CLASSIFICATION OF PROJECTIVE SURFACES AND PROJECTIVE NORMALITY

By
Katsumi AKAHORI

§ 0. Introduction

For a very ample line bundle L on a smooth irreducible projective curve C of genus g, $\phi_L : C \to P(H^0(L))$ is the projective embedding by the vector space $H^0(L)$. One says that L is normally generated if $\phi_L(C)$ is projectively normal. Equivalently, L is normally generated if and only if the natural maps $S^mH^0(L) \to H^0(L^m)$ are surjective for all $m \geq 0$. Noether's theorem is that the canonical bundle is normally generated unless C is hyperelliptic (see [18]). It is well-known that if $\deg(L) \geq 2g + 1$, then L is normally generated (see [4], [15]). Furthermore several authors have reported on the normal generation of non-special low degree line bundle. Homma have proved that for a nonhyperelliptic curve C of genus 3 every very ample line bundle of degree 6 on C is normally generated ([8]). Lange and Martens have showed that a general line bundle of degree $2g$ on a nonhyperelliptic curve C of genus g is normally generated ([11]). Recently Green and Lazarsfeld have showed the sufficient condition for L to be normally generated (see (1.1) or [6], Theorem 1). In this paper we shall study on the normal generation of special low degree line bundle (i.e. $\deg(L) \leq 2g - 3$). Our result is as follows.

Theorem 1. The following very ample line bundles L on a nonsingular projective curve C of genus g is normally generated.

1. $\deg(L) = 2g - 3$ ($g \geq 5$) and $h^1(L) = 1$
2. $\deg(L) = 2g - 4$ ($g \geq 11$) and $h^1(L) = 1$
3. $\deg(L) = 2g - 5$ ($g \geq 9$) and $h^1(L) = 2$
4. $\deg(L) = 2g - 6$ ($g \geq 15$) and $h^1(L) = 2$

Next we shall use the result above for the classification of projective surfaces.

Received September 12, 1996
The projective normality of a nonsingular curve \(C \) is useful tool for calculating some invariants of projective surfaces.

Several authors have classified projective surfaces according to some invariants. Main invariants are \(\Delta \)-genus \(\Delta \) and sectional genus \(g_H \). The classification of nondegenerate surfaces of \(\Delta \)-genus \(\Delta = 0, 1 \) is due to Del Pezzo. The classification of nondegenerate surfaces of \(\Delta = 2, 3 \) is essentially due to Castelnuovo. Recently Ein has classified nondegenerate surfaces of \(\Delta = 4 \) ([3]). On the other hand, the classification of nondegenerate surfaces of \(g_H \leq 3 \) is essentially due to Castelnuovo ([1], [2], or [9]). Roth has classified projective surfaces of \(g_H = 4 \) ([17]). Recently Ein has given a mordern proof to Roth's results ([3]). Furthermore the classification of nondegenerate surfaces may be given for \(\Delta \leq 5 \) or \(g_H \leq 7 \) ([10], [12]). In this paper we shall classify nondegenerate surfaces with large \(\Delta \)-genus and large sectional genus. We shall pay attention to the relation between \(\Delta \) and \(g_H \). If \(\deg(S) \geq 2\Delta + 1 \), then \(g_H \leq \Delta \) (see (2.2), (a)). Therefore our main purpose is to classify nondegenerate surfaces of degree \(\leq 2\Delta \) with \(g_H > \Delta \). In this paper we shall assume that such a surface exists. Our result is as follows.

Theorem 2. Let \(S \subseteq \mathbb{P}^n \) be a nondegenerate linearly normal smooth surface with \(\Delta \)-genus \(\Delta \) and sectional genus \(g_H \). Our classification of projective surfaces is as follows.

1. If \(\deg(S) \geq \Delta - 1 \) with \(g_H = (\frac{1}{2})\Delta \geq 1 \) (\(\Delta \) is even), then \(S \) is a scroll over a curve of genus \(g_H \).
2. If \(\deg(S) \geq 2\Delta \) with \(g_H = \Delta \geq 2 \), then \(S \) is a rational surface.
3. If \(\deg(S) = 2\Delta \) with \(g_H \geq \Delta + 1 \geq 4 \), then \(S \) is a K3 surface and \(g_H = \Delta + 1 \).
4. If \(\deg(S) = 2\Delta - 1 \) with \(g_H = \Delta + 1 \geq 5 \), then \(S \) is the projection of a K3 surface from a point in the surface.
5. If \(\deg(S) = 2\Delta - 1 \) with \(g_H = \Delta + 2 \geq 9 \), then \(S \) is a minimal elliptic surface of Kodaira dimension 1.
6. If \(\deg(S) = 2\Delta - 2 \) with \(g_H = \Delta + 1 \geq 11 \), then \(S \) is a K3 surface blown up at one point or two points.
7. If \(\deg(S) = 2\Delta - 2 \) with \(g_H = \Delta + 2 \geq 15 \), then \(S \) is a minimal elliptic surface of Kodaira dimension 1.

The organization of the paper is as follows. First we shall discuss the normal generation of special very ample line bundle on \(C \) in \(\S 1 \). Secondly we shall classify projective surfaces in \(\S 2 \). Lastly we shall discuss the projective normality of projective surfaces of degree \(2\Delta \) with \(g_H \geq \Delta \geq 4 \) in \(\S 3 \).
Classification of projective surfaces

Notation. We work throughout over the complex numbers.

(1) C is a smooth irreducible projective curve of genus $g \geq 2$ and L is a very ample line bundle on C. We denote by K_C (or ω_C) the canonical bundle on C.

(2) The Clifford index of a line bundle A on C is defined by
\[
\text{Cliff}(A) = \deg(A) - 2(h^0(A) - 1).
\]

The Clifford index of C is taken to be
\[
\text{Cliff}(C) = \min\{\text{Cliff}(A) : h^0(A) \geq 2, h^1(A) \geq 2\}
\]
(c.f. [13], [14]). We remark that $\text{Cliff}(C) \geq 0$ with equality if and only if C is hyperelliptic by Clifford's theorem, and that $\text{Cliff}(C) = 1$ if and only if C is either trigonal or a smooth plane quintic.

(3) For a divisor D on a nonsingular variety V, we denote by $\mathcal{O}_V(D)$ the line bundle associated to D. By abuse of notation, we sometimes use D itself instead of $\mathcal{O}_V(D)$. We denote by $h^i(D)$ the dimension of i-th cohomology $H^i(V, \mathcal{O}_V(D))$.

(4) S is a nondegenerated smooth projective surface and $H \in |\mathcal{O}_S(1)|$ is a smooth hyperplane section of S, and g_H is its genus (sectional genus). We denote by K_S the canonical bundle on S. Let \mathcal{L} be an very ample line bundle on S. We define a Δ-genus for S and \mathcal{L} by
\[
\Delta = (\mathcal{L})^2 + 2 - h^0(S, \mathcal{L}).
\]

We denote by $p_g = h^0(K_S)$ the geometric genus of S and by $q = h^1(\mathcal{O}_S)$ the irregularity of S.

§ 1. Normal generation of very ample line bundles on curves

Our main tool is the following results of [6].

Lemma 1.1 ([6], Theorem 1). Let L be a very ample line bundle on C, with
\[
\deg(L) \geq 2g + 1 - 2 \cdot h^1(L) - \text{Cliff}(C)
\]
(and hence $h^1(L) \leq 1$). Then L is normally generated.

Lemma 1.2 ([6], Theorem 3 and Remark 1.3). Let L be a very ample line bundle on C with $\deg(L) = 2g + 1 - k$. Assume that $2k + 4e + 1 \leq g$ and $e \geq -1$, and consider the embedding $C \subseteq P(H^0(L)) = P'$ defined by L. Then L fails to be normally generated if and only if there exists an integer $1 \leq n \leq r - 2 - e - h^1(L)$, and an effective divisor D on C of degree at least $2n + 2$ such that

(a) $H^1(C, L^2(-D)) = 0$ and
(b) \(D \) spans an \(n \)-plane \(\Lambda \subseteq \mathbb{P}^r \) in which \(D \) fails to impose independent conditions on quadrics.

\textbf{Remark 1.3.} The conclusion of the theorem in [6] holds with \(1 \leq n \leq r - 2 - e \). \(\text{(see [6], page 80, line 8.}) \) But since we have

\[k + 2e - 2r(L(-D)) \leq \text{Cliff}(L(-D)) \leq \text{Cliff}(C) \leq k - 1 - 2h^1(L), \]

it follows that \(h^0(L(-D)) \geq e + 2 + h^1(L) \). \(\text{(c.f. [6], page 80, line 12.)} \) Therefore we can obtain somewhat stronger bound that \(1 \leq n \leq r - 2 - e - h^1(L) \) in (1.2).

The following two lemmas are well-known.

\textbf{Lemma 1.4.} Let \(L \) be a very ample line bundle on a hyperelliptic curve of genus \(g \geq 2 \). Then \(L \) is nonspecial \(\text{(i.e. } h^1(L) = 0) \).

\textbf{Lemma 1.5.} Let \(L \) be a very ample line bundle of degree \(2g - 4 \) on an elliptic-hyperelliptic curve of genus \(g \geq 4 \). Then \(L \) is nonspecial \(\text{(i.e. } h^1(L) = 0) \).

\textbf{Lemma 1.6.} Let \(L \) be a very ample line bundle of degree \(2g - 2 - k \) \((k \geq 1) \) with \(h^1(L) = 1 \) on \(C \) of genus \(g \geq 5 \). Then \(C \) is not trigonal.

\textbf{Proof.} Since \(L \) is special, we can write \(L = K - D \) for some effective divisor of degree \(k \). By the very ampleness of \(L \), we have

\[\dim |K - Q - R| = \dim |K - D| - 2 \]

for all \(Q, R \) in \(C \). Using Riemann-Roch, this say that

\[\dim |D + Q + R| = \dim |D| = h^1(L) - 1 = 0 \]

for all \(Q, R \) in \(C \). Since \(\dim |P + Q + R| \leq \dim |D + Q + R| \) for some point \(P \) in \(C \), we have \(\dim |P + Q + R| = 0 \). Assume that \(C \) is trigonal. Then for any given \(P \), there exist \(Q, R \) such that \(\dim |P + Q + R| = 1 \). It is a contradiction. \(\square \)

\textbf{Proposition 1.7.} Let \(L \) be a very ample line bundle of degree \(2g - 3 \) with \(h^1(L) = 1 \) on \(C \) of genus \(g \geq 5 \). Then \(L \) is normally generated.

\textbf{Proof.} By virtue of (1.6), we have \(\text{Cliff}(C) \geq 2 \). Hence we get the inequation:

\[2g + 1 - 2 \cdot h^1(L) - \text{Cliff}(C) \leq 2g - 3. \]

Using (1.1), we can prove the Proposition. \(\square \)
Proposition 1.8. Let L be a very ample line bundle of degree $2g - 4$ with $h^1(L) = 1$ on C of genus $g \geq 11$. Then L is normally generated.

Proof. It is immediate from (1.1) that if $\text{Cliff}(C) \geq 3$, then L is normally generated. On the other hand, we have $\text{Cliff}(C) \geq 2$ by virtue of (1.6). Therefore it remains only to prove in the case of $\text{Cliff}(C) = 2$. Assume that L is not normally generated. If $e = 0$ and $k = 5$, then $2k + 4e + 1 = 11 \leq g$. Hence Lemma 1.1 gives the existence of an integer

(*) \[1 \leq n \leq r(L) - 2 - e - h^1(L) = g - 6, \]

and an effective divisor D on C of degree $\geq 2n + 2$ which spans an n-plane in $P(H^0(L))$. Since $n = r(L) - h^0(L(-D))$, we have

\[\text{Cliff}(L(-D)) \leq \text{Cliff}(L) = \text{Cliff}(C) = 2. \]

Moreover $h^0(L(-D)) \geq 2$ and $h^1(L(-D)) \geq 2$ thanks to (*). In view of the definition of $\text{Cliff}(C)$ we get $\text{Cliff}(L(-D)) = 2$ and $\deg(D) = 2n + 2$. Hence we have $6 \leq \deg(L(-D)) \leq 2g - 8$ and $6 \leq \deg(K - (L - D)) \leq 2g - 8$. By using ([14], Beispiel 8), C must be an elliptic-hyperelliptic curve. This contradicts with (1.5).

Proposition 1.9. Let L be a very ample line bundle of degree $2g - 5$ with $h^1(L) = 2$ on C of genus $g \geq 9$. Then L is normally generated.

Proof. Since $h^1(L) = 2$ and $h^0(L) \geq 2$, we have $\text{Cliff}(C) \leq \text{Cliff}(L) = 1$. Moreover $\text{Cliff}(C) \neq 0$ by (1.4), and consequently $\text{Cliff}(C) = 1$. Assume that L is not normally generated. If $e = -1$ and $k = 6$, then $2k + 4e + 1 = 9 \leq g$. So thanks to (1.1), there exists an effective divisor D on C of degree $\geq 2n + 2$ ($1 \leq n \leq g - 6$) such that

\[\text{Cliff}(L(-D)) \leq \text{Cliff}(L) = \text{Cliff}(C) = 1. \]

From the definition of $\text{Cliff}(C)$ we get $\text{Cliff}(L(-D)) = 1$, $\deg D = 2n + 2$,

(#) \[5 \leq \deg(L(-D)) \leq 2g - 9, \quad \text{and} \quad 7 \leq \deg(K - (L - D)) \leq 2g - 7. \]

On the other hand, by using ([13], 2.51) we have $h^0(L(-D)) = 2$ or $h^0(K - (L - D)) = 2$. Since $\text{Cliff}(L(-D)) = 1$, we get $\deg(L(-D)) = 3$ or $\deg(K - (L - D)) = 3$. This contradicts with (#).
PROPOSITION 1.10. Let L be a very ample line bundle of degree $2g - 6$ with $h^1(L) = 2$ on an elliptic-hyperelliptic curve of genus $g \geq 15$. Then L is normally generated.

PROOF. First we claim that $\text{Cliff}(C) = 2$ because C is an elliptic-hyperelliptic curve of genus $g \geq 15$. Assume that L is not normally generated. If $e = 0$ and $k = 7$, then $2k + 4e + 1 = 15 \leq g$. By applying (1.2) there exist an integer

$$1 \leq n \leq r(L) - 2 - e - h^1(L) = g - 8$$

and an effective divisor D on C of degree $\geq 2n + 2$ such that

$$\text{Cliff}(L(-D)) \leq \text{Cliff}(L) = \text{Cliff}(C) = 2.$$

By the definition of $\text{Cliff}(C)$ we must have $\deg(D) = 2n + 2$. If we consider $B = K - (L - D)$, then $\deg(B) = 2n + 6$ and $r(B) = n + 2$. Moreover $\text{Cliff}(B) = \text{Cliff}(C)$, and B is generated by its global section.

Consider the map $\phi_B : C \to \mathbb{P}^{n+2}$. Assume that ϕ_B is birational onto its image. Since $g \geq 15$, we get $r(B) \geq g - 5$ i.e. $n \geq g - 7$ by ([6], (2.3)). This contradicts with (\diamond). Therefore ϕ_B factors through a branched covering $\pi : C \to Y$ of degree $m \geq 2$, where Y is a smooth curve mapped birationally onto its image in \mathbb{P}^{n+2} by a line bundle B_0 with $r(B_0) = r(B) = n + 2$, and $B = \pi^*(B_0)$:

\[C \xrightarrow{\pi} Y \xrightarrow{\phi_B} \mathbb{P}^{n+2}. \]

If $m \geq 3$, then $\text{Cliff}(\pi^*(B_0(-y))) \leq \text{Cliff}(B) = \text{Cliff}(C)$ for any $y \in Y$. Since $h^0(\pi^*(B_0(-y))) \geq 2$ and $h^1(\pi^*(B_0(-y))) \geq 2$, it is impossible. Hence $m = 2$ and $\deg(B_0) = n + 3$. Furthermore B_0 embeds Y in \mathbb{P}^{n+2} as an elliptic normal curve. Since $h^0(B(-D)) = h^1(L) = 2$, there is an effective divisor D_0 (on Y) which spans n-plane in \mathbb{P}^{n+2} and $D \leq \pi^*(D_0)$. We claim that an elliptic normal curve $Y \subset \mathbb{P}^{n+2}$ has no $(n + 2)$-secant n-planes. Hence we have $\deg(D_0) = n + 1$ and $D = \pi^*(D_0)$. Since $L = K + \pi^*(D_0 - B_0)$, we have

$$h^1(L(-\pi^*y)) = h^0(\pi^*(B_0 - D_0 + y)) = h^0(B_0 - D_0) + 1$$

for any $y \in Y$ and $h^1(L) = h^0(B_0 - D_0)$. So $h^1(L(-\pi^*y)) = h^1(L) + 1$. This means that L is not very ample. It is a contradiction. \square
Proposition 1.11. Let \(L \) be a very ample line bundle of degree \(2g - 6 \) with \(h^1(L) = 2 \) on \(C \) of genus \(g \geq 15 \). Then \(L \) is normally generated.

Proof. Thanks to (1.10), we may assume that \(C \) is not an elliptic-hyperelliptic curve.

Assume that \(L \) is not normally generated. If \(e = 0 \) and \(k = 7 \), then \(2k + 4e + 1 = 15 \leq g \). By virtue of (1.2) there exists an effective divisor \(D \) on \(C \) of degree \(\geq 2n + 2 \) \((1 \leq n \leq g - 8) \) such that

\[
\text{Cliff}(L(-D)) \leq \text{Cliff}(L) = 2.
\]

If \(\text{Cliff}(L(-D)) = 0 \), then \(C \) must be a hyperelliptic curve. This contradicts with (1.4). If \(\text{Cliff}(L(-D)) = 1 \), then we have \(\text{deg}(D) = 2n + 3 \),

\[
(\clubsuit) \quad 7 \leq \text{deg}(L(-D)) \leq 2g - 11, \quad \text{and} \quad 9 \leq \text{deg}(K - (L - D)) \leq 2g - 9.
\]

On the other hand, as in the proof of (1.2) we get \(\text{deg}(L(-D)) = 3 \) or \(\text{deg}(K - (L - D)) = 3 \) by ([13], 2.51). This contradicts with \((\clubsuit)\). If \(\text{Cliff}(L(-D)) = 2 \), then we have \(\text{deg}(D) = 2n + 2 \),

\[
(\heartsuit) \quad 8 \leq \text{deg}(L(-D)) \leq 2g - 10, \quad \text{and} \quad 8 \leq \text{deg}(K - (L - D)) \leq 2g - 10.
\]

We claim that \(\text{Cliff}(C) \geq 1 \) by (1.4). Assume that \(\text{Cliff}(C) = 1 \). From \((\heartsuit)\) there exists the line bundle of degree \(\geq 8 \) such that Clifford index is 2. But it is a contradiction by the proof of ([13], 2.57). Next we assume that \(\text{Cliff}(C) = 2 \). Applying ([14], Beispiel 8), \(C \) must be an elliptic-hyperelliptic curve. This is in contradiction with the assumption. \(\square \)

§ 2 Classification of projective surfaces

Lemma 2.1. Let \(S \subseteq \mathbb{P}^n \) be a nondegenerate linearly normal smooth surface, and let \(H \in |\mathcal{O}_S(1)| \) be a nonsingular hyperplane section of \(S \). Then the following holds:

(a) \(h^0(\mathcal{O}_H(1)) \geq n \).

(b) If \(\mathcal{O}_H(1) \) is special, then \(h^0(\mathcal{O}_H(1)) \leq (\frac{1}{2}) \text{deg}(S) + 1 \).

(c) If \(\mathcal{O}_H(1) \) is normally generated and \(H^1(\mathcal{O}_H(2)) = 0 \), then \(q = h^1(\mathcal{O}_s) = 0 \) and \(p_g = h^2(\mathcal{O}_s) = h^1(\mathcal{O}_H(1)) \).

Proof. (a) There is a long exact sequence

\[
0 \rightarrow H^0(\mathcal{O}_s) \rightarrow H^0(\mathcal{O}_s(1)) \rightarrow H^0(\mathcal{O}_H(1)) \rightarrow H^1(\mathcal{O}_s) \rightarrow H^1(\mathcal{O}_s(1)).
\]

So \(h^0(\mathcal{O}_H(1)) \geq n \).
Katsumi Akahori

(b) That inequality comes from Clifford's theorem ([7], IV, 5.4).
(c) Consider the exact sequences

\[0 \rightarrow H^0(\mathcal{O}_s(t-1)) \rightarrow H^0(\mathcal{O}_s(t)) \rightarrow H^0(\mathcal{O}_H(t)) \rightarrow 0, \quad \text{for } t \geq 1. \]

Since \(\mathcal{O}_H(1) \) is normally generated, the natural restriction map \(H^0(\mathcal{O}_s(t)) \rightarrow H^0(\mathcal{O}_H(t)) \) is surjective for all \(t \geq 1 \). Thus \(H^1(\mathcal{O}_s(t-1)) \cong H^1(\mathcal{O}_s(t)) = 0 \) for all \(t \geq 2 \) by Serre's vanishing theorem. Furthermore \(q = h^1(\mathcal{O}_s) = 0 \) since \(h^1(\mathcal{O}_s) \leq h^1(\mathcal{O}_s(1)) \).

We remark that \(H^2(\mathcal{O}_s(t)) \cong H^0(\mathcal{O}_s(K_s-tH)) = 0 \) for a large enough \(t \). Since \(H^1(\mathcal{O}_H(t)) = 0 \) for all \(t \geq 2 \), we have \(H^2(\mathcal{O}_s(t-1)) \cong H^2(\mathcal{O}_s(t)) = 0 \) for all \(t \geq 2 \).

Moreover \(\deg(S) \geq 2\Delta + 1 \) by the lemma above. Theorem 2.3. Let \(S \subseteq \mathbb{P}^n \) be a nondegenerate linearly normal smooth surface of degree \(2\Delta \) with \(g_H \geq \Delta + 1 \geq 4 \). Then \(S \) is a K3 surface and \(g_H = \Delta + 1 \).

Proof. We have \(h^0(\mathcal{O}_H(1)) \geq n \) by (2.1.(a)). If \(\deg(\mathcal{O}_H(1)) \geq 2\Delta + 1 \), we have \(\deg(\mathcal{O}_H(1)) < 2(h^0(\mathcal{O}_H(1)) - 1) \). Using Clifford's theorem ([7], IV, 5.4), we get \(h^1(\mathcal{O}_H(1)) = 0 \). Therefore \(\chi(\mathcal{O}_H(1)) = h^0(\mathcal{O}_H(1)) = \deg(\mathcal{O}_H(1)) + 1 - g_H \geq n \), i.e. \(g_H \leq \Delta \).

(b) Since \(h^1(\mathcal{O}_H(1)) = 0 \), we have \(h^1(\mathcal{O}_s(1)) = \chi(\mathcal{O}_H(1)) = n + \Delta - g_H \leq h^0(\mathcal{O}_s(1)) + h^1(\mathcal{O}_s) - h^0(\mathcal{O}_s) \leq n + h^1(\mathcal{O}_s) \leq n + g_H \). So \(g_H \geq \frac{1}{2}\Delta \) and \(h^1(\mathcal{O}_s) \geq \Delta - g_H \).

First we treat the case of \(g_H > \Delta \) (and hence \(\deg(S) \leq 2\Delta \) by the lemma above).

In (2.3) the case of \(\Delta = 3,4 \) is well-known (see [3], [9]).
Classification of projective surfaces

Theorem 2.4. Let \(S \subseteq \mathbb{P}^n \) be a nondegenerate linearly normal smooth surface of degree \(2\Delta - 1 \) with \(g_H = \Delta + 1 \geq 5 \). Then \(S \) is the projection of a K3 surface from a point in the surface.

Proof. As in the proof of (2.3) we get \(h^0(\mathcal{O}_H(1)) = n = \Delta \) and \(h^1(\mathcal{O}_H(1)) = 1 \). Hence \(\mathcal{O}_H(1) \) is normally generated by virtue of (1.7). Therefore, by applying (2.1, (c)), we get \(p_g = 1 \) and \(q = 0 \). Since \(H.K_s = 1 \) by adjunction formula, \([K_s] \) is the line, and \((K_s)^2 = -1 \). Let

\[
\rho : S \to \mathbb{P}(H^0(\mathcal{O}_s(H + K_s)))
\]

be the adjunction mapping given by \(|H + K_s| \) and let \(Y \) be \(\rho(S) \). We have that \((H + K_s)^2 = 2g_H - 2 \) and \(h^0(\mathcal{O}_s(H + K_s)) = g_H + 1 \). Furthermore \(K_s = \rho^*(K_Y) + K_s \), so \(K_Y = 0 \). We denote the stein factorization of \(\rho \) by

\[
S \xrightarrow{f} S' \xrightarrow{h} Y \subseteq \mathbb{P}(H^0(\mathcal{O}_s(H + K_s))),
\]

where \(S' \) is a K3 surface and \(h \) is an isomorphism by ([20], (2.4)). So \(S \) is the projection of a degree \(2g_H - 2 \) K3 surface from a point in the surface. \(\square \)

In (2.4) the case of \(\Delta = 4 \) is known (see [3], [9]).

Theorem 2.5. Let \(S \subseteq \mathbb{P}^n \) be a nondegenerate linearly normal smooth surface of degree \(2\Delta - 1 \) with \(g_H = \Delta + 2 \geq 9 \). Then \(S \) is a minimal elliptic surface of Kodaira dimension 1.

Proof. As in the proof of (2.3), we have \(h^0(\mathcal{O}_H(1)) = n = \Delta \) and \(h^1(\mathcal{O}_H(1)) = 2 \). So \(\mathcal{O}_H(1) \) is normally generated by (1.9). Hence we obtain \(p_g = 2 \) and \(q = 0 \) by (2.1, (c)). We claim that \(|K_s| \) is without fixed components. Let \(C \) be a member in the variable part of \(|K_s| \). Since \(p_g = 2 \), we have \(C^2 \geq 0 \) ([5], p. 536), and \(C.K_s \geq 0 \). From adjunction formula we have \(H.K_s = 3 \). If \(|K_s| \) has fixed components, \(C.H \leq 2 \). But it is impossible by genus formula for \(C \). Hence \((K_s)^2 = 0 \) and the virtual genus of \(K_s \) \(g(K_s) = 1 \). So \(|K_s| \) is base point free and \(S \) is minimal. \(\square \)

Theorem 2.6. Let \(S \subseteq \mathbb{P}^n \) be a nondegenerate linearly normal smooth surface of degree \(2\Delta - 2 \) with \(g_H = \Delta + 1 \geq 11 \). Then \(S \) is a K3 surface blown up at one point or two points.
Proof. Using (2.1, (a), (b)) we have $h^0(\mathcal{O}_H(1)) = g_H - 1$ or $g_H - 2$. If $h^0(\mathcal{O}_H(1)) = g_H - 1$, then $\text{Cliff}(\mathcal{O}_H(1)) = 0$ and H is a hyperelliptic curve. This contradicts with (1.4). Hence $h^0(\mathcal{O}_H(1)) = g_H - 2$ and $h^1(\mathcal{O}_H(1)) = 1$. Therefore $\mathcal{O}_H(1)$ is normally generated by (1.8). By applying (2.1(c)) we get $p_g = 1$ and $q = 0$. From adjunction formula we have $H.K_s = 2$. Let D be an effective number of $|K_s|$. Since $D^2 \geq -2$ by (12), (0.6), (iii), D is reduced. If D is irreducible, then $D^2 = -1$ and S is a K3 surface at one point. If D is reducible, then $D^2 = 2$ and $(H + K_s)^2 = 2g_H - 2$. We denote the adjunction map by p. Let

$$S \rightarrow S^+ \xrightarrow{h} Y \in \mathbb{P}(H^0(\mathcal{O}_s(H + K_s)))$$

be the Stein factorization of p, where h is isomorphism by ([20], 2.4). By using ([12], (0.6), (ii), (iv)) we have that K_s is trivial and S is a K3 surface blown up at two points.

Theorem 2.7. Let $S \subseteq \mathbb{P}^n$ be a nondegenerate linearly normal smooth surface of degree $2\Delta - 2$ with $g_H = \Delta + 2 \geq 15$. Then S is a minimal elliptic surface of Kodaira dimension 1.

Proof. As in the proof of (2.6), we have $h^0(\mathcal{O}_H(1)) = g_H - 3$ and $h^1(\mathcal{O}_H(1)) = 2$. So $\mathcal{O}_H(1)$ is normally generated by (1.11). By applying (2.1(c)) we get $p_g = 2$ and $q = 0$. As in the proof of (2.5), $|K_s|$ is base point free pencil. Therefore S is a minimal elliptic surface of Kodaira dimension 1.

Next we treat of the case of $g_H = \Delta$.

For next lemma we shall use the following convention. Let E be a normalized rank 2 vector bundle on a nonsingular curve C. Let $S = \mathbb{P}(E)$, and let C_0 be the section determined by the natural embedding $\mathbb{P}(\wedge^2 E) \rightarrow \mathbb{P}(E)$. Then $C_0 \in |\mathcal{O}_s(1)|$, and $(C_0)^2 = \deg(E)$.

Lemma 2.8. Let $\pi : S \cong \mathbb{P}(E) \rightarrow C$ be a scroll mapping, with E a normalized rank 2 vector bundle on a hyperelliptic curve C of genus g. Suppose $\mathcal{O}_s(C_0) \otimes \pi^*D$ is very ample, and the linear system $|\mathcal{O}_s(C_0) \otimes \pi^*D|$ embeds S in \mathbb{P}^n. Then $\Delta - 2 \geq g$ (≥ 2).

Proof. Since $\mathcal{O}_s(C_0) \otimes \pi^*D|_{C_0} = \wedge^2 E \otimes D$ is very ample line bundle on hyperelliptic curve C, $h^1(\wedge^2 E \otimes D) = 0$ by (1.4). Moreover $\deg(\wedge^2 E \otimes D) =$
Classification of projective surfaces

deg(E) + deg(D) ≥ g + 3 by Halphen's theorem ([7], IV, 6.1). By Nagata's theorem ([16], Theorem 2), we have deg(E) ≤ g. So deg(D) ≥ 3. Since h₁(D) ≤ g - (1/2)deg(D) by Clifford's theorem ([7], IV, 5.4) and the Riemann Roch theorem, we get h₁(D) ≤ g - 2. Consider the following exact sequence:

\[0 \to D \to E \otimes D \to \wedge^2 E \otimes D \to 0. \]

From the exact sequence, we have h₁(D) ≥ h₁(E ⊗ D), and \(\chi(E \otimes D) = \deg(S) + 2(1 - g) \) i.e. \(\Delta = 2g - h₁(E \otimes D) ≥ 2g - h₁(D). \) Therefore \(\Delta ≥ 2g - (g - 2) = g + 2. \)

Theorem 2.9. Let \(S \subseteq \mathbb{P}^n \) be a nondegenerate linearly normal smooth surface of degree \(\geq 2\Delta \) with \(h_{\mathcal{H}} = \Delta \geq 2. \) Then \(S \) is a rational surface.

Proof. Let \(H \in |\mathcal{O}_S(1)| \) be a nonsingular hyperplane section of \(S. \) By adjunction formula we have \(H.K_S < 0 \) under our condition. So the Kodaira dimension is \(-\infty. \) Hence we have only to show that \(q = h₁(\mathcal{O}_S) = 0. \) If \(\deg(S) \geq 2\Delta + 1, \mathcal{O}_H(1) \) is normally generated by ([15], Theorem 6 or [4]). By applying (2.1(c)) we get \(q = 0. \) If \(\deg(S) = 2\Delta, \) \(H \) is not hyperelliptic curve by ((2.8) and [19], Theorem (5.10)). Therefore \(\mathcal{O}_H(1) \) is normally generated by (1.1). So \(q = 0 \) by same way.

Finally we consider the case of \(g_H < \Delta. \) If \(h₁(\mathcal{O}_H(1)) = 0, \) we may assume that \(g_H \geq (1/2)\Delta \) by (2.2, (b)).

Theorem 2.10. Let \(S \subseteq \mathbb{P}^n \) be a nondegenerate linearly normal smooth surface of degree \(\geq \Delta - 1 \) with \(g_H = (1/2)\Delta \geq 1 \) (\(\Delta \) is even). Then \(S \) is a scroll over a curve of genus \(g_H. \)

Proof. Since \(\deg(\mathcal{O}_H(1)) \geq 2g_H - 1, \) \(h₁(\mathcal{O}_H(1)) = 0. \) So \(h₁(\mathcal{O}_S) \geq \Delta - g_H \) by (2.2, (b)). Since \(g_H \geq h₁(\mathcal{O}_S), \) we have \(h₁(\mathcal{O}_S) = g_H. \) Therefore \(S \) is a scroll over a curve of genus \(g_H \) by ([20], (1.52)).

§ 3. Projective normality of projective surfaces

Lemma 3.1. Let \(S \subseteq \mathbb{P}^n \) be a nondegenerate surface, and let \(H \in |\mathcal{O}_S(1)| \) be a smooth hyperplane section of \(S. \) If \(H \subseteq \mathbb{P}^{n-1} \) is projectively normal, then \(S \subseteq \mathbb{P}^n \) is projectively normal as well.
Katsumi Akahori

Proof. We consider the following commutative diagram:

\[
\begin{array}{ccc}
0 & \rightarrow & H^0(P^n, \mathcal{O}(k-1)) \\
\downarrow & & \downarrow \\
0 & \rightarrow & H^0(S, \mathcal{O}_S(k-1))
\end{array}
\]

It is easy to prove the lemma by induction on \(k \).

Theorem 3.2. Let \(S \subset P^n \) be a nondegenerate linearly normal smooth surface of \(\Delta \)-genus \(\Delta \). Let \(H \in |\mathcal{O}_S(1)| \) be a smooth hyperplane section of \(S \), and let \(g_H \) be its genus.

If \(\deg(S) = 2\Delta \) and \(g_H \geq \Delta \geq 4 \), then \(S \) is projective normal.

Proof. We can prove the theorem by combining the proofs of (2.3), (2.9) and (3.1).

Acknowledgements. I wish to express my gratitude to Professor E. Sato, Professor A. Ohbuchi and Professor H. Maeda for their encouragements. Special thanks for Professor M. Homma's kindness. I fell indebted to Professor R. Lasersfeld who kindly sent me his paper [6] in unpublished form.

References

[1] Castelnuovo, G., Sulle superficie algebriche le cui sezioni piane sono curve iperellittiche, Memorie Scelte, XII, Zanichelli Bologna (1939)
Classification of projective surfaces

[12] Livorini, E. L., Classification of algebraic non-ruled surfaces with sectional genus less than or equal to six, Nagaya Math. J. 100, 1–9 (1985)

Kyushu University
6-10-1 Hakozaki Higasi-ku
Fukuoka 812 Japan