ON CURVATURE PROPERTIES OF CERTAIN GENERALIZED ROBERTSON-WALKER SPACETIMES

Dedicated to the memory of Professor Dr. Georgii Ionovich Kruchkovich

By
Ryszard DESZCZ and Marek KUCHARSKI

1. Introduction

The warped product $\tilde{M} \times_F N$, of a 1-dimensional manifold $(\tilde{M}, \tilde{g}), \tilde{g}_{11} = -1$, with a warping function F and a 3-dimensional Riemannian manifold (N, \tilde{g}) is said to be a generalized Robertson-Walker spacetime (cf. [2], [32]). In particular, when the manifold (N, \tilde{g}) is a Riemannian space of constant curvature, the warped product $\tilde{M} \times_F N$ is called a Robertson-Walker spacetime. In [11] it was shown that at every point of a generalized Robertson-Walker spacetime $\tilde{M} \times_F N$ the following condition is satisfied:

\[(*) \quad \text{the tensors } R \cdot R - Q(S, R) \text{ and } Q(g, C) \text{ are linearly dependent.} \]

This condition is equivalent to the relation

\[R \cdot R - Q(S, R) = L_1 Q(g, C) \quad (1) \]

on the set \mathcal{U}_C consisting of all points of the manifold $\tilde{M} \times_F N$ at which its Weyl tensor C is non-zero, where L_1 is a certain function on \mathcal{U}_C. For precise definitions of the symbols used, we refer to the Sections 2 and 3. $(*)_1$ is a curvature condition of pseudosymmetry type. In this paper we will investigate generalized Robertson-Walker spacetimes realizing a condition of pseudosymmetry type introduced in [25]. Namely, semi-Riemannian manifolds $(M, g), n \geq 4$, fulfilling at every point of M the following condition

\[(*) \quad \text{the tensors } R \cdot C \text{ and } Q(S, C) \text{ are linearly dependent.} \]

were considered in [25]. This condition is equivalent to the relation

\[R \cdot C = L Q(S, C) \quad (2) \]
on the set \(\mathcal{U} = \{ x \in M | Q(S, C) \neq 0 \text{ at } x \} \), where \(L \) is a certain function on \(\mathcal{U} \). We note that every semisymmetric manifold \((R \cdot R = 0)\) as well as every Weyl-semisymmetric manifold \((R \cdot C = 0)\) realizes \((*)\) trivially (see [25]). There exist also non-semisymmetric and non Weyl-semisymmetric manifolds realizing \((*)\) ([25]). We mention that warped products realizing curvature conditions of pseudosymmetry type were studied in: [7], [8], [9], [11], [13], [14], [15], [16], [17], [19], [20], [21], [24], [26], [28] and [29].

In Section 2 we present a review of the family of curvature conditions of pseudosymmetry type. In the next section we give results on warped products which we apply in the last two sections. In Section 4 we find necessary and sufficient conditions for a warped product to be a manifold satisfying (2). Finally, in Section 5 we present our main results.

Let \((M, g)\) be a semi-Riemannian manifold satisfying \((*)\). We denote by \(\mathcal{U}_L\) the set of all points of the set \(\mathcal{U} \subset M\) at which the function \(L\) is non-zero. It is clear that the tensors \(R \cdot C\) and \(Q(S, C)\) are non-zero at every point of the set \(\mathcal{U}_L\). Moreover, let \((M, g)\) be a 4-dimensional warped product \(\bar{M} \times_F N\), \(\dim \bar{M} = 1\). We denote by \(\mathcal{U}_F\) the subset of \(\mathcal{U}_L\) consisting of all non-critical points of \(F\). Our main result states (see Theorem 5.1) that if the 4-dimensional warped product \(\bar{M} \times_F N\), \(\dim \bar{M} = 1\), satisfies \((*)\) and the set \(\mathcal{U}_F\) is a dense subset of \(\mathcal{U}_L\) then the open submanifold \(U_L\) of the manifold \(\bar{M} \times_F N\) is a pseudosymmetric warped product of the 1-dimensional manifold, with the function \(F\), defined by \(F(x^1) = a \exp(bx^1), \quad a = \text{const.} > 0, \quad b = \text{const.} \neq 0\), and a 3-dimensional semi-Riemannian manifold such that its Ricci tensor is of rank one and its scalar curvature vanishes identically. From this statement it follows immediately (see Corollary 5.1) that if a generalized Robertson-Walker spacetime \(\bar{M} \times_F N\) realizes above assumptions then at every point of \(\bar{M} \times_F N\) at least one of the tensors \(R \cdot C\) or \(Q(S, C)\) must vanish. Finally, using this fact we prove (see Theorem 5.2) that every Robertson-Walker spacetime satisfying \((*)\) is a pseudosymmetric manifold.

2. Curvature Conditions of Pseudosymmetry Type

Let \((M, g)\) be a connected \(n\)-dimensional, semi-Riemannian manifold of class \(C^\infty\) and let \(\nabla\) be its Levi-Civita connection. We define on \(M\) the endomorphisms \(X \wedge Y, \mathcal{R}(X, Y)\) and \(\mathcal{C}(X, Y)\) by

\[
(X \wedge Y)Z = g(Y, Z)X - g(X, Z)Y, \quad \mathcal{R}(X, Y)Z = [\nabla_X, \nabla_Y]Z - \nabla_{[X,Y]}Z,
\]

\[
\mathcal{C}(X, Y) = \mathcal{R}(X, Y) - \frac{1}{n-2} \left(X \wedge \mathcal{H}Y + \mathcal{H}X \wedge Y - \frac{\kappa}{n-1} X \wedge Y \right),
\]
On curvature properties of certain
respectively, where \(X, Y, Z \in \mathfrak{X}(M), \mathfrak{X}(M) \) being the Lie algebra of vector fields of \(M \). The Ricci operator \(\mathcal{R} \) is defined by \(S(X, Y) = g(X, \mathcal{R}Y) \), where \(S \) is the Ricci tensor and \(\kappa \) the scalar curvature of \((M, g)\), respectively. Next, we define the tensors \(U, G \), the Riemann-Christoffel curvature tensor \(R \) and the Weyl conformal tensor \(C \) of \((M, g)\), by
\[
U(X_1, X_2, X_3, X_4) = g(X_1, X_4)S(X_2, X_3) + g(X_2, X_3)S(X_1, X_4) \\
- g(X_1, X_3)S(X_2, X_4) - g(X_2, X_4)S(X_1, X_3),
\]
\[
G(X_1, X_2, X_3, X_4) = g((X_1 \wedge X_2)X_3, X_4),
\]
\[
R(X_1, X_2, X_3, X_4) = g(\mathcal{R}(X_1, X_2)X_3, X_4),
\]
\[
C(X_1, X_2, X_3, X_4) = g(\mathcal{C}(X_1, X_2)X_3, X_4),
\]
respectively. Now we can present the Weyl tensor \(C \) in the following form
\[
C = R - \frac{1}{n-2} U + \frac{\kappa}{(n-2)(n-1)} G. \tag{3}
\]
For a \((0,k)\)-tensor field \(T, k \geq 1 \), we define the \((0,k+2)\)-tensors \(R \cdot T \) and \(Q(g, T) \) by
\[
(R \cdot T)(X_1, \ldots, X_k; X, Y) = (\mathcal{R}(X, Y) \cdot T)(X_1, \ldots, X_k) \\
- T(\mathcal{R}(X, Y)X_1, X_2, \ldots, X_k) \\
- \cdots - T(X_1, \ldots, X_{k-1}, \mathcal{R}(X, Y)X_k),
\]
\[
Q(g, T)(X_1, \ldots, X_k; X, Y) = ((X \wedge Y) \cdot T)(X_1, \ldots, X_k) \\
= - T((X \wedge Y)X_1, X_2, \ldots, X_k) \\
- \cdots - T(X_1, \ldots, X_{k-1}, (X \wedge Y)X_k).
\]
Putting in the last formulas \(T = R, T = S \) or \(T = C \), we obtain the tensors \(R \cdot R, R \cdot S, R \cdot C, Q(g, R), Q(g, S) \) and \(Q(g, C) \), respectively. The tensor \(C \cdot C \) we define in the same way as the tensor \(R \cdot R \).
Let \((M, g)\) be a Riemannian manifold covered by a system of charts \(\{ U; x' \} \). We denote by \(g_{rs}, \Gamma^r_{st}, R_{rstu}, S_{st}, G_{rstu} = g_{ru}g_{st} - g_{rt}g_{su} \) and
\[
C_{rstu} = R_{rstu} - \frac{1}{n-2} (g_{ru}S_{st} - g_{rt}S_{su} + g_{st}S_{ru} - g_{su}S_{rt}) + \frac{\kappa}{(n-2)(n-1)} G_{rstu},
\]
the local components of the metric g, the Levi-Civita connection ∇, the Riemann-Christoffel curvature tensor \mathbf{R}, the Ricci tensor \mathbf{S}, the tensor \mathbf{G}, and the Weyl conformal curvature tensor \mathbf{C} of (M, g), respectively, where $p, g, r, s, t, u, v, w \in \{1, 2, \ldots, n\}$. The local components of the tensors $\mathbf{R} \cdot \mathbf{R}$ and $Q(g, R)$ are given by the following formulas

$$(R \cdot R)_{rstuvw} = \nabla_w \nabla_v R_{rstu} - \nabla_v \nabla_w R_{rstu}$$

$$= g^{pq} (R_{pstu} R_{qrvw} - R_{prt} R_{qsvu} - R_{pqrst} R_{quvw}),$$

$$Q(g, R)_{rstuvw} = g_{rq} R_{rstw} + g_{sv} R_{rstw} + g_{tv} R_{rstw} + g_{uw} R_{rstw} - g_{rw} R_{rstw} - g_{sw} R_{rstw} - g_{uw} R_{rstw}.$$

A semi-Riemannian manifold (M, g), $n \geq 2$, is said to be an Einstein manifold if the following condition

$$S = \frac{\kappa}{n} g$$

holds on M. According to [4] (p. 432), (4) is called the Einstein metric condition. Einstein manifolds form a natural subclass of various classes of semi-Riemannian manifolds determined by a curvature condition imposed on their Ricci tensor ([4], Table, pp. 432–433). For instance, every Einstein manifold belongs to the class of semi-Riemannian manifolds (M, g) realizing the following relation

$$\nabla \left(S - \frac{\kappa}{2(n-1)} g \right)(X, Y; Z) = \nabla \left(S - \frac{\kappa}{2(n-1)} g \right)(X, Z; Y),$$

which means that $S - (\kappa/(2(n-1)))g$ is a Codazzi tensor on M. Manifolds of dimension ≥ 4 fulfilling (5) are called manifolds with harmonic Weyl tensor ([4], p. 440). It is known that every warped product $S^1 \times_F M$ of the sphere S^1, with a positive smooth function F, and an Einstein manifold (M, g), $\dim M \geq 2$, realizes (5) ([4], p. 433). Such warped product is a non-Einstein manifold, in general. We say that (5) is a generalized Einstein metric condition ([4], chapter XVI). On the other hand, such warped product realizes a condition of pseudosymmetry type too. Namely, the warped product $S^1 \times_F M$ of the sphere S^1, with a positive smooth function F, and an Einstein manifold (M, g), $\dim M \geq 2$, is a Ricci-pseudosymmetric manifold ([24], Corollary 3.2). Thus, in particular, the warped product $S^1 \times_F \mathbb{C}P^n$ of S^1, with a positive smooth function \mathcal{F}, and the complex projective space $\mathbb{C}P^n$ (considered with its standard Riemannian locally symmetric metric) is a Ricci-pseudosymmetric manifold.
A semi-Riemannian manifold \((M, g), n \geq 3\), is said to be Ricci-pseudosymmetric ([14], [24]) if at every point of \(M\) the following condition is satisfied:

\[(*)_2 \quad \text{the tensors } R \cdot S \quad \text{and} \quad Q(g, S) \quad \text{are linearly dependent.} \]

Evidently, any Einstein manifold is Ricci-pseudosymmetric. Thus we see that \((*)_2\) is a generalized Einstein metric condition. The manifold \((M, g)\) is Ricci-pseudosymmetric if and only if

\[R \cdot S = L_S Q(g, S) \tag{6} \]

holds on the set \(U_S = \{ x \in M \mid S - (\kappa/n)g \neq 0 \text{ at } x \}\), where \(L_S\) is some function on \(U_S\). Warped products realizing \((*)_2\) were considered in [14], [17], [24] and [26]. Certain examples of compact and non-Einstein Ricci-pseudosymmetric manifolds were found in [26] and [30]. For instance, in [30] (Theorem 1) it was shown that the Cartan hypersurfaces \(M\) in the spheres \(S^7, S^{17}\) or \(S^{25}\) are non-pseudosymmetric, Ricci-pseudosymmetric manifolds with non-pseudosymmetric Weyl tensor. The Cartan hypersurfaces \(M\) in \(S^4\) are non-semisymmetric, pseudosymmetric manifolds. Ricci-pseudosymmetric hypersurfaces immersed isometrically in a semi-Riemannian manifolds of constant curvature were investigated in [10].

A very important subclass of the class of Ricci-pseudosymmetric manifolds form pseudosymmetric manifolds. The semi-Riemannian manifold \((M, g), n \geq 3\), is said to be pseudosymmetric ([21]) if at every point of \(M\) the following condition is satisfied:

\[(*)_3 \quad \text{the tensors } R \cdot R \quad \text{and} \quad Q(g, R) \quad \text{are linearly dependent.} \]

The manifold \((M, g)\) is pseudosymmetric if and only if

\[R \cdot R = L_R Q(g, R) \tag{7} \]

holds on the set \(U_R = \{ x \in M \mid R - (\kappa/(n(n - 1)))G \neq 0 \text{ at } x \}\), where \(L_R\) is some function on \(U_R\). It is clear that any semisymmetric manifold \((R \cdot R = 0, [36])\) is pseudosymmetric. Very recently the theory of Riemannian semisymmetric manifolds has been presented in [6]. The condition \((*)_3\) arose during the study of totally umbilical submanifolds of semisymmetric manifolds ([1]) as well as when we consider geodesic mappings of semisymmetric manifolds ([18], [37]). There exist many examples of pseudosymmetric manifolds which are not semisymmetric ([13], [19], [20], [21], [28]). Among these examples we can distinguish also compact pseudosymmetric manifolds (for instance, see [19], Example 3.1 and Theorem 4.1). Another example of a compact pseudosymmetric manifold is the warped product \(S^1 \times_F S^{n-1}\), with a positive smooth function \(F\), as well as \(n\)-dimensional
tori T^n with a certain metric (see [19], Examples 4.1 and 4.2). It is clear that if at a point x of a manifold (M, g) $(*)_3$ is satisfied then also $(*)_2$ holds at x. The converse statement is not true. E.g. every warped product $M_1 \times_F M_2$, $\dim M_1 = 1$, $\dim M_2 \geq 3$, of a manifold (M_1, \tilde{g}) and a non-pseudosymmetric, Einstein manifold (M_2, \tilde{g}) is a non-pseudosymmetric, Ricci-pseudosymmetric manifold (cf. [24], Remark 3.4 and [21], Theorem 4.1).

It is easy to see that if $(*)_3$ holds on a semi-Riemannian manifold (M, g), $n \geq 4$, then at every point of M the following condition is satisfied:

$$(*)_4 \quad \text{the tensors } R \cdot C \text{ and } Q(g, C) \text{ are linearly dependent.}$$

Manifolds fulfilling $(*)_4$ are called Weyl-pseudosymmetric. Weyl-pseudosymmetric manifolds has been studied in [15], [17] and [22]. The manifold (M, g) is a Weyl-pseudosymmetric manifold if and only if the relation $R \cdot C = L_2 Q(g, C)$ holds on the set $\mathcal{U}_C = \{x \in M \mid C \neq 0 \text{ at } x\}$, where L_2 is some function on \mathcal{U}_C.

A semi-Riemannian manifold (M, g), $n \geq 4$, is said to be a manifold with pseudosymmetric Weyl tensor ([29]) if at every point of M the following condition is satisfied:

$$(*)_5 \quad \text{the tensors } C \cdot C \text{ and } Q(g, C) \text{ are linearly dependent.}$$

Thus (M, g) is a manifold with pseudosymmetric Weyl tensor if and only if the relation $C \cdot C = L_3 Q(g, C)$ holds on the set \mathcal{U}_C, where L_3 is a certain function on \mathcal{U}_C. The condition $(*)_5$ arose during the study of 4-dimensional warped products ([17]). Namely, in [17] (Theorem 2) it was shown that at every point of a warped product $M_1 \times_F M_2$, with $\dim M_1 = \dim M_2 = 2$, $(*)_5$ is fulfilled. Many examples of manifolds satisfying $(*)_5$ are presented in [9]. For instance, the Cartesian product of two manifolds of constant curvature is a manifold realizing $(*)_5$. Warped products satisfying $(*)_5$ were considered in [29]. In [9] it was shown that the classes of manifolds realizing $(*)_3$ and $(*)_5$ do not coincide. However, there exist pseudosymmetric manifolds fulfilling $(*)_5$, e.g. Einsteinian pseudosymmetric manifolds ([9], Theorem 3.1). Curvature properties of pseudosymmetric manifolds with pseudosymmetric Weyl tensor were obtained in [31].

For a $(0, k)$-tensor field $T, k \geq 1$, and a symmetric $(0, 2)$-tensor field A, we define the $(0, k + 2)$-tensor $Q(A, T)$ by

$$Q(A, T)(X_1, \ldots, X_k; X, Y) = ((X \wedge_A Y) \cdot T)(X_1, \ldots, X_k)$$

$$= -T((X \wedge_A Y)X_1, X_2, \ldots, X_k)$$

$$- \cdots - T(X_1, \ldots, X_{k-1}, (X \wedge_A Y)X_k),$$
where $X \wedge_A Y$ is the endomorphism defined by

$$(X \wedge_A Y)Z = A(Y, Z)X - A(X, Z)Y.$$

In particular, we have $X \wedge g Y = X \wedge Y$. Putting in the above formula $A = S$ and $T = R, T = C$ or $T = G$, we obtain the tensors $Q(S, R), Q(S, C)$ and $Q(S, G)$, respectively.

A semi-Riemannian manifold (M, g) is said to be Ricci-generalized pseudosymmetric ([7]) if at every point of M the following condition is satisfied:

$$(*)_6 \quad \text{the tensors } R \cdot R \text{ and } Q(S, R) \text{ are linearly dependent.}$$

A very important subclass of Ricci-generalized pseudosymmetric manifolds form manifolds fulfilling the following relation $R \cdot R = Q(S, R)$ ([7], [8], [23]). Every 3-manifold (M, g) as well as every hypersurface M immersed isometrically in an $(n + 1)$-dimensional semi-Euclidean space E_{s}^{n+1}, of index $s, n \geq 3$, fulfils the last equality, see [16] (Theorem 3.1) and [27] (Corollary 3.1), respectively.

As it was shown in [27], every hypersurface M in a semi-Riemannian space of constant curvature $M^{n+1}(c), n \geq 4$, fulfils (1). More precisely, we have the following

Remark 2.1 ([27], Proposition 3.1). *Every hypersurface M immersed isometrically in a semi-Riemannian space of constant curvature $M^{n+1}(c), n \geq 4$, satisfies the equality $R \cdot R - Q(S, R) = -(((n - 2)\tilde{k})/(n(n + 1)))Q(g, C)$, where \tilde{k} is the scalar curvature of $M^{n+1}(c)$ and R, S and C are the curvature tensor, the Ricci tensor and the Weyl tensor of M, respectively.*

Using Theorem 3.1 of [16], which was mentioned above, and the fact that the Weyl tensor of every 3-dimensional semi-Riemannian manifold vanishes identically, we conclude that $(*)_1$ is trivially satisfied on any 3-dimensional semi-Riemannian manifold. Recently, warped products realizing $(*)_1$ were considered in [11].

The relations $(*)_1, (**)_1 - (**)_6$ are called conditions of pseudosymmetry type. We refer to [12], [18] and [37] as the review papers on semi-Riemannian manifolds satisfying such conditions. A hypersurface fulfilling a curvature condition of pseudosymmetry type is said to be a hypersurface of pseudosymmetry type ([12]).

We finish this section with the following

Lemma 2.1. *Let $(M, g), n = \text{dim} M \geq 3$, be a semi-Riemannian manifold.*

(i) ([13], Lemma 1.2; [23], Lemma 2) *If the Weyl tensor C of (M, g) vanishes at a point $x \in M$ then at x any of the following three identities is equivalent to each*
\[R \cdot R = aQ(g, R), \quad R \cdot S = aQ(g, S), \]
\[\left(\frac{\kappa}{n-1} + (n-2) \alpha \right) \left(S - \frac{\kappa}{n} \bar{g} \right) = S^2 - \frac{1}{n} \text{tr}(S^2) \bar{g}, \]

where \(\alpha \in \mathbb{R} \).

(ii) ([3], Lemma 3.1) The following identity is fulfilled on \(M : Q(S, G) = -Q(g, U) \).

(iii) ([16], Theorem 3.1) If \(\text{dim } M = 3 \) then \(R \cdot R = Q(S, R) \) holds on \(M \).

(iv) If the following conditions are fulfilled at a point \(x \in M : C = 0, \quad \text{rank} (S) = 1 \quad \text{and} \quad \kappa = 0, \) then \(R \cdot R = 0 \) holds at \(x \).

Proof. (iv) The condition \(\text{rank}(S) = 1 \) we can present in the following form

\[S_{ij} = \beta u_i u_j, \quad u \in T_x^*(M), \quad \beta \in \mathbb{R}, \]

(8)

where \(u_i \) are the local components of \(u \). From (8), by \(\kappa = 0 \), it follows that \(\beta g^{ij} u_i u_j = 0 \). Transvecting now (8) with \(u^i = g^{ij} u_j \) we get \(u^i S_{ij} = 0 \). Next, transvecting (8) with \(S'_k \) and using the last relation we get \(S'_{ij} = 0 \) which, in view of (i), completes the proof.

3. Warped Products

Let now \((\bar{M}, \bar{g}) \) and \((N, \bar{g}) \), \(\text{dim } \bar{M} = p, \text{dim } N = n - p, 1 \leq p < n \), be semi-Riemannian manifolds covered by systems of charts \(\{U; x^a\} \) and \(\{V; y^\beta\} \), respectively. Let \(F \) be a positive smooth function on \(\bar{M} \). The warped product \(\bar{M} \times_F N \) of \((\bar{M}, \bar{g}) \) and \((N, \bar{g}) \) ([5], [33]) is the product manifold \(\bar{M} \times N \) with the metric \(g = \bar{g} \times_F \bar{g} \) defined by

\[\bar{g} \times_F \bar{g} = \pi_1^* \bar{g} + (F \circ \pi_1) \pi_2^* \bar{g}, \]

where \(\pi_1 : \bar{M} \times N \to \bar{M} \) and \(\pi_2 : \bar{M} \times N \to N \) are the natural projections on \(\bar{M} \) and \(N \), respectively. Let \(\{U \times V; x^1, \ldots, x^p, x^{p+1} = y^1, \ldots, x^n = y^{n-p}\} \) be a product chart for \(\bar{M} \times N \). The local components of the metric \(g = \bar{g} \times_F \bar{g} \) with respect to this chart are the following \(g_{rs} = \bar{g}_{ab} \) if \(r = a \) and \(s = b, g_{rs} = F \bar{g}_{ab} \) if \(r = a \) and \(s = \beta \), and \(g_{rs} = 0 \) otherwise, where \(a, b, c, \ldots \in \{1, \ldots, p\}, \alpha, \beta, \gamma, \ldots \in \{p + 1, \ldots, n\} \) and \(r, s, t, \ldots \in \{1, 2, \ldots, n\} \). We will denote by bars (resp., by tildes) tensors formed from \(\bar{g} \) (resp., \(\bar{g} \)). The local components \(\Gamma^r_{st} \) of the Levi-Civita connection \(\nabla \) of \(\bar{M} \times_F N \) are the following ([34]):
On curvature properties of certain

\[\Gamma^a_{bc} = \tilde{\Gamma}^a_{bc}, \quad \Gamma^a_{\beta\gamma} = \tilde{\Gamma}^a_{\beta\gamma}, \quad \Gamma^a_{\alpha\beta} = -\frac{1}{2} \tilde{g}^{ab} F_b \tilde{g}_{a\beta}, \quad \Gamma^a_{\alpha\beta} = \frac{1}{2F} F_d \delta^a_{\beta}, \]

\[\Gamma^a_{\alpha\beta} = \Gamma^a_{\alpha\beta} = 0, \quad F_a = \partial_a F = \frac{\partial F}{\partial x^a}, \quad \partial_a = \frac{\partial}{\partial x^a}. \]

The local components

\[R_{rstu} = g_{rw} R^w_{stu} = g_{rw} (\partial_u \Gamma^w_{st} - \partial_t \Gamma^w_{su} + \Gamma^v_{su} \Gamma^w_{tv} - \Gamma^v_{st} \Gamma^w_{uv}), \quad \partial_u = \frac{\partial}{\partial x^u}, \]

of the Riemann-Christoffel curvature tensor \(R \) and the local components \(S_{rs} \) of the Ricci tensor \(S \) of the warped product \(\overline{M} \times_F N \) which may not vanish identically are the following:

\[R_{abcd} = \tilde{R}_{abcd}, \quad R_{a\beta\gamma} = -\frac{1}{2} T_{ab} \tilde{g}_{a\beta}, \quad R_{a\beta\gamma} = F \tilde{R}_{a\beta\gamma} - \frac{1}{4} \Delta_1 F \tilde{G}_{a\beta\gamma}, \quad (9) \]

\[S_{ab} = \tilde{S}_{ab} - \frac{n-p}{2} \frac{T_{ab}}{F}, \quad S_{a\beta} = \tilde{S}_{a\beta} - \frac{1}{2} \left(tr(T) + \frac{n-p-1}{2F} \Delta_1 F \right) \tilde{g}_{a\beta}, \quad (10) \]

where

\[T_{ab} = \tilde{V}_b F_a - \frac{1}{2F} F_a F_b, \quad tr(T) = \tilde{g}^{ab} T_{ab}, \quad \Delta_1 F = \Delta_1 F = \tilde{g}^{ab} F_a F_b, \quad (11) \]

and \(T \) is the \((0,2)\)-tensor with the local components \(T_{ab} \). The scalar curvature \(\kappa \) of \(\overline{M} \times_F N \) satisfies the following relation

\[\kappa = \tilde{\kappa} + \frac{1}{F} \tilde{\kappa} - \frac{n-p}{F} \left(tr(T) + \frac{n-p-1}{4F} \Delta_1 F \right). \quad (12) \]

From now we assume that \(\dim \overline{M} \times_F N = 4 \) and \(\dim \overline{M} = 1 \). Then (9), (10) and (12) turn into

\[R_{x11\beta} = -\frac{1}{2} T_{11} \tilde{g}_{a\beta}, \quad R_{a\beta\gamma\delta} = F \tilde{R}_{a\beta\gamma\delta} - \frac{1}{4} \Delta_1 F \tilde{G}_{a\beta\gamma\delta}, \quad (13) \]

\[S_{11} = -\frac{3}{2F} T_{11}, \quad S_{a\beta} = \tilde{S}_{a\beta} - \frac{1}{2} \left(tr(T) + \frac{\Delta_1 F}{F} \right) \tilde{g}_{a\beta}, \quad (14) \]

\[\kappa = \frac{1}{F} \tilde{\kappa} - \frac{3}{F} \left(tr(T) + \frac{1}{2} \frac{\Delta_1 F}{F} \right). \quad (15) \]

respectively. Further, by making use of (13), (14) and (15), we obtain the following relations (see [17], Lemma 6):
\[C_{a11\beta} = -\frac{1}{2} \bar{g}_{11} \left(\tilde{S}_{2\beta} - \frac{1}{3} \tilde{k} \tilde{g}_{2\beta} \right), \]
\[C_{a\beta\gamma\delta} = \frac{1}{2} F (\tilde{g}_{a\beta} \tilde{S}_{\beta\gamma} - \tilde{g}_{a\beta} \tilde{S}_{\beta\gamma} - \tilde{g}_{\gamma\delta} \tilde{S}_{a\beta} - \tilde{g}_{\gamma\delta} \tilde{S}_{a\beta} - \frac{1}{3} F \tilde{k} \tilde{G}_{a\beta\gamma\delta}. \quad (16) \]

On the other hand, from (3) it follows that
\[\tilde{C}_{a\beta\gamma\delta} = \tilde{R}_{a\beta\gamma\delta} - \tilde{U}_{a\beta\gamma\delta} + \frac{1}{2} \tilde{k} \tilde{G}_{a\beta\gamma\delta}. \quad (17) \]

Since \(\tilde{C}_{a\beta\gamma\delta} = 0 \), the last identity reduces to
\[\tilde{U}_{a\beta\gamma\delta} = \tilde{R}_{a\beta\gamma\delta} + \frac{1}{2} \tilde{k} \tilde{G}_{a\beta\gamma\delta}. \quad (18) \]

Now (16) turns into
\[C_{a11\beta} = -\frac{1}{2} \bar{g}_{11} (\tilde{S}_{a\beta} - \frac{1}{3} \tilde{k} \tilde{g}_{a\beta}), \quad C_{a\beta\gamma\delta} = \frac{1}{2} F \tilde{R}_{a\beta\gamma\delta} - \frac{1}{12} F \tilde{k} \tilde{G}_{a\beta\gamma\delta}. \quad (19) \]

4. Preliminary Results

Let \(\tilde{M} \times_F N \) be a 4-dimensional warped product with 1-dimensional base manifold \((\tilde{M}, \bar{g})\). Using (13), (14), (18) and (19), we can verify that the local components of the tensors \(R \cdot C \) and \(Q(S, C) \) of the manifold \(\tilde{M} \times_F N \), which may not vanish identically are the following:

\[(R \cdot C)_{\alpha\beta\gamma\delta\mu} = \frac{1}{2} F (\tilde{R} \cdot \tilde{R})_{\alpha\beta\gamma\delta\mu} - \frac{1}{8} \Delta_1 F Q(\tilde{g}, \tilde{R})_{\alpha\beta\gamma\delta\mu}, \quad (20) \]

\[Q(S, C)_{\alpha\beta\gamma\delta\mu} = -\frac{1}{4} F \left(tr(T) + \frac{\Delta_1 F}{F} \right) Q(\tilde{g}, \tilde{R})_{\alpha\beta\gamma\delta\mu} \]
\[+ \frac{1}{2} F Q(\tilde{S}, \tilde{R})_{\alpha\beta\gamma\delta\mu} - \frac{1}{12} F \tilde{k} Q(\tilde{S}, \tilde{G})_{\alpha\beta\gamma\delta\mu}, \quad (21) \]

\[(R \cdot C)_{a\beta\gamma\delta\mu} = -\frac{1}{2} F T_{11} C_{a\beta\gamma\delta\mu} + \frac{1}{12} \tilde{k} T_{11} \tilde{G}_{a\beta\gamma\delta\mu} - \frac{1}{4} T_{11} (\tilde{g}_{\gamma\delta} \tilde{S}_{a\beta} - \tilde{g}_{\beta\mu} \tilde{S}_{a\gamma}), \quad (22) \]

\[Q(S, C)_{a\beta\gamma\delta\mu} = -\frac{3}{2} \frac{1}{2} F T_{11} C_{a\beta\gamma\delta} + \frac{1}{2} \bar{g}_{11} \left(\tilde{S}_{\gamma\delta} \tilde{S}_{a\beta} - \tilde{S}_{\delta\mu} \tilde{S}_{a\gamma} - \frac{1}{3} \tilde{k} (\tilde{g}_{a\beta} \tilde{S}_{\gamma\delta} - \tilde{g}_{a\gamma} \tilde{S}_{\delta\beta}) \right) \]
\[+ \frac{1}{12} \tilde{k} \left(tr(T) + \frac{\Delta_1 F}{F} \right) \bar{g}_{11} \tilde{G}_{a\beta\gamma\delta} \]
\[- \frac{1}{4} \bar{g}_{11} \left(tr(T) + \frac{\Delta_1 F}{F} \right) (\tilde{g}_{\gamma\delta} \tilde{S}_{a\beta} - \tilde{g}_{\beta\mu} \tilde{S}_{a\gamma}), \quad (23) \]
On curvature properties of certain

\[(R \cdot C)_{a11 \beta \gamma} = -\frac{1}{2} \frac{1}{F} \bar{g}_{11} \left(F(R \cdot \bar{S})_{a \beta \gamma} - \frac{1}{4} \Delta_1 F Q(\bar{g}, \bar{S})_{a \beta \gamma} \right), \quad (24) \]

\[Q(S, C)_{a11 \beta \gamma} = -\frac{1}{2} \bar{g}_{11} \left(\frac{1}{6} \tilde{k} - \frac{1}{2} \left(t r(T) + \frac{\Delta_1 F}{F} \right) \right) Q(\bar{g}, \bar{S})_{a \beta \gamma}, \quad (25) \]

From Lemma 2.1(ii), it follows that \(Q(\bar{S}, \bar{G})_{a \beta \gamma} = -Q(\bar{g}, \bar{G})_{a \beta \gamma}, \) which by making use of (18), turns into \(Q(\bar{S}, \bar{G})_{a \beta \gamma} \). Now (21) takes the form

\[Q(S, C)_{a \beta \gamma} = \frac{1}{2} F \left(Q(\bar{S}, \bar{G})_{a \beta \gamma} + \left(\frac{1}{6} \tilde{k} - \frac{1}{2} \left(t r(T) + \frac{\Delta_1 F}{F} \right) \right) Q(\bar{g}, \bar{G})_{a \beta \gamma} \right). \quad (26) \]

In view of Lemma 2.1(iii), we have also \((\bar{R} \cdot \bar{R})_{a \beta \gamma} = Q(\bar{S}, \bar{G})_{a \beta \gamma}. \) Substituting this in (26) we obtain

\[Q(S, C)_{a \beta \gamma} = \frac{1}{2} F (\bar{R} \cdot \bar{G})_{a \beta \gamma} + \left(\frac{1}{6} \tilde{k} - \frac{1}{2} \left(t r(T) + \frac{\Delta_1 F}{F} \right) \right) Q(\bar{g}, \bar{G})_{a \beta \gamma}, \]

whence

\[Q(S, C)_{a \beta \gamma} = \frac{1}{2} F (\bar{R} \cdot \bar{G})_{a \beta \gamma} - \frac{1}{2} F \tau Q(\bar{g}, \bar{G})_{a \beta \gamma}, \quad (27) \]

\[\tau_1 = \frac{1}{2} \left(-\frac{1}{3} \tilde{k} + t r(T) + \frac{\Delta_1 F}{F} \right). \quad (28) \]

Now, the equality \((R \cdot C)_{a \beta \gamma} = L Q(S, C)_{a \beta \gamma}, \) in virtue of (20) and (27), gives

\[(1 - L)(\bar{R} \cdot \bar{G})_{a \beta \gamma} = \left(\frac{1}{4} \frac{\Delta_1 F}{F} - \tau_1 L \right) Q(\bar{g}, \bar{G})_{a \beta \gamma}. \quad (29) \]

By (22) and (23) the relation \((R \cdot C)_{1a \beta \gamma} = L Q(S, C)_{1a \beta \gamma} \) is equivalent to

\[-\frac{1}{2} T_{11} C_{a \beta \gamma} + \frac{1}{12} \tilde{k} T_{11} G_{a \beta \gamma} - \frac{1}{4} T_{11} (\tilde{g}_{\gamma \delta} \tilde{S}_{a \beta} - \tilde{g}_{\beta \delta} \tilde{S}_{a \gamma}) \]

\[= -\frac{3}{2} \frac{1}{F} L T_{11} C_{a \beta \gamma} + \frac{1}{2} L \tilde{g}_{11} (\tilde{S}_{\gamma \delta} \tilde{S}_{a \beta} - \tilde{S}_{\beta \delta} \tilde{S}_{a \gamma}) + \frac{1}{12} \tilde{k} \left(t r(T) + \frac{\Delta_1 F}{F} \right) L \tilde{g}_{11} \tilde{G}_{a \beta \gamma} \]

\[+ \frac{1}{2} L \tilde{g}_{11} \left(-\frac{1}{2} \left(t r(T) + \frac{\Delta_1 F}{F} \right) (\tilde{g}_{\beta \delta} \tilde{S}_{a \gamma} - \tilde{g}_{\gamma \delta} \tilde{S}_{a \beta}) - \frac{1}{3} \tilde{k} (\tilde{g}_{\alpha \beta} \tilde{S}_{a \gamma} - \tilde{g}_{\alpha \gamma} \tilde{S}_{a \beta}) \right). \quad (30) \]

Further, we can check that the relation \((R \cdot C)_{a11 \beta \gamma} = L Q(S, C)_{a11 \beta \gamma} \) turns into

\[(\bar{R} \cdot \bar{S})_{a \beta \gamma} = \left(\frac{1}{4} \frac{\Delta_1 F}{F} - \tau_1 L \right) Q(\bar{g}, \bar{S})_{a \beta \gamma}. \quad (31) \]
This, in view of Lemma 2.1(iii), is equivalent to

\[(\tilde{R} \cdot \tilde{R})_{\beta \gamma \delta \mu} = \left(\frac{1}{4} \frac{\Delta_1 F}{F} - \tau_1 \lambda \right) Q(\tilde{g}, \tilde{R})_{\beta \gamma \delta \mu}. \]

(32)

Thus we have the following

Proposition 4.1. A 4-dimensional warped product \(\overline{M} \times F \overline{N} \), \(\dim \overline{M} = 1 \), satisfies the condition \(R \cdot C = LQ(S, C) \) if and only if (29), (30) and (32) hold on \(\mathcal{U} \).

5. Main Results

Example 5.1. (i) We present an example of a 4-dimensional warped product, with 1-dimensional base manifold, realizing (*) and (**). Let \((N, \tilde{g}), \dim N = 3\), be a semi-Riemannian manifold such that its Ricci tensor \(\tilde{S} \) is of rank one and its scalar curvature \(\tilde{k} \) vanishes identically on \(N \). Then, in view of Lemma 2.1(iv), \((N, \tilde{g})\) is a semisymmetric manifold. Furthermore, let \(F \), defined by \(F(x^1) = a \exp(bx^1), \) \(a = \text{const.} > 0, b = \text{const.} \neq 0 \), be a function on a 1-dimensional manifold \((\overline{M}, g_1)\). It is easy to check, that \(\overline{M} \times F \overline{N} \) realizes (29), (30) and (32), with \(L = 1/3 \). Thus, in view of Proposition 4.1, \(\overline{M} \times F \overline{N} \) fulfills \(R \cdot C = (1/3)Q(S, C) \). From Corollary 4.2 of [21] it follows that the manifold \(\overline{M} \times F \overline{N} \) is pseudosymmetric too. Next, using (3.12) of [21] and (15), we get \(R \cdot R = (1/12)\kappa Q(g, R) \), where \(\kappa \) is the scalar curvature of \(\overline{M} \times F \overline{N} \).

(ii) We present an example of a 3-dimensional semisymmetric warped product such that the rank of its Ricci tensor is one and its scalar curvature vanishes identically. Let \(M_2 = \{(x^2, x^3) : x^2, x^3 \in \mathbb{R}\} \) be a connected, non-empty, open subset of \(\mathbb{R}^2 \), equipped with the metric tensor \(g_2 \) defined by \(g_{2,22} = g_{2,33} = 0 \), \(g_{2,23} = g_{2,32} = 1 \), and let \(H = H(x^2) \) be a smooth function on \(M_2 \). Moreover, let \((M_3, g_3)\) be a 1-dimensional manifold. In [35] (see p. 177) it was shown that the rank of the Ricci tensor \(\tilde{S} \) of the warped product \(M_2 \times_H M_3 \) is equal to one and that the scalar curvature of this manifold vanishes identically. Moreover, we have (cf. [35], p. 177)

\[\tilde{S}_{22} = -\frac{1}{H} \left(\frac{\partial H}{\partial x^2} \frac{1}{2H} H_2 H_2 \right), \quad H_2 = \frac{\partial H}{\partial x^2}, \quad \tilde{S}_{33} = 0, \quad \tilde{S}_{44} = 0. \]

Furthermore, from Lemma 2.1(iv) it follows that \(M_2 \times_H M_3 \) is a semisymmetric manifold. (iii) We consider the warped product \(\overline{M} \times F \overline{N} \), where \(\dim \overline{M} \)
On curvature properties of certain manifolds, the warping function F is defined by $F(x^1) = a \exp(b x^1), a = \text{const.} > 0, b = \text{const.} \neq 0,$ and (N, \tilde{g}) is a semisymmetric manifold defined in (ii). We can verify that the tensor $\tilde{S} - (\kappa/4)g$ is of rank one, i.e. the warped product $\tilde{M} \times_F N$ is a quasi-Einstein manifold.

In this section we prove, that under certain assumptions every 4-dimensional warped product $\tilde{M} \times_F N, \dim \tilde{M} = 1$, realizing $(*)$ is the manifold described in Example 5.1(i).

Symmetrizing (30) in α, δ we obtain

$$\left(\frac{1}{2} T_{11} - \tau L \tilde{g}_{11}\right) Q(\tilde{g}, \tilde{S})_{\alpha \beta \gamma \delta} = 0,$$

(33)

where

$$\tau = \frac{1}{2} \left(-\frac{2}{3} \kappa + tr(T) + \frac{\Delta_1 F}{F} \right).$$

(34)

From (19) it follows that the Weyl tensor C of every 4-dimensional warped product $\tilde{M} \times_F N, \dim \tilde{M} = 1$, vanishes at a point $x \in M_1 \times_F N$ if and only

$$\tilde{S}_{\alpha \beta} = \frac{1}{3} \kappa \tilde{g}_{\alpha \beta}.$$

(35)

holds at x. We note also that $Q(\tilde{g}, \tilde{S})$ vanishes at x if and only if (35) is satisfied at x. So, if the tensor C is non-zero at the point $x \in M_1 \times_F N$ then from (33) it follows that

$$\frac{1}{2} T_{11} = \tau L \tilde{g}_{11}.$$

(36)

holds at x. Applying (36) in (30) we obtain

$$-\frac{\tau}{F} C_{\delta \sigma \delta \gamma} + \frac{\tau}{6} \kappa \tilde{g}_{\delta \sigma \delta \gamma} - \frac{\tau}{2} \left(\tilde{g}_{\delta \sigma} \tilde{S}_{\gamma \delta \gamma} - \tilde{g}_{\gamma \delta} \tilde{S}_{\delta \gamma} \right)$$

$$= -3 \frac{\tau}{F} C_{\delta \sigma \delta \gamma} + \frac{1}{2} \left(\tilde{S}_{\delta \gamma} \tilde{S}_{\delta \gamma} - \tilde{S}_{\delta \gamma} \tilde{S}_{\delta \gamma} \right) + \frac{1}{12} \kappa \left(tr(T) + \frac{\Delta_1 F}{F} \right) \tilde{g}_{\delta \sigma \delta \gamma}$$

$$- \frac{1}{4} \left(tr(T) + \frac{\Delta_1 F}{F} \right) (\tilde{g}_{\delta \gamma} \tilde{S}_{\delta \gamma} - \tilde{g}_{\delta \gamma} \tilde{S}_{\delta \gamma}) - \frac{1}{6} \kappa (\tilde{g}_{\delta \gamma} \tilde{S}_{\delta \gamma} - \tilde{g}_{\delta \gamma} \tilde{S}_{\delta \gamma}).$$

(37)

If $x \in U_L$ then the last equality reduces to
\[
\frac{1}{F} \tau(3L - 1) C_{\alpha \beta \gamma} + \frac{1}{6} \kappa \left(\tau - \frac{1}{2} \left(tr(T) + \frac{\Delta F}{F} \right) \right) \tilde{G}_{\alpha \beta \gamma} \\
= \frac{1}{2} (\tilde{S}_{\gamma \delta} \tilde{S}_{\alpha \beta} - \tilde{S}_{\alpha \beta} \tilde{S}_{\delta \gamma} - \frac{1}{6} \kappa (\tilde{g}_{\alpha \beta} \tilde{S}_{\delta \gamma} - \tilde{g}_{\gamma \delta} \tilde{S}_{\alpha \beta} - \tilde{g}_{\beta \gamma} \tilde{S}_{\alpha \delta} - \tilde{g}_{\delta \alpha} \tilde{S}_{\gamma \beta})),
\]

which, by (34), turns into
\[
\frac{2}{F} \tau(3L - 1) C_{\alpha \beta \gamma} - \frac{1}{9} \kappa^2 \tilde{G}_{\alpha \beta \gamma} = \tilde{S}_{\gamma \delta} \tilde{S}_{\alpha \beta} - \tilde{S}_{\alpha \beta} \tilde{S}_{\delta \gamma} - \frac{1}{3} \kappa \tilde{U}_{\alpha \beta \gamma}.
\]

On the other hand (18) and (19) give
\[
C_{\alpha \beta \gamma} = \frac{1}{2} F \left(\tilde{U}_{\alpha \beta \gamma} - \frac{2}{3} \kappa \tilde{G}_{\alpha \beta \gamma} \right).
\]

Applying this in (38) we obtain
\[
\tau(3L - 1) \tilde{U}_{\alpha \beta \gamma} - \frac{2}{3} \tau(3L - 1) \kappa \tilde{G}_{\alpha \beta \gamma} - \frac{1}{9} \kappa^2 \tilde{G}_{\alpha \beta \gamma} = \tilde{S}_{\gamma \delta} \tilde{S}_{\alpha \beta} - \tilde{S}_{\alpha \beta} \tilde{S}_{\delta \gamma} - \frac{1}{3} \kappa \tilde{U}_{\alpha \beta \gamma},
\]
whence
\[
\tilde{S}_{\gamma \delta} \tilde{S}_{\alpha \beta} - \tilde{S}_{\beta \gamma} \tilde{S}_{\alpha \delta} = \rho \tilde{U}_{\alpha \beta \gamma} + \mu \tilde{G}_{\alpha \beta \gamma},
\]

where
\[
\rho = \tau(3L - 1) + \frac{1}{3} \kappa, \quad \mu = -\frac{1}{3} \kappa \left(2 \tau(3L - 1) + \frac{1}{3} \kappa \right).
\]

We put \(\tilde{A}_{\alpha \beta} = \tilde{S}_{\alpha \beta} - \rho \tilde{g}_{\alpha \beta} \). Thus, by (39), we have
\[
\tilde{A}_{\gamma \delta} \tilde{A}_{\alpha \beta} - \tilde{A}_{\beta \delta} \tilde{A}_{\gamma \alpha} = \tilde{S}_{\gamma \delta} \tilde{S}_{\alpha \beta} - \tilde{S}_{\alpha \beta} \tilde{S}_{\delta \gamma} + \rho^2 \tilde{G}_{\alpha \beta \gamma} \\
- \rho (\tilde{g}_{\gamma \delta} \tilde{S}_{\alpha \beta} + \tilde{g}_{\alpha \beta} \tilde{S}_{\gamma \delta} - \tilde{g}_{\beta \delta} \tilde{S}_{\gamma \alpha} - \tilde{g}_{\delta \gamma} \tilde{S}_{\alpha \beta}) \\
= (\rho^2 + \mu) \tilde{G}_{\alpha \beta \gamma},
\]

which leads to
\[
Q(\tilde{A}, A) = (\rho^2 + \mu) Q(\tilde{A}, \tilde{G}),
\]

where the (0,4)-tensor \(A \) is defined by
\[
A_{\alpha \beta \gamma \delta} = \tilde{A}_{\alpha \beta} \tilde{A}_{\gamma \delta} - \tilde{A}_{\alpha \gamma} \tilde{A}_{\beta \delta}.
\]

Since the tensor \(Q(\tilde{A}, A) \) vanishes identically, we have \((\rho^2 + \mu) Q(\tilde{A}, \tilde{G}) = 0 \), whence we get easily \((\rho^2 + \mu)(\tilde{A} - (1/3) tr(\tilde{A}) \tilde{g}) = 0 \). Since \(\tilde{S} \neq (1/3) \kappa \tilde{g} \) holds at
On curvature properties of certain x, the last relation yields

$$\rho^2 + \mu = 0. \quad (42)$$

Further, using (29) and (32) we deduce that

$$(a) \quad (\bar{R} \cdot \bar{R})_{\alpha \beta \gamma \delta \mu} = 0, \quad (b) \quad \frac{1}{4} \frac{\Delta F}{F} = \tau L, \quad (43)$$

hold at $x \in \mathcal{H}_L$. Further, contracting (39) with $\bar{g}^{\alpha \beta}$ we obtain

$$\bar{S}^2_{\alpha \beta} = (\bar{\kappa} - \rho) \bar{S}_{\alpha \beta} + (2\mu + \rho \bar{\kappa}) \bar{g}_{\alpha \beta},$$

which, by making use of (42), can be rewritten in the following form

$$\bar{S}^2_{\alpha \beta} - \frac{1}{3} tr(\bar{S}^2) \bar{g}_{\alpha \beta} = \left(\frac{\bar{\kappa}}{2} + \alpha \right) \left(\bar{S}_{\alpha \beta} - \frac{\bar{\kappa}}{3} \bar{g}_{\alpha \beta} \right), \quad \alpha = (\bar{\kappa} - \rho) - \frac{\bar{\kappa}}{2} = \frac{\bar{\kappa} - \rho}{2}. \quad (44)$$

From (44), in view of Lemma 2.1(i), it follows that $(\bar{R} \cdot \bar{S})_{\alpha \beta \gamma \delta} = \alpha Q(\bar{g}, \bar{S})_{\alpha \beta \gamma \delta}$ holds at $x \in \mathcal{H}_L$ and in a consequence, $(\bar{R} \cdot \bar{R})_{\alpha \beta \gamma \delta \mu} = \alpha Q(\bar{g}, \bar{R})_{\alpha \beta \gamma \delta \mu}$. The last relation, by (43)(a), implies $\alpha = 0$, i.e. $\rho = \bar{\kappa}/2$. Applying the last equality and (42) in (40) we find

$$(3L - 1)\tau = \frac{5}{6} \bar{\kappa}, \quad \frac{2}{3} \bar{\kappa}(3L - 1)\tau = -\frac{13}{36} \bar{\kappa}^2, \quad (45)$$

which gives $(5/6)\bar{\kappa}^2 = -(13/36)\bar{\kappa}^2$, whence $\bar{\kappa} = 0$. Now (45) reduces to $(3L - 1)\tau = 0$ and in a consequence, from (40) we get $\rho = \mu = 0$. So, (39) reduces to $\text{rank}(\bar{S}) = 1$. Since $\bar{\kappa} = 0$, (28) and (34) leads to $\tau_1 = \tau = (1/2)\left(tr(T) + (\Delta F/F)\right)$. Further, we denote by \mathcal{H}_F the set consisting of all points of \mathcal{H}_L at which $F' \neq 0$. We suppose that τ vanishes at $x \in \mathcal{H}_F$. Then (43)(b) implies $F' = 0$, a contradiction. Thus $L = 1/3$ holds on \mathcal{H}_F. We note that if $L = 1/3$ then only the functions F, defined by $F(x^1) = a \exp(bx^1), a = \text{const.} > 0, b = \text{const.} \neq 0$, are non-constant solutions of (36) and (43)(b). Thus we have the following.

Theorem 5.1. Let the set \mathcal{H}_F be a dense subset of the set \mathcal{H}_L of a 4-dimensional warped product $\bar{M} \times_F N$, $\dim \bar{M} = 1$. Then the warped product $\bar{M} \times_F N$ satisfies the condition $R \cdot C = LQ(S, C)$ on the set $\mathcal{H}_L \subset \mathcal{H} \subset \bar{M} \times N$ if and only if $L = 1/3, F(x^1) = a \exp(bx^1), a = \text{const.} > 0, b = \text{const.} \neq 0$, and (N, \bar{g}) is a 3-dimensional semi-Riemannian manifold fulfilling $\text{rank}(\bar{S}) = 1$ and $\bar{\kappa} = 0$.

Remark 5.1. Let $(N, \bar{g}), \dim N = 3$, be a semisymmetric manifold with vanishing identically on N scalar curvature $\bar{\kappa}$. Suppose that \bar{g} is a Riemannian
metric. Using this fact we can easily deduce that the condition rank $\tilde{S} \leq 1$ implies $\tilde{S} = 0$. Therefore, if the assumption rank $\tilde{S} = 1$ is fulfilled on (N, \tilde{g}) then the metric \tilde{g} must be necessary indefinite, more precisely, \tilde{g} is a Lorentzian metric.

Now from Theorem 5.1, in view of the above remark, follows the following

Corollary 5.1. If a generalized Robertson-Walker spacetime satisfies (*) then at every point of this spacetime at least one of the tensors $R \cdot C$ or $Q(S, C)$ must vanish.

Let x be a point of a 4-dimensional warped product $\overline{M} \times_F N, \dim \overline{M} = 1$. If at x the conditions: $C \neq 0$ and $R \cdot C = 0$ are satisfied then $R \cdot R = 0$ holds at x ([17], Theorem 3). If at x the conditions: $C \neq 0, S \neq 0$ and $Q(S, C) = 0$ are satisfied then $R \cdot R = (\kappa/3)Q(g, R)$ holds at x ([25], Theorem 3.1). If at x the condition $S = 0$ is satisfied then $C = 0$ holds at x. This statement is an immediate consequence of (14) and (32). Finally, if at x the condition $C = 0$ is satisfied then $R \cdot R = \alpha Q(g, R), \alpha \in R$, holds at x ([13], Lemma 3.1). These facts, together with Corollary 5.1, leads to the following

Theorem 5.2. Every generalized Robertson-Walker spacetime satisfying (*) is a pseudosymmetric manifold.

Remark 5.2. (i) Theorem 2 of [29] implies that the warped product $\overline{M} \times_F N$, of a 1-dimensional base manifold $(\overline{M}, \overline{g})$, a warping function F and a 3-dimensional manifold (N, \tilde{g}) with the Ricci tensor \tilde{S} of rank one realizes (*)$_S$, i.e. $\overline{M} \times_F N$ is a manifold with pseudosymmetric Weyl tensor.

(ii) We can also check that the Weyl tensor of the warped product defined above is not of harmonic curvature.

References

On curvature properties of certain

Ryszard Deszcz
Department of Mathematics
Agricultural University of Wrocław
ul. Grunwaldzka 53, PL-50-357 Wrocław
POLAND

Marek Kucharski
Institute of Mathematics
Wrocław University of Technology
Wybrzeże Wyspiańskiego 27, PL-50-376 Wrocław
POLAND