), \quad x \in \Omega \subset \mathbb{R}^n, \end{array} \right.$$ (1.5)

with boundary condition

$$u(t, x) = \phi \quad \text{on } [0, \infty) \times \partial \Omega.$$ (1.6)

Here A is a degenerate elliptic operator of second order defined as $Au(t, x) = \sum_{i,j=1}^n D_{x_i} (a_{ij}(x) D_{x_j} u(t, x))$, $D_{x_i} = \left(1/\sqrt{-1}\right)(\partial/\partial x_i)$. Suppose that $[a_{ij}(x)]_{i,j=1,...,n}$ is a real-analytic symmetric matrix which satisfies that

$$a(x, \xi) = \sum_{i,j=1}^n a_{ij}(x) \xi_i \xi_j \geq 0$$ (1.7)

and there are $c_0 > 0$ and $\rho_0 > 0$ such that

$$|D_{x_i}^2 a_{ij}(x)| \leq c_0 \rho_0^{-|x|}|x|! \quad i, j = 1, \ldots, n,$$ (1.8)

for $x \in \mathbb{R}^n$, $x = (x_1, \ldots, x_n) \in \mathbb{N}^n$, (Au, u) is an inner product of $Au(x)$ and $u(x)$ in $L^2_{x}(\Omega)$ and $M(\eta)$ satisfies

$$M(\eta) \in C^0([0, \infty)) \quad \text{and} \quad M(\eta) \geq 0.$$ (1.9)

If $a_{ij}(x) = \delta_{ij}$ and $f(t, x) \equiv 0$, then equation (1.5) coincides with equation (1.3), where δ_{ij} is Kronecker's delta. In 1994 K. Kajitani and K. Yamaguti [KY] proved the existence and uniqueness of time global real-analytic solution for (1.5) in case

*In fact he proved the existence and uniqueness of time global solution to more general problem on some suitable Hilbert space.
that $\Omega = \mathbb{R}^n$, $u_0(x), u_1(x) \in L^2(\mathbb{R}^n) \cap C^0(\mathbb{R}^n)$, $M(\eta) \in C^1([0, \infty))$, $M(\eta) \geq 0$, and $a_\eta(x) \geq 0$ are $C^0(\mathbb{R}^n)$ functions, respectively, where $C^0(\mathbb{R}^n)$ is the set of real analytic functions in \mathbb{R}^n. In 1995 K. Yamaguti [Yg] extended the result of [KY] for quasi-analytic data under the assumption of $M(\eta) > 0$.

Our main theorem in this paper is an extension of the result of [KY] in case of $M(\eta) \in C^0$. At first we introduce some definitions in order to state our main theorem.

Definition 1.1. For $s \in \mathbb{R}$ and $\rho > 0$, we define the function space H^s_ρ by

$$H^s_\rho = \{u(x) \in L^2_\xi(\mathbb{R}^n); \langle \xi \rangle^s e^{\rho(\xi)\hat{u}(\xi)} \in L^2_{\xi}(\mathbb{R}^n)\},$$

(1.10)

where $\xi = (\xi_1, \ldots, \xi_n)$, $\langle \xi \rangle = (1 + \xi_1^2 + \cdots + \xi_n^2)^{1/2}$, and $\hat{u}(\xi)$ stands for Fourier transform of u. If we introduce the inner product $(\cdot, \cdot)_{H^s_\rho}$ of H^s_ρ such that

$$(u, v)_{H^s_\rho} = (e^{\rho(\cdot)}\hat{u}(\cdot), e^{\rho(\cdot)}\hat{v}(\cdot)),$$

(1.11)

then H^s_ρ is a Hilbert space, where $(\cdot, \cdot)_s$ is an inner product of H^s which is the normal Sobolev space (See [Ku]). For $\rho < 0$ we define H^s_ρ as the dual space of H^{-s}_ρ.

Definition 1.2. For $\rho \in \mathbb{R}$, define the operator $e^{\rho(D)}$ from H^s_ρ into H^s as follows:

$$e^{\rho(D)}u(x) = \int_{\mathbb{R}^n} e^{ix \cdot \xi + \rho(\xi)\hat{u}(\xi)}d\xi,$$

(1.12)

for $u \in H^s_\rho$, where $x = (x_1, \ldots, x_n)$, $x \cdot \xi = x_1\xi_1 + \cdots + x_n\xi_n$ and $d\xi = (2\pi)^{-n}d\xi$. Note that $(e^{\rho(D)})^{-1} = e^{-\rho(D)}$ is a mapping from H^s into H^s_ρ.

Hilbert space H^s_ρ and the operator $e^{\rho(D)}$ were introduced in [Ka] and [KY]. In this paper we define the new space $H^s_{\rho, \delta, \kappa}$ as a weighted subspace of H^s_ρ.

Definition 1.3. For $s, \rho, \delta \in \mathbb{R}$ and $\kappa > 0$, we define $H^s_{\rho, \delta, \kappa}$ as

$$H^s_{\rho, \delta, \kappa} = \{u(x) \in \mathcal{S}'(D); \langle D \rangle^s \{\langle x \rangle^\delta e^{\rho(D)}u(x)\} \in L^2_\kappa(\mathbb{R}^n)\},$$

(1.13)

where $\langle x \rangle_\kappa = (\kappa^2 + x_1^2 + \cdots + x_n^2)^{1/2}$ and \mathcal{S}' is the dual space of the Schwartz space \mathcal{S} of rapidly decreasing functions in \mathbb{R}^n. And we define the inner product $(\cdot, \cdot)_{H^s_{\rho, \delta, \kappa}}$ of $H^s_{\rho, \delta, \kappa}$ as follows:

$$(u, v)_{H^s_{\rho, \delta, \kappa}} = (\langle \cdot \rangle^\delta e^{\rho(D)}u(\cdot), \langle \cdot \rangle^\delta e^{\rho(D)}v(\cdot))_\kappa.$$

(1.14)
The principal method of the proof of this theorem is based on [Ka] and [KY]. In this paper we introduce the new space $H^{s}_{p,\delta,\kappa}$ which is a weighted subspace of H^{s}_{p} for $\delta > 0$, and we consider the global solvability for the equation in it. For positive real numbers p and κ and for non-negative real numbers s and δ, the function spaces H^{s}_{p} and $H^{s}_{p,\delta,\kappa}$ are included the intersection of $L^2(\mathbb{R}^{n})$ and $C^{\alpha}(\mathbb{R}^{n})$. Our main theorem in this paper is the global existence of the real-analytic solution which has initial condition in $H^{s}_{p,\delta,\kappa}$.

Main Theorem. Assume that (1.7), (1.8) and (1.9) are valid. Let $0 < \rho_{1} < \rho_{0}/\sqrt{n}$, $\delta > 0$, $\kappa > 0$ and put $\rho(t) = \rho_{1}e^{-\gamma t}$ for $\gamma > 0$. Then there exists $\gamma > 0$ such that for any $u_{0} \in H^{2}_{\rho_{1},\delta,\kappa}$, $u_{1} \in H^{1}_{\rho_{1},\delta,\kappa}$ and for any $f(t, x)$ satisfying $\langle x \rangle^{q \delta}e^{\rho(t)\langle x \rangle^{q}}f(t, x) \in C^{1}(\{0, \infty\}; H^{1})$, the Cauchy problem (1.5) with $\Omega = \mathbb{R}^{n}$ has a solution $u(t, x)$ that satisfies $\langle x \rangle^{q \delta}e^{\rho(t)\langle x \rangle^{q}}u(t, x) \in \bigcap_{j=0}^{2}C^{2-j}(\{0, \infty\}; H^{1})$.

2. Preliminaries

In this section we introduce some propositions and lemmas to prove the following lemmas and our main theorem.

Proposition 2.1. Assume that $a(x, \xi) \in S^{2}$ is non-negative. Then there are positive constants C_{1} and C_{2} such that

$$\Re(\text{Op}(a)u, u) \geq -C_{1}\| u \|_{s}$$

(2.1) and

$$\sum_{\|a\|=1}^{\|a\|} \left\{\| \text{Op}(a_{1})u \|_{s_{1}}^{2} + \| \text{Op}(a^{(s)})u \|_{s}^{2} \right\} \leq C_{2}\| u \|_{s}^{2} + \Re(\text{Op}(a)u, u)$$

(2.2)

for $u \in H^{s+2}$, where S^{m} is the symbol-class of pseudo-differential operator of order m (See [Ku]), $\text{Op}(a)$ is the pseudo-differential operator defined as

$$\text{Op}(a)u = \int_{\mathbb{R}^{n}} e^{i\langle x \rangle \cdot a(x) \xi} \hat{u}(\xi) d\xi$$

for $u(x) \in \mathcal{S}$, where $\| \cdot \|_{s}$ is a norm of H^{s}.

For a proof of this proposition, refer to [FP].

Proposition 2.2. (i) Let $a(x, \xi) \in C^{\infty}(\mathbb{R}^{n} \times \mathbb{R}^{n})$ be a ‘double order’ symbol in the ‘double order symbol space’ $SG_{1}^{(m_{1}, m_{2})}$.

$$SG_{1}^{(m_{1}, m_{2})} = \{a(x, \xi) \in C^{\infty}(\mathbb{R}^{n} \times \mathbb{R}^{n}); a_{(\beta)}^{(s)}(x, \xi) = O(\langle \xi \rangle^{-|s|} \langle x \rangle^{m_{2} - |\beta|})\}$$

(2.3)
for \((m_1, m_2) \in \mathbb{R} \times \mathbb{R}\) where \(a^{(2)}_{(\beta)}(x, \xi) = \partial^2_x D_x^\beta a(x, \xi)\), and if we \(a(x, \xi)\) define the operator \(Op(a)\) by

\[
(Op(a))(x, D)f(x) = \int_{\mathbb{R}^n} e^{ix \cdot \xi} \tilde{a}(x, \xi) \tilde{f}(\xi) \hat{\partial}_\xi, \quad f \in \mathcal{S},
\]

(2.4)

then \(Op(a)\) is the bounded linear operator from \(H^s_{p, \xi} \cap \mathbb{R}\) into \(H^{s_1-m_1} \cap \mathbb{R}\) for each \(s_1, s_2 \in \mathbb{R}\).

(ii) If \(s > s'\) and \(\delta > \delta'\), then the embedding \(H^s_{p, \xi} \hookrightarrow H^{s'}_{p, \xi} \cap \mathbb{R}\) is compact.

(iii) Let \(c(x, \xi)\) be the symbol of the product \(Op(a)Op(b)\) of \(a \in SG^{(l_1, l_2)}\) and \(b \in SG^{(m_1, m_2)}\), then \(c(x, \xi)\) has the asymptotic expansion:

\[
c(x, \xi) \sim \sum_\alpha \frac{1}{\alpha!} a^{(\alpha)}(x, \xi) b^{(\alpha)}(x, \xi).
\]

(2.5)

This proposition is introduced in \([S]\).

Lemma 2.3. (i) Let \(u \in H^s_{p, 0} = H^s\), then for \(p > 0\),

\[
||D^\alpha u||_s \leq ||u||_{H^s_{p, \xi}} p^{-|\alpha|} |\alpha|!
\]

(2.6)

and

\[
|D^\alpha u(x)| \leq C_n ||u||_{H^s_{p, \xi}} p^{-|\alpha|+n+|\alpha|-s}(|x| + n + |\alpha|)!
\]

(2.7)

for \(x \in \mathbb{R}^n\) and \(\alpha \in \mathbb{N}^n\).

(ii) Let \(u(x)\) be a function in \(H^\infty\) and \(s \in \mathbb{R}\). If \(u(x)\) satisfies

\[
||D^\alpha u||_{H^s_{p, \xi}} \leq c_0 p^{-|\alpha|} |\alpha|!
\]

(2.8)

for every multi-index \(\alpha \in \mathbb{N}^n\), then \(u(x) \in H^s_{p, \xi}\) for \(p < p_1/\sqrt{n}\).

For a proof of this lemma, refer to \([KY]\).

Lemma 2.4. Let \(\delta \geq 0, c > 0\) and \(\varepsilon \in (0, 1]\), then \((x)_c^\delta\) is a real-analytic function satisfying

\[
|D^\alpha (x)_c^\delta| \leq (8c^{-1}) |\alpha| (1 + \varepsilon)^\delta |\alpha|! (x)_c^\delta - |\alpha|,\]

(2.9)

for \(x \in \mathbb{R}^n\). Moreover if \(0 \leq \delta \leq 1\), then

\[
|D^\alpha (x)_c^\delta| \leq 4 |\alpha|! (x)_c^\delta - |\alpha|\]

(2.10)

for \(x \in \mathbb{R}^n\).
For a proof, refer to [Ka].

Let \(a(x) \) be a real-analytic function in \(\mathbb{R}^n \) satisfies that there are \(c_0 > 0 \) and \(\rho_0 > 0 \) such that

\[
|D_x^a a(x)| \leq c_0 \rho_0^{-|a|} |x|!
\]

(2.11)

for any \(x \in \mathbb{R}^n \) and any multi-index \(\alpha \in \mathbb{N}^n \). Define the multiplier \(a \cdot (a \cdot u)(x) = a(x) u(x) \). Let us define \(a(\rho; x, D)u(x) = e^{\rho(D)} a \cdot e^{-\rho(D)} u(x) \) for \(u(x) \in L^2(\mathbb{R}^n) \) and denote by \(a(\rho; x, \xi) \) its symbol.

Proposition 2.5. (i) \(a(\rho; x, D) \) is a pseudo-differential operator of order 0 and its symbol has the following expansion:

\[
a(\rho; x, \xi) = a(x) + \rho a_1(x, \xi) + \rho^2 a_2(\rho; x, \xi) + r(\rho; x, \xi),
\]

where

\[
a_1(x, \xi) = -\sum_{j=1}^n D_x a(x) \partial_{\xi_j} \langle \xi \rangle
\]

and \(a_2 \) and \(r \) respectively satisfy

\[
|a_2^{(a)}(\rho; x, \xi)| \leq C_{2\rho_0} |\xi|^{-1-|a|},
\]

(2.14)

\[
|r^{(a)}(\rho; x, \xi)| \leq C_{2\rho_0} |\xi|^{-1-|a|}
\]

(2.15)

for \(x, \xi \in \mathbb{R}^n, |\rho| < \rho_0/\sqrt{n} \) and \(a, \beta \in \mathbb{N}^n \).

(ii) If \(\rho = \rho(t) \in C^0([0, T]) \) for \(T > 0 \), then \(a(\rho(t); x, \xi) \in C^0([0, T]; S^0) \).

For a proof of (i), refer to [KY] and for (ii) refer to [Ka].

Corollary 2.6. Define the operator \(A_\Lambda \) by

\[A_\Lambda u(x) = e^{\rho(D)} (A e^{-\rho(D)} u(x)) \]

(2.16)

for \(A = \sum_{i,j=1}^n D_i (a_{ij}(x) D_j) \). Then \(A_\Lambda \) and \(\langle x \rangle^\delta A_\Lambda \langle x \rangle^{-\delta} \) are pseudo-differential operators of order 2 and their symbols have the following expansions respectively;

\[
\sigma(A_\Lambda)(x, \xi) = \sum_{i,j=1}^n (a(x) + \rho a_1(x, \xi) + \rho^2 a_2(\rho; x, \xi) + r(\rho; x, \xi)) \xi^j \bar{\xi}^i,
\]

(2.17)

\[
\sigma(\langle x \rangle^\delta A_\Lambda \langle x \rangle^{-\delta})(x, \xi) = \sum_{i,j=1}^n (a(x) + \rho a_1(x, \xi) + \rho^2 a_2(\rho; x, \xi) + r(\rho; x, \xi)) \xi^j \bar{\xi}^i,
\]

(2.18)
where \(\sigma(P)(x, \xi) \) denotes the symbol of a pseudo-differential operator \(P(x, D) \), \(a_1 = a_{1y} \) and \(a_2 = a_{2y} \) are defined in Proposition 2.5, and both \(r_1 = r_{1y} \) and \(r_2 = r_{2y} \) belong to \(S^{-1} \). Moreover, for \(\rho(t) \in C^0([0, T]) \), \(\sigma(A_A)(t, x, \xi) \) and \(\sigma((\langle x \rangle^\delta_A)(x)^{-\delta})(t, x, \xi) \) belong to \(C^0([0, T]; S^2) \).

Proof. It is obvious by Proposition 2.2 and Proposition 2.5.

Lemma 2.7. If \(u(x) \in H^s_{\rho, \delta, k} \) for \(\delta > 0 \), then \(u(x) \) is a real-analytic function whose radius of convergence is \(\rho_1 \), where \(\rho_1 \leq \min\{\kappa/8, \rho_0\} \) and \(0 < \rho_0 < \rho \).

Proof. Note that \((\langle x \rangle^\delta_A)(x) \in H^s_{\rho} \) if \(u(x) \in H^s_{\rho, \delta, k} \):

\[
|D_x^\alpha u(x)| = |D_x^\alpha ((\langle x \rangle^{-\delta})(\langle x \rangle^\delta_A)(x) u(x))| \\
\leq \sum_{\alpha' \leq \alpha} \left(\begin{array}{c} \alpha \\ \alpha' \end{array} \right) |D_x^{\alpha - \alpha'} (\langle x \rangle^{-\delta})(\langle x \rangle^\delta_A)(x) u(x)| \\
\leq C_1 \sum_{\alpha' \leq \alpha} \left(\begin{array}{c} \alpha \\ \alpha' \end{array} \right) |x'|! |x - \alpha'|! \left(\frac{\kappa}{8} \right)^{|x - x'|} \rho_0^{-|x'|} \\
\leq C_2 \rho_1^{-|x|!} |x|!, \tag{2.19}
\]

where \(\rho_1 \leq \min\{\kappa/8, \rho_0\} \), \(0 < \rho_0 < \rho \) and we used Lemma 2.3, Lemma 2.4 and the estimate;

\[
\sum_{\alpha' \leq \alpha} \left(\begin{array}{c} \alpha \\ \alpha' \end{array} \right) |x'|! |x - \alpha'|! \eta_1^{-|x'|} \eta_2^{-|x - x'|} \leq \frac{\eta_1}{\eta_1 - \eta_2} \eta_2^{-|x|!} |x|!, \tag{2.20}
\]

for \(0 < \eta_2 < \eta_1 \). \(\square \)

3. Existence of solutions for the linear problem

In this section, we consider the local existence for the following linear Cauchy problem:

\[
\begin{align*}
\partial_t^2 u(t, x) + m(t)Au(t, x) &= f(t, x), \\
u(0, x) &= u_0(x), \quad \partial_t u(0, x) = u_1(x),
\end{align*}
\tag{3.1}
\]

where \(m(t) \) is a non-negative continuous function in \([0, \infty)\).

At first we introduce a proposition to prove the existence of the linear problem (3.1).

Let \(P(t) = [p_{ij}(t, x, D)]_{i,j=1,...,d} \) be a matrix consisting of pseudo-differential
operators whose symbols \(p_j(t, x, \xi) \) all belong to the class \(C^0([0, T]; S^1) \). Let us consider the following linear Cauchy problem:

\[
\begin{align*}
\frac{d}{dt} U(t) &= P(t)U(t) + F(t), \quad t \in (0, T], \\
U(0) &= U_0,
\end{align*}
\]

(3.2)

where \(U(t) = (U_1(t), \ldots, U_d(t)) \) is an unknown vector valued function, \(F(t) = (F_1(t), \ldots, F_d(t)) \) and \(U_0 = (U_{01}, \ldots, U_{0d}) \) are known vector valued functions. Then the following proposition is concluded.

Proposition 3.1. Suppose that \(\det(\lambda I - p(t, x, \xi)) \neq 0 \) for \(\lambda \in C^1(\mathbb{R}^n) \) with \(\Re \lambda > -c_0 \langle \xi \rangle \) for some positive constant \(c_0 \), \(t \in [0, T] \) and \(|\xi| \gg 1 \). Take an arbitrary real number \(s \). Then for any \(U_0 \in (H^{s+1})^d \) and for any \(F(t) \in C^0([0, T]; (H^{s+1})^d) \), there exists a unique solution \(U(t) \in C^1([0, T]; (H^s)^d) \cap C^0([0, T]; (H^{s+1})^d) \) of (3.2).

This proposition was introduced as Proposition 4.5 in [M]. For the proof of the proposition, refer to [M].

Let \(v(t, x) = \langle x \rangle^s e^{\Lambda(t)} u(t, x) \) and transform the equation (3.1) of \(u(t, x) \) to the equation of \(v(t, x) \) such that

\[
\begin{align*}
\langle x \rangle^s \langle \partial_t - \Lambda \rangle^2 \langle x \rangle^s v(t, x) + m(t) \langle x \rangle^s A \langle x \rangle^s v(t, x) &= g(t, x), \\
v(0, x) &= v_0(x), \quad \partial_t v(0, x) = v_1(x),
\end{align*}
\]

(3.3)

where \(\Lambda = \Lambda(t) = \rho(t) \langle D \rangle \), \(\Lambda_t = \Lambda_t(t) = \rho_1(t) \langle D \rangle \), \(\rho(t) = \rho_1 e^{-|\gamma|} \) for \(\rho_1 > 0, \gamma > 0 \) and \(g(t, x) = \langle x \rangle^s e^{\Lambda(t)} f(t, x) \). Then the following lemma is concluded for the Cauchy problem (3.3).

Lemma 3.2. Assume that \(u_0 \in H^{s+2}, v_1 \in H^{s+1} \) and \(g(t, x) \in C^0([0, T]; H^{s+1}) \), then there is \(\gamma_0 > 0 \) and the Cauchy problem (3.3) has a unique solution \(v(t, x) \) such that

\[
v(t, x) \in \bigcap_{j=0}^2 C^{2-j}([0, T]; H^{s+1})
\]

for all \(\gamma \geq \gamma_0 \).

Proof. Now let us put \(V(t) = (V_1(t), V_2(t)) \), \(V_0 = (V_{01}, V_{02}) \), \(F(t) = \)

...
Global solvability for the generalized
t$(0, g(t))$ and

$$
P(t) = \begin{pmatrix}
(D) & (D)
\end{pmatrix}
- m(t) (D) - 1
\end{pmatrix}.
$$

(3.4)

Where A_A is defined by (2.16). Then we consider the following linear Cauchy problem:

$$
\begin{cases}
\frac{d}{dt} V(t) = P(t) V(t) + F(t), & t \in (0, T], \\
V(0) = V_0.
\end{cases}
$$

(3.5)

At first we show that the symbols of pseudo-differential operator $P(t)$ satisfies the conditions of Proposition 3.1. Clearly $\sigma((D) (x)^{\delta} A_t (x)^{-\delta} (D)^{-1})(t, x, \xi)$, $\sigma((x)^{\delta} A_t (x)^{-\delta})(t, x, \xi)$ and $\sigma((x)^{\delta} A_A (x)^{-\delta} (D)^{-1})(t, x, \xi)$ belong to $C^0([0, T]; S^1)$ by Corollary 2.6.

$$
\det(\lambda I - \sigma(P)(t, x, \xi))
= (\lambda - \sigma((D) (x)^{\delta} A_t (x)^{-\delta} (D)^{-1})(t, x, \xi))(\lambda - \sigma((x)^{\delta} A_t (x)^{-\delta})(t, x, \xi))
+ m(t) \sigma((x)^{\delta} A_A (x)^{-\delta} (D)^{-1})(t, x, \xi)(\xi)
= (\lambda - \rho'(t) (\xi) - \rho'(t) p^0_0 (x, \xi))(\lambda - \rho'(t) (\xi) - \rho'(t) p^0_2 (x, \xi))
+ m(t) (\sigma(A_A)(t, x, \xi) + p^1_1 (t, x, \xi)),
$$

(3.6)

where $\sigma(P) = [\sigma(P_j)]_{i, j = 1, 2}$, $p^0_j (x, \xi) \in S^0 (j = 1, 2)$ and $p^1_j (t, x, \xi) \in ([0, T]; S^1)$, and they satisfy

$$
\sigma((D) (x)^{\delta} A_t (x)^{-\delta} (D)^{-1})(t, x, \xi) = \rho'(t) (\xi) + \rho'(t) p^0_0 (x, \xi)
$$

(3.7)

$$
\sigma((x)^{\delta} A_t (x)^{-\delta})(t, x, \xi) = \rho'(t) (\xi) + \rho'(t) p^0_2 (x, \xi)
$$

(3.8)

$$
\sigma((x)^{\delta} A_A (x)^{-\delta} (D)^{-1})(t, x, \xi) = \sigma(A_A)(t, x, \xi) + p^1_1 (t, x, \xi).
$$

(3.9)

Therefore we have

$$
\det(\lambda I - \sigma(P)(t, x, \xi))
= \lambda^2 - \rho'(t) \lambda (2 (\xi) + p^1_1 (x, \xi) + p^0_2 (x, \xi))
+ \rho'(t)^2 ((\xi) + p^1_1 (x, \xi)) ((\xi) + p^0_2 (x, \xi))
+ m(t) (\sigma(A_A)(t, x, \xi) + p^1_1 (t, x, \xi)).
$$

(3.10)
Let \(\det(\lambda I - \sigma(P)(t, x, \xi)) = 0 \) and solve it in \(\lambda \), then we have

\[
\lambda = \rho'(t) (2\xi) + p_1^0(x, \xi) + p_2^0(x, \xi) \\
\pm \{ \rho'(t)^2 \{ -2\xi (p_1^0(x, \xi) + p_2^0(x, \xi)) - 3p_1^2(x, \xi)p_2^0(x, \xi) + p_1^0(x, \xi)^2 + p_2^0(x, \xi)^2 \} \\
- 4m(t) \sum_{i,j=1}^{n} \{ a(x) + \rho(t)a_1(x, \xi) + \rho(t)^2a_2(\rho(t); x, \xi) + r_2(\rho(t); x, \xi) \} \xi_i \xi_i \\
+ p_1^0(t, x, \xi) \}^{1/2},
\]

where \(a, a_1, a_2 \) and \(r_2 \) are defined in (2.18). Then the order of \(\Re \lambda \) is as follows:

\[
\Re \lambda = -\gamma \rho_1 e^{-\eta t} O(|\xi|) \pm \{ m(t) \rho_1 e^{-\eta t} O(|\xi|) + O(|\xi|^1/2) \}. \quad (3.12)
\]

Hence, obviously there are \(\gamma_0 > 0 \) and \(c_0 > 0 \) such that \(\det(\lambda I - \sigma(P)(t, x, \xi)) > 0 \) for any \(\gamma \) satisfying \(\gamma > \gamma_0 \), \(|\xi| \gg 1 \) and \(\Re \lambda > -c_0(\xi) \). Therefore equation (3.5) has a unique solution \(V(t) = (V_1(t), V_2(t)) \) satisfying

\[
V_1(t), V_2(t) \in C^1([0, T]; H^s) \cap C^0([0, T]; H^{s+1}) \quad (3.13)
\]

for \(V_{01}, V_{02} \in H^{s+1} \). Now, if we let \(v(t) = (D)^{-1}V_1(t) \), then \(v(t) \) satisfies

\[
v(t, x) \in C^1([0, T]; H^{s+1}) \cap C^0([0, T]; H^{s+2}) \quad (3.14)
\]

for \(v(0) = v_0 \in H^{s+2} \). Then we know that \(v(t, x) \) satisfying

\[
\partial_t(D)v(t, x) = \langle D \rangle \langle x \rangle^\delta \Lambda \langle x \rangle^{-\delta} v(t, x) + \langle D \rangle V_2(t), \quad (3.15)
\]

and obviously \(V_2(t) \) is represented by \(v(t, x) \) such that

\[
V_2(t) = \partial_t v(t, x) - \langle x \rangle^\delta \Lambda \langle x \rangle^{-\delta} v(t, x), \quad V_2(0) = V_{02} \in H^{s+1}. \quad (3.16)
\]

Then by (3.5), \(v(t, x) \) satisfies

\[
\langle x \rangle^\delta (\partial_t - \Lambda) \langle x \rangle^{-\delta} + m(t) \langle x \rangle^\delta A \langle x \rangle^{-\delta} v(t, x) = g(t, x). \quad (3.17)
\]

It shows that \(v(t, x) \) is a solution of (3.3) satisfying

\[
v(t, x) \in \bigoplus_{j=0}^{2} C^{2-j}([0, T]; H^{s+j}). \quad \square \quad (3.18)
\]

By Lemma 3.2, obviously we have the following lemma.
Lemma 3.3. For $u_0 \in H^{s+2}_{p_0, \beta, \kappa}$, $u_1 \in H^{s+1}_{p_0, \beta, \kappa}$ and $\langle x \rangle^2 e^{\Lambda(t)} f(t, x) \in C^0([0, T]; H^{s+1})$, there exists a positive constant γ_0 and the Cauchy problem (3.1) has a unique solution $u(t, x)$ such that

$$\langle x \rangle^2 e^{\Lambda(t)} u(t, x) \in \bigcap_{j=0}^{2} C^{2-j}([0, T]; H^{s+j}).$$

for all $\gamma \geq \gamma_0$.

4. A priori estimate of solution for the linear problem

Let $0 < T < \infty$, $m(t)$ be a non-negative function in $C^0([0, T])$, $\rho(t)$ a positive function in $C^1([0, T]) \cap C^0([0, T])$ such that $\rho(t) < 0$, $\phi(t)$ a positive function in $C^1([0, T])$ satisfying $\phi'(t) \leq 0$ for $t \geq 0$ and $m_0(t) = \int_0^T \chi_\delta(t-\tau) m(\tau) d\tau + \epsilon$, where $\epsilon(\epsilon)$ satisfies $0 < \tilde{\epsilon} < \epsilon$ and $|\int_0^T \chi_\delta(t-\tau) m(\tau) d\tau - m(t)| < \epsilon$, and $\chi_\delta(t) = e^{-1}_\delta(e^{-1}t)$, $\chi(t) \in C^\infty_0((0, 1))$ satisfying $\chi(t) \geq 0$ and $\int_0^1 \chi(t) dt = 1$ for $0 \leq t \leq T$. Then we define $E_n(t)$ as follows:

$$E_n(t) = \frac{1}{2} \left\{ \|\langle x \rangle^2 e^{\Lambda(t)} \rho(t) \|_2^2 + \phi(t) \|v(t)\|_{l^{s+1}}^2 + m(t) (A(D)^4 v(t), (D)^4 v(t)) \right\}. \tag{4.1}$$

for the solution $v(t, x)$ of (3.3).

Lemma 4.1. Assume that $m(t)$ is a non-negative function in $C^0([0, T])$, $\phi(t) = e^{-2\phi t}$, $\rho(t) = \rho_1 e^{-\phi t}$ and $v(t, x)$ is a solution of (3.3) satisfying $v(t, x) \in \bigcap_{j=0}^{2} C^{2-j}([0, T]; H^{s+j})$, then there exist positive constants ϵ, γ_0, c and c_0 such that

$$E_n(t) \leq E_n(0) e^{\int_0^t \phi(\tau) d\tau} + \frac{1}{2} \int_0^t e^{\int_0^\tau \phi(\mu) d\mu} \|g(\tau)\|_d d\tau, \tag{4.2}$$

for $t \in [0, T]$ and for any $\gamma \geq \gamma_0$, where

$$q(t) = \frac{c}{2} \left(\frac{m_0(t)}{m(t)} + \frac{m(t)^2}{\rho(t)} + \frac{m(t)^2 \rho(t)}{\phi(t)} + \frac{m(t)^2 \rho(t)}{\phi(t)} + m_0(t) |\rho_1(t)| + c_0 \right). \tag{4.3}$$

Proof. Note that $m_0(t) \to m(t)$ in $L^1([0, t])$ for arbitrary $t \in [0, T]$.

Differentiating both sides in (4.1), we have
\begin{align}
2E_s(t)E_s(t) &= \frac{d}{dt} \left\{ \frac{1}{2} \| \langle \varphi \rangle_\kappa^\delta (\partial_t - \Lambda_t) \langle \cdot \rangle_\kappa^\delta v(t) \|_2^2 \right\} \\
&\quad + \frac{d}{dt} \left\{ \frac{1}{2} \varphi(t) \| v(t) \|_{s+1}^2 \right\} \\
&\quad + \frac{d}{dt} \left(\frac{1}{2} m_e(t)(A(D)^2v(t), (D)^2v(t)) \right).
\end{align}

\begin{align}
(4.4) = \Re (\langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_t)^2 \langle \cdot \rangle_\kappa^\delta v(t), \langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_t) \langle \cdot \rangle_\kappa^\delta v(t) \rangle_s \\
&\quad + \Re (\langle \cdot \rangle_\kappa^\delta \Lambda_t (\partial_t - \Lambda_t) \langle \cdot \rangle_\kappa^\delta v(t), \langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_t) \langle \cdot \rangle_\kappa^\delta v(t) \rangle_s \\
&\quad = \Re (g(t), \langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_t) \langle \cdot \rangle_\kappa^\delta v(t) \rangle_s \\
&\quad - m(t) \Re (\langle \cdot \rangle_\kappa^\delta A \langle \cdot \rangle_\kappa^\delta v(t), \langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_t) \langle \cdot \rangle_\kappa^\delta v(t) \rangle_s \\
&\quad + \Re (\Lambda_t \langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_t) \langle \cdot \rangle_\kappa^\delta v(t), \langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_t) \langle \cdot \rangle_\kappa^\delta v(t) \rangle_s \\
&\quad + \Re (\rho \langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_t) \langle \cdot \rangle_\kappa^\delta v(t), \langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_t) \langle \cdot \rangle_\kappa^\delta v(t) \rangle_s \\
&\quad \leq \| g(t) \|_s E_s(t) \\
&\quad - m(t) \Re (|\Lambda_t|^{-1/2} \langle \cdot \rangle_\kappa^\delta A \langle \cdot \rangle_\kappa^\delta v(t), |\Lambda_t|^{1/2} \langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_t) \langle \cdot \rangle_\kappa^\delta v(t) \rangle_s \\
&\quad - ||| \Lambda_t |^{1/2} \langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_t) \langle \cdot \rangle_\kappa^\delta v(t) \rangle_2^2 \\
&\quad + C |p| E_s(t)^2,
\end{align}

where \(p_t^0(x,D) \in Op(S^0) \), and we used an equality; \(\| Pu \|_s \leq C_s \| u \|_{s+m} \) for some positive constant \(C_s \) provided \(P \in Op(S^m) \) and \(u \in H^s \) (See [Ku]).

\begin{align}
(4.5) = \frac{1}{2} \varphi'(t) \| v(t) \|_{s+1}^2 \\
&\quad + \varphi(t) \Re ((D) \langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_t) \langle \cdot \rangle_\kappa^\delta v(t), (D) v(t) \rangle_s \\
&\quad + \varphi(t) \Re ((D) \langle \cdot \rangle_\kappa^\delta \Lambda_t \langle \cdot \rangle_\kappa^\delta v(t), (D) v(t) \rangle_s
\end{align}
Global solvability for the generalized

\[\frac{\theta'(t)}{\theta(t)} E_s(t)^2 \leq (4.11) \]

\[+ \frac{1}{2} \| \Lambda_i^{1/2} \langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_i \langle \cdot \rangle_\kappa^\delta v(t) \|_r^2 \]

\[+ \frac{\theta(t)^2}{2 |\rho|} \| v(t) \|_{s+3/2}^2 \]

\[+ \frac{\theta(t) \rho}{2} \| v(t) \|_{s+3/2}^2 \]

\[+ C_2 E_s(t)^2, \]

\[(4.6) = \frac{1}{2} m_e'(t) (A(D)^s v(t), (D)^s v(t)) + \]

\[+ m_e(t) \Re (\Lambda_i^{1/2} (D)^{-1} A(D)^s v(t), \Lambda_i^{1/2} (\langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_i \langle \cdot \rangle_\kappa^\delta v(t) \rangle_s \rangle_{s+3/2}^2 \]

\[+ m_e(t) \Re (\Lambda_i^{1/2} (D)^{-1} A(D)^s v(t), \Lambda_i^{1/2} (\langle \cdot \rangle_\kappa^\delta \Lambda_i \langle \cdot \rangle_\kappa^\delta v(t) \rangle_s \]

\[\leq \frac{|m_e'(t)|}{m_e(t)} E_s(t)^2 \]

\[+ m_e(t) \Re (\Lambda_i^{1/2} (D)^{-1} A(D)^s v(t), \Lambda_i^{1/2} (\langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_i \langle \cdot \rangle_\kappa^\delta v(t) \rangle_s \]

\[+ m_e(t) \Re (\langle D \rangle^{1/2} A(D)^s v(t), (D)^{s+1/2} v(t) \)

\[+ m_e(t) \Re (\langle D \rangle^{-1/2} A(D)^s v(t), \rho^0 v(t) \)

\[(4.18) + (4.19) \leq m_e(t) \rho \Re (A(D)^{s+1/2} v(t), (D)^{s+1/2} v(t)) \]

\[+ \frac{C_3 m_e(t) |\rho|}{v(t)} E_s(t)^2, \]

\[(4.8) + (4.17) \leq \| \Lambda_i^{1/2} m_e(t) (D)^{-1} A(D)^s v(t), \Lambda_i^{1/2} (\langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_i \langle \cdot \rangle_\kappa^\delta v(t) \rangle_s \]

\[- (\langle D \rangle^{1/2} m(t) \langle \cdot \rangle_\kappa^\delta A \langle \cdot \rangle_\kappa^\delta v(t), \Lambda_i^{1/2} (\langle \cdot \rangle_\kappa^\delta (\partial_t - \Lambda_i \langle \cdot \rangle_\kappa^\delta v(t) \rangle_s \) \]

\[(4.22) \]
Then, using the equality:
\[
\begin{align*}
m_e(t)\langle D \rangle^{-\delta} A(D)^{s} - m(t)\langle x \rangle^{\delta} A\langle x \rangle^{-\delta} \\
= m(t)(A - \langle x \rangle^{\delta} A\langle x \rangle^{-\delta}) + m(t)(A - A_{\lambda}) \\
+ m(t)(\langle D \rangle^{-\delta} A(D)^{s} - A) + \{m_e(t) - m(t)\}\langle D \rangle^{-\delta} A(D)^{s},
\end{align*}
\]
(4.23)
we obtain the estimate;
\[
\begin{align*}
\|\Lambda|^{-1/2}\{m_e(t)\langle D \rangle^{-\delta} A(D)^{s} - m(t)\langle \cdot \rangle^{\delta} A\langle \cdot \rangle^{-\delta}\}v(t)\|_s \\
\leq |m_e(t) - m(t)|\|\Lambda|^{-1/2}\langle D \rangle^{-\delta} A(D)^{s}v(t)\|_s \\
+ m(t)\{\|\Lambda|^{-1/2}(\langle D \rangle^{-\delta} A(D)^{s} - A)v(t)\|_s \\
+ \|\Lambda|^{-1/2}(A - A_{\lambda})v(t)\|_s \\
+ \|\Lambda|^{-1/2}(A - A_{\lambda})v(t)\|_s\}
\leq C_2|m_e(t) - m(t)|\rho_i^{-1/2}\|v(t)\|_{s+3/2} \\
+ m(t)(\|\Lambda|^{-1/2}p^{1}(\cdot, D)v(t)\|_s\rho(t)\|\Lambda|^{-1/2}\tilde{a}_1(\cdot, D)v(t)\|_s \\
+ \rho(t)^2\|\Lambda|^{-1/2}\tilde{a}_2(\rho; \cdot, D)v(t)\|_s + \|\Lambda|^{-1/2}\tilde{r}(\rho; \cdot, D)v(t)\|_s
\leq (C_2|m_e(t) - m(t)| + C_3m(t)\rho(t)^2)|\rho_i|^{-1/2}\|v(t)\|_{s+3/2} \quad (4.24) \\
+ C_4m(t)|\rho_i|^{-1/2}\|v(t)\|_{s+1} \quad (4.25) \\
+ m(t)\rho(t)|\rho_i|^{-1/2}\|\tilde{a}_1(\cdot, D)v(t)\|_{s-1/2}, \quad (4.26)
\end{align*}
\]
where \(p^{1}(x, \xi) \in S^{1}, \quad \tilde{a}_1(x, \xi) = \sum_{i,j=1}^{n} a_1 \xi_i \xi_j, \quad \tilde{a}_2(\rho, x, \xi) = \sum_{i,j=1}^{n} a_2 \xi_i \xi_j \) and \(\tilde{r}(\rho; x, \xi) = \sum_{i,j=1}^{n} r_i \xi_i \xi_j, \) and \(a_1, a_2 \) and \(r_i \) defined in (2.17). Besides, by Proposition 2.1, (4.26) is estimated in the following:
\[
\begin{align*}
\|\tilde{a}_1(\cdot, D)v(t)\|_{s-1/2} = \left\| \sum_{|\alpha|=1} \tilde{a}_1(\cdot, D)^{s}(D)^{-1}v(t) \right\|_{s-1/2}^2 \\
\leq C_5 \sum_{|\alpha|=1} \|\tilde{a}_1(\cdot, D)v(t)\|_{s-1/2}^2 + C_6\|v(t)\|_{s+1/2}^2 \\
\leq C_7\mathcal{R}(\tilde{a}_1(\cdot, D)v(t), v(t))_{s+1/2} + C_8\|v(t)\|_{s+1/2}^2 \\
\leq C_7\mathcal{R}(A\langle D \rangle^{s+1/2}v(t), (D)^{s+1/2}v(t)) + C_9\|v(t)\|_{s+1/2}^2 \quad (4.27)
\end{align*}
\]
(4.28)
where $\tilde{a}(x, \xi) = \sigma(A)(x, \xi)$. Therefore (4.8) + (4.17) is estimated as below

\begin{equation}
(4.8) + (4.17) \leq 2\{C_1^2 m_e(t) - m(t)|^2 + C_2^2 m(t)^2 \rho A|^2 \rho |^1 \|v(t)\|_{L^3}^2 \end{equation}

\begin{equation}
+ \{4C_2^2 m(t)^2 \rho |^1 + C_{10} m(t)^2 \rho |^1 \rho |^1 E(t)^2 \end{equation}

\begin{equation}
+ C_7 m(t)^2 \rho |^1 \Re(A(D)^{s+1/2}v(t), (\langle D \rangle)^{s+1/2}v(t)) \end{equation}

\begin{equation}
+ \frac{1}{2} \|\Lambda_1\|^{1/2} (\langle \gamma \rangle (\partial_t - \Lambda_1) \langle \gamma \rangle \gamma |^1 v(t)\|_{L^2}^2. \end{equation}

Note that $C_j (j = 1, \ldots, 10)$ are positive constants independent of t and γ. Hence combing the preceding estimates, we have the following estimate for (4.1);

\begin{equation}
2E'(t)E(t) \leq \|g(t)\|_E(t)
\end{equation}

\begin{equation}
+ c \left(|\rho(t)| + \frac{|m(t)|}{\rho(t)} \right) + \frac{m(t)^2 \rho(t)^2}{\rho(t)} + \frac{m(t)^2 \rho(t)^2}{\rho(t)} + \frac{m(t)^2 \rho(t)^2}{\rho(t)} + c_0 \right) E(t)^2
\end{equation}

\begin{equation}
+ c^2 \left(\frac{m(t)^2 \rho(t)^2}{\rho(t)} + \frac{m(t)^2 \rho(t)^2}{\rho(t)} + \frac{m(t)^2 \rho(t)^2}{\rho(t)} + \frac{m(t)^2 \rho(t)^2}{\rho(t)} \right) \|v(t)\|_{L^3}^2
\end{equation}

\begin{equation}
+ c^2 (m(t)^2 \rho(t)^2 + m(t)^2 \rho(t)^2 |\rho(t)|^{-1}) \Re(A(D)^{s+1/2}v(t), (\langle D \rangle)^{s+1/2}v(t)).
\end{equation}

Thus, if we let $\gamma > 0$ and $\varepsilon > 0$ satisfying

\begin{equation}
\varepsilon \leq e^{-2\gamma T}, \quad \gamma^2 \geq \max \left\{ \sup_{0 \leq t \leq T} \left\{ \frac{|\rho(t)|^1 \|m(t)\|_{L^2}^2}{\rho(t)} \right\} , \frac{2}{\rho(t)} + M_0^2 \rho(t)^2 \right\},
\end{equation}

where $M_0 = \max_{0 \leq t \leq T} m(t)$, then the third and the fourth terms are non-positive.

Lemma 4.2. Assume that $m(t)$ is a non-negative function satisfying $m(t) \in C^0([0, T]) \cap L^1([0, T])$ and $v(t, x) \in \mathbb{C}^{2-j}([0, T]; H^{s+j})$. Then there are $\rho(t)$ and $\varphi(t)$ in $C^1([0, T])$ with $\rho_1(t) \in L^1([0, T])$, $\rho(0) = \rho_1$ and $\varepsilon > 0$ such that the estimate (4.2) is established for (4.3).

Proof. If we choose $\rho(t)$ and $\varepsilon > 0$ suitably, we can prove that (4.35) and (4.35) are non-positive. Indeed, put $\varphi(t)$ and $\rho(t)$;

\begin{equation}
\varphi(t) = \rho_1^2 e^{-2c t} \left\{ 1 + \int_0^t \left| m(t) \right| (1 + 1/\sqrt{m(t)}) dt \right\},
\end{equation}

\begin{equation}
\rho(t) = \left(\rho_1 e^{-ct} - c \int_0^t \varphi(t) \left| m(t) - m(t) \right| dt \right) e^{-c \int_0^t \left| m(t) \right| (1 + 1/\sqrt{m(t)}) dt},
\end{equation}
then \(\varphi(t) \) and \(\rho(t) \) belong to \(C^1([0, T]) \) with \(\rho, \in L^1([0, T]) \) and \(\rho(t) > 0 \) for sufficiently small \(\varepsilon > 0 \), and they satisfy

\[
\begin{align*}
\begin{cases}
\rho(0) = \rho_1, \\
\rho_\varepsilon(t) \leq -c \bigg(\frac{m_\varepsilon(t) - m(t)}{\sqrt{\varphi(t)}} + \frac{m(t)\rho(t)^2}{\sqrt{\varphi(t)}} + \frac{m(t)\rho(t)}{\sqrt{m_\varepsilon(t)}} + \sqrt{\varphi(t)} \bigg)
\end{cases}
\end{align*}
\]

(4.40)

for \(t \in (0, T) \). Hence we obtain (4.2). \(\square \)

Lemma 4.3. Assume that \(m(t), \varphi(t) \) and \(\rho(t) \) satisfy the conditions of Lemma 4.1 and that \(u(t, x) \) is a solution of the Cauchy problem (3.1) satisfying (3.19), then \(u(t, x) \) has the inequality as

\[
(e^{-2s}) \| \langle \gamma \rangle^{\delta} e^{\rho(t)(D)} u(t) \|_{L^1}^2 + \| \langle \gamma \rangle^{\delta} e^{\rho(t)(D)} \rho_\varepsilon u(t) \|_{L^2}^2 \leq c e^\int_0^t q(\tau) d\tau \left(\| \langle \gamma \rangle^{\delta} e^{\rho_1(D)} u_0 \|_{L^1} + \| \langle \gamma \rangle^{\delta} e^{\rho_1(D)} u_1 \|_{L^1} \right) + \int_0^t \| \langle \gamma \rangle^{\delta} e^{\rho(t)(D)} f(t) \|_{L^1} d\tau,
\]

(4.41)

for \(t \in [0, T] \), where \(q(\tau), \gamma \) and \(\varepsilon \) are given by Proposition 4.1, and the positive constant \(c \) is independent of \(\gamma \).

Proof. It is obvious by Lemma 4.1.

5. Local existence of solutions for the nonlinear problem

Let \(0 \leq \tau < T_1 \). For \(T \in (\tau, T_1] \) we consider the Cauchy problem:

\[
\begin{align*}
\begin{cases}
\partial_\tau^2 u(t, x) + M((Au(t), u(t))) Au(t, x) = f(t, x), & \tau < t < T, \\
u(t, x) = u_0(x), & \partial_\tau u(t, x) = u_1(x).
\end{cases}
\end{align*}
\]

(5.1)

Theorem 5.1. Assume that (1.4), (1.5) and (1.6) are valid. Let \(0 < \rho_1 < \rho_0 / \sqrt{n} \). Then for any \(u_0(x) \in H^{s+2}_{\rho_1, \delta} \), \(u_1(x) \in H^{s+1}_{\rho_1, \delta} \) and \(\langle x \rangle^{\delta} e^{\rho(t)(D)} f(t, x) \in C^0([0, T_1]; H^{s+1}) \) with \(\rho(t) = \rho_1 e^{-\gamma(t)} \), there exist \(T \in (\tau, T_1] \) and \(\gamma_0 > 0 \) such that the Cauchy problem (5.1) has a solution satisfying

\[
\langle x \rangle^{\delta} e^{\rho(t)(D)} u(x, t) \in \bigcap_{j=0}^2 C^{2-j}([\tau, T]; H^{s+j})
\]

(5.2)

for any \(\gamma \geq \gamma_0 \).
Global solvability for the generalized

Proof. We may assume $t = 0$ without loss of generality. We shall prove the existence of the solution of (5.1) by Schauder's fixed point theorem. For $T > 0$ and $s \in \mathbb{R}$, we introduce a space of functions:

$$X_{T, \delta, \kappa} = \{ w(t, x); \langle x \rangle^\delta e^{\rho(t)D}w(t, x) \in C^0([0, T]; H^{s+1}) \cap C^1([0, T]; H^s) \}$$

(5.3)

equipped with its norm $\| \cdot \|_{X_{T, \delta, \kappa}}$ as

$$\| w \|_{X_{T, \delta, \kappa}} = \sup_{0 \leq t \leq T} \left\{ \frac{1}{2} \left(\| \langle \rangle^\delta e^{\rho(t)D}w(t) \|_{H^{s+1}}^2 + \| \langle \rangle^\delta e^{\rho(t)D} \partial_t w(t) \|_2^2 \right) \right\}^{1/2}$$

(5.4)

for every $w \in X_{T, \delta, \kappa}$. Let $B_{T, \delta, \kappa}(R)$ be a convex subspace of $X_{T, \delta, \kappa}$ such that

$$B_{T, \delta, \kappa}(R) = \left\{ u \in X_{T, \delta, \kappa}; \langle x \rangle^\delta e^{\rho(t)D}u(t, x) \in \bigoplus_{j=0}^2 C^{2-j}([0, T]; H^{s+j}), \| u \|_{X_{T, \delta, \kappa}} \leq R \right\},$$

(5.5)

for $R \gg 1$. We now define the two functions

$$m(t) = m(t; w) = M(\eta(t; w)), \quad \eta(t; w) = \sum_{i,j=1}^n (a_{ij}D_i w(t), D_j w(t)),$$

(5.6)

for each $w \in X_{T, 0, \kappa}^{s+1}$, where $s' < s$. Note that $m(t) = M(\eta(t; w)) \in C^0([0, T])$, and if $w \in B_{T, 0, \kappa}(R)$ for $R > 0$, then for arbitrary fixed $v > 0$, there exists a positive constant ε independent of w such that

$$\int_0^T |m_\varepsilon(t; w) - m(t; w)|dt < v,$$

(5.7)

where $m_\varepsilon(t; w) = \int_0^T \chi_\varepsilon(t - \tau)m(\tau; w)d\tau + \varepsilon$ and $\chi_\varepsilon(t)$ is defined in section 4. Then we define the mapping Φ from $w \in X_{T, 0, \kappa}^{s+1}$ into $u \in X_{T, 0, \kappa}^{s+1}$ such that

$$\partial_t^2 u(t, x) + M(\eta(t; w))A u(t, x) = f(t, x).$$

(5.8)

We shall prove that Ψ is a compact mapping from $B_{T, 0, \kappa}(R)$ into itself for $s' < s$ and sufficiently small T. By Lemma 3.3, $u(t, x)$ in (5.8) satisfies

$$\langle x \rangle^\delta e^{\rho(t)D}u(t, x) \in \bigoplus_{j=0}^2 C^{2-j}([0, T]; H^{s+j})$$

(5.9)

for $u_0 \in H^{s+2}_{\rho_1, \delta, \kappa}$, $u_1 \in H^{s+1}_{\rho_1, \delta, \kappa}$ and every fixed $w \in B_{T, 0, \kappa}(R)$. Then by Lemma 4.1,
we have
\[
\left\{ \frac{1}{2} \left(\| \gamma \delta e^{\rho(t)D} u(t) \|_{s+1}^2 + \| \gamma \delta e^{\rho(t)D} \partial_t u(t) \|_s^2 \right) \right\}^{1/2}
\]
\[
\leq e^{\gamma T} \left\{ \frac{1}{2} \left(e^{-2\eta T} \| \gamma \delta e^{\rho(t)D} u(t) \|_{s+1}^2 + \| \gamma \delta e^{\rho(t)D} \partial_t u(t) \|_s^2 \right) \right\}^{1/2}
\]
\[
\leq e^{\gamma T} \left\{ c \varepsilon \int_0^T q(\tau) d\tau \left(\| \gamma \delta e^{\rho(D)} u_0 \|_{s+1} + \| \gamma \delta e^{\rho(D)} u_1 \|_s + \int_0^t \| \gamma \delta e^{\rho(D)} f(\tau) \|_s d\tau \right) \right\}
\]
\[
\leq c' \varepsilon \int_0^T (q(\tau)+\gamma) d\tau,
\]
(5.10)
where \(c' \) is independent of \(T \) and \(R \). Therefore for sufficiently large \(R \), we can find \(T(R) = T > 0 \) such that
\[
c' \varepsilon \int_0^T (q(\tau)+\gamma) d\tau = R.
\]
(5.11)

On the other hand, by Proposition 2.2, we have obviously that the embedding \(B_{T,\delta,\kappa}(R) \hookrightarrow B_{T,0,\kappa}(R) \) is compact for \(s' < s \) and \(\delta > 0 \). Hence the mapping \(\Psi \) defined (5.8) is a compact mapping from \(B_{T,0,\kappa}(R) \) into itself. Then by Schauder's fixed point theorem, \(\Psi \) has a fixed point \(u(t,x) \) in \(B_{T,0,\kappa} \). Further by Lemma 3.3, the fixed point is a solution of (5.1) satisfying
\[
\langle x \rangle \delta e^{\rho(D)} u(t,x) \in \bigcap_{j=0}^2 C^{2-j}([0,T]; H^{s+j})
\]
(5.12)
for \(u_0 \in H^{s+2} \) and \(u_1 \in H^{s+1} \).

6. Global existence of solution for the non-linear problem

In this section we shall prove our main theorem. Now we introduce the following energy:
\[
E(t) = \frac{1}{2} (\| \partial_t u(t) + u(t) \|^2 + \| u(t) \|^2 + F(\eta(t)))
\]
(6.1)
where \(F(\eta) = \int_0^\eta M(\lambda) d\lambda \) and \(\eta(t) = (Au(t), u(t)) \). Then for the energy \(E(t) \), according to [DS] and [KY], the following energy estimate is concluded.

Proposition 6.1. Assume that \(M(\eta) \) is a non-negative continuous function in \([0, \infty)\) and \(f(t,x) \in C^0([0,T]; L^2) \). If \(u(t,x) \) is a solution of the Cauchy problem
Global solvability for the generalized

(1.3) in \((0, T)\) such that \(u(t, x) \in \bigcap_{j=0}^{2} C^{2-j}([0, T); H^j)\), then we have the energy estimate:

\[
E(t)^2 + \int_0^t e^{3(t-\tau)} M(\eta(\tau))\eta(\tau) d\tau \leq E(0)^2 e^{3t} + \frac{1}{2} \int_0^t e^{3(t-\tau)} \|f(\tau)\|^2 d\tau \tag{6.2}
\]

for \(t \in [0, T)\).

Proof. Differentiating (6.1), from the equation (1.3) we get,

\[
2E'(t)E(t) = \Re(f(t) + \partial_t u(t), \partial_t u(t) + u(t)) + \Re(\partial_t u(t), u(t)) - M(\eta(t))\eta(t)
\]

\[
\leq \frac{1}{2} \|f(t)\|^2 + 3E(t)^2 - M(\eta(t))\eta(t)
\]

(6.3)

for \(t \in [0, T)\), which yields (6.2). \(\square\)

Corollary 6.2. If (6.2) holds and \(T < \infty\), then \(M(\eta(t)) \in L^1([0, T])\).

Proof. From (6.2), it is evident that \(M(\eta(t))\eta(t) \in L^1([0, T])\). On the other hand

\[
\int_0^t M(\eta(\tau)) d\tau = \int_{[0, t] \cap \{\eta(\tau) > 1\}} M(\eta(\tau)) d\tau + \int_{[0, t] \cap \{\eta(\tau) \leq 1\}} M(\eta(\tau)) d\tau
\]

\[
\leq \int_0^t M(\eta(\tau))\eta(\tau) d\tau + \sup_{0 \leq \tau \leq 1} M(\eta(t))
\]

(6.4)

for all \(t \in [0, T)\), which implies that \(M(\eta(t)) \in L^1([0, T])\). \(\square\)

Now we can prove our main theorem. Let \(\Lambda(t, \gamma) = \rho_1 e^{-\gamma t}(D)\) and \(T^*\) the real number defined by

\[
T^* = \max \left\{ T > 0; \text{there exist } \gamma > 0 \text{ and a solution } u(t, x) \text{ satisfying (1.3)} \right\}
\]

in \((0, T)\) such that \(\langle x \rangle^2 e^{\Lambda(t, \gamma)} u(t, x) \in \bigcap_{j=1}^{2} C^{2-j}([0, T); H^j)\}.

Theorem 5.1 ensures \(T^* > 0\). We shall claim \(T^* = \infty\). Suppose that \(T^* < 0\). Then it follows from Proposition 6.2 that \(m(t) = M(Au(t), u(t)) \in L^1([0, T^*])\). Hence, Proposition 3.2 and the fact that \(m(t) \in C^0([0, T^*]) \cap L^1([0, T^*])\) yield that \(v(t, x) = \langle x \rangle^2 e^{\Lambda(t)} u(t, x)\) which satisfies (3.19) with \(s = 0, 1\) and \(T = T^*\), where \(\Lambda(t) = \rho(t)(D)\) and \(\rho(t)\) is introduced in (4.39). Let us take \(\gamma > 0\) such that
\(\rho_1 e^{-\gamma t} \leq \rho(t) \) for \(t \in [0, T^*) \). Then the definition of \(T^* \) and (4.2) imply

\[
\langle x \rangle_e^{\delta} e^{A(t,t)} u(t, x) \in \bigcap_{j=0}^{2} C^{2-j}([0, T^*]; H^j),
\]

where \(\Lambda(t, \gamma) = \rho_1 e^{-\gamma t} \langle D \rangle \). Hence we have the limits \(u(T^* - 0) \in H^2 \) and \(\partial_t u(T^* - 0) \) which satisfy

\[
\langle x \rangle_e^{\delta} e^{A(T^*, \gamma)} u(T^* - 0) \in H^1.
\]

Therefore, applying Theorem 5.1 with \(\rho_2 = \rho_1 e^{\gamma T^*} \), we have a solution \(\bar{u}(t, x) \) of the Cauchy problem (5.1) in \((T^*, T), \ T > T^* \) with initial data \(\bar{u}(T^*) = u(T^* - 0) \) and \(\partial_t \bar{u}(T^*) = \partial_t u(T^* - 0) \), which satisfies

\[
\langle x \rangle_e^{\delta} \exp(\rho_2 e^{-\gamma(t-T^*)} \langle D \rangle) \bar{u}(t, x) \in \bigcap_{j=0}^{2} C^{2-j}([T^*, T]; H^j).
\]

(6.5)

Then \(\Lambda(t, \gamma) = \rho_2 e^{-\gamma(T-T^*)} \langle D \rangle \) implies that

\[
\langle x \rangle_e^{\delta} e^{A(t, \gamma)} \bar{u}(t, x) \in \bigcap_{j=0}^{2} C^{2-j}([T^*, T]; H^j).
\]

(6.6)

Now let us define

\[
w(t, x) = \begin{cases} u(t, x), & t \in (0, T^*) \\ \bar{u}(t, x), & t \in [T^*, T). \end{cases}
\]

(6.7)

Then \(w(t, x) \) has to satisfy (1.3) in \((0, T) \) and

\[
\langle x \rangle_e^{\delta} e^{A(t, \gamma)} w(t, x) \in \bigcap_{j=0}^{2} C^{2-j}([0, T]; H^j).
\]

(6.8)

This result contradicts the definition of \(T^* \). Thus, we have proved that \(T^* = \infty \).

\[\square\]

References

Global solvability for the generalized

Institute of Mathematics
University of Tsukuba
Tsukuba-city, Ibaraki 305
Japan