EQUIVARIANT POINT THEOREMS

(Dedicated to Professor A. Komatu on his 70th birthday)

By

Minoru Nakaoka

1. Introduction.

This paper is a continuation of my previous paper [13], and is concerned with generalizations of the following two classical theorems on a continuous map f of an n-sphere S^n to itself.

Theorem 1.1. If the degree of f is even then there exists $x \in S^n$ such that $f(-x) = f(x)$.

Theorem 1.2. If the degree of f is odd then there exists $x \in S^n$ such that $f(-x) = -f(x)$.

Throughout this paper, a prime p is fixed, and $G = \{1, T, \cdots, T^{p-1}\}$ will denote a cyclic group of order p.

Generalizing the situation in the above theorems, we shall consider the following problems.

Problem 1. Let $f : N \rightarrow M$ be a continuous map between G-spaces. Under what conditions does f have an equivariant point, i.e., a point $x \in N$ such that

\[(1.1) \quad f(T^i x) = T^i f(x)\]

for $i = 1, 2, \cdots, p-1$?

Problem 2. Let $f : L \rightarrow M$ and $g : L \rightarrow N$ be continuous maps of a space L to G-spaces M and N. Under what conditions do there exist p points $x_1, \cdots, x_p \in L$ such that

\[(1.2) \quad f(x_{i+1}) = T^i f(x_1), \quad g(x_{i+1}) = T^i g(x_1)\]

for $i = 1, 2, \cdots, p-1$?

We shall denote by $A(f)$ the set of points $x \in N$ satisfying (1.1), and by $A(f, g)$ the set of points $(x_1, \cdots, x_p) \in L^p$ satisfying (1.2).

If $L = N$ in Problem 2, then $A(f, \text{id})$ may be identified with $A(f)$. Therefore
Problem 2 is more general than Problem 1; still Problem 2 can be reduced to Problem 1. In fact, if we define \(h : L^p \rightarrow M \times N \) by
\[
\begin{align*}
h(x_1, \ldots, x_p) &= (f(x_1), g(x_1)) \quad (x_i \in L),
\end{align*}
\]
and regard \(L^p \) and \(M \times N \) as \(G \)-spaces by cyclic permutations and the diagonal action respectively, then we have \(A(h) = A(f, g) \).

Throughout this paper, a manifold will always mean a compact connected topological manifold which is assumed to be oriented if \(p \) is odd. The dimension of manifolds \(M, N, \ldots \) will be denoted by \(m, n, \ldots \). By a \(G \)-manifold is meant a manifold on which \(G \) acts topologically.

In this paper we shall consider Problems 1 and 2 in case \(M \) and \(N \) are \(G \)-manifolds. Some answers have been obtained by Conner-Floyd [3], Munkholm [10], Fenn [5], Lusk [8] and others with respect to generalizations of Theorem 1.1, and by Milnor [9] and the author [13] with respect to generalizations of Theorem 1.2. By pushing the line of [13] we shall prove in this paper more general results.

Throughout this paper the cohomology stands for the Čech cohomology and it takes coefficients from \(\mathbb{Z}_p \), the group of integers mod \(p \).

2. Theorems

In this section we shall state our main theorems answering to Problem 2 and then corollaries answering to Problem 1. The main theorems will be proved in §5 and §6.

Let \(o_k \in H^k(BG) \ (k=0,1,\ldots) \) denote the usual generators, where \(BG \) is the classifying space for \(G \). If \(X \) is a paracompact space on which \(G \) acts freely, \(H^*(X/G) \) can be regarded as an \(H^*(BG) \)-module via the homomorphism induced by a classifying map of \(X \); in particular we have \(o_k = o_k \cdot 1 \in H^k(X/G) \).

The first main theorem is stated as follows, and it generalizes Theorem 1.1 (see Remark 1 below).

Theorem A. Let \(f : L \rightarrow M \) and \(g : L \rightarrow N \) be continuous maps of a compact space \(L \) to \(G \)-manifolds \(M \) and \(N \). Suppose that

1) the action on \(M \) is trivial;
2) the action on \(N \) is free and \(o_m \in H^m(N/G) \) is not zero;
3) \(n \geq (p-1)m \);
4) \(f^* : H^q(M) \rightarrow H^q(L) \ (q > 0) \) is trivial;
5) \(g^* : H^n(N) \rightarrow H^n(L) \) is not trivial.

Then we have \(A(f, g) \neq 0 \); if \(L \) is moreover a manifold, we have
\[
\dim A(f, g) \geq pl - (p-1)(m+n) \geq 0,
\]
Equivariant Point Theorems

where \(\dim A \) denotes the covering dimension of \(A \).

Putting \(L=N \) and \(g=\text{id} \), we get

Corollary. Let \(f : N \rightarrow M \) be a continuous map of a \(G \)-manifold \(N \) to a manifold \(M \). Suppose that

i) the action on \(N \) is free and \(\omega \in H^n(N|G) \) is not zero;

ii) \(f^* : H^q(M) \rightarrow H^q(N) \quad (q>0) \) is trivial.

Then we have

\[
\dim A(f) \geq n - (p-1)m,
\]

where \(M \) is regarded as a \(G \)-manifold by the trivial action.

Remark 1. Taking

\[
N = a \mod p \text{ homology } n\text{-sphere}
\]

in the above corollary, we have the results due to Conner-Floyd [3], Munkholm [10] and the author [12], which are direct generalizations of Theorem 1.1.

Remark 2. Taking

\[
L=N = a \mod p \text{ homology } n\text{-sphere},
\]

\[
M = S^m, \quad \deg f = 0, \quad \deg g \equiv 0 \mod p
\]

in Theorem A, we have the results due to the to Fenn [5] and Lusk [8].

To state the second main theorem and its corollaries, we shall make some preparations.

For any indexing set \(I \), consider the complement \(I_\pi = \mathcal{I}^\pi - dI \) of the diagonal in \(\mathcal{I}^\pi \), and define \((i_1, \ldots, i_p), (i'_1, \ldots, i'_p) \in I_\pi \) to be equivalent if \((i_1, \ldots, i_p) \) is a cyclic permutation of \((i'_1, \ldots, i'_p) \). We denote by \(R(I_\pi) \) a set of representatives of the equivalent classes.

Let \(f : L \rightarrow M \) and \(g : L \rightarrow N \) be continuous maps of a manifold \(L \) to \(G \)-manifolds \(M \) and \(N \). Given homogeneous bases \(\{\alpha_i\}_{i \in I}, \{\beta_j\}_{j \in J} \) of \(H^*(M) \), \(H^*(N) \) and sets \(R(I_\pi), R(J^\pi) \), we define \(\lambda(f, g), \lambda'(f, g) \in \mathbb{Z}_p \) as follows.

Define \(\Delta : M \rightarrow M^p \) by

(2.1) \[
\Delta(x) = (x, Tx, \ldots, T^{p-1}x) \quad (x \in M),
\]

and put

(2.2) \[
\Delta_1(1) = \sum_{(i_1, \ldots, i_p) \in \mathcal{I}^\pi} c_{i_1i_2} \alpha_{i_1} \times \cdots \times \alpha_{i_p} \quad (c_{i_1i_2} \in \mathbb{Z}_p)
\]

for the Gysin homomorphism \(\Delta_1 : H^*(M) \rightarrow H^*(M^p) \).

Similarly, put
for the homomorphism \(\Delta_1 : H^*(N) \to H^*(N^p) \).

We define

\[
\lambda(f, g) = \langle (f \ast^n_{(1)} \sum_{(i_1, \ldots, i_p) \in R(I^p)} c_{i_1} \cdots i_p \alpha_{i_1} \times \cdots \times \alpha_{i_p}) (g \ast^n_{(1)}) \delta(1), [L]^p \rangle,
\]

\[
\lambda'(f, g) = \langle (f \ast^n_{(1)} \sum_{(j_1, \ldots, j_p) \in R(I^p)} d_{j_1} \cdots i_p \beta_{j_1} \times \cdots \times \beta_{j_p}) , [L]^p \rangle.
\]

Obviously we have \(\lambda(f, g) = \lambda(g, f) \).

If \(L = N \) and \(g^* = \text{id} \), we write \(\lambda(f, g) = \lambda(f, g) \). It follows that

\[
\lambda(f) = \langle (f \ast^n_{(1)} \sum_{(i_1, \ldots, i_p) \in R(I^p)} c_{i_1} \cdots i_p \alpha_{i_1} \times \cdots \times \alpha_{i_p}) (T \ast^n_{(1)} f \ast^n_{(1)}) \cdots (T \ast^n_{1} f \ast^n_{1}) \delta(1), [N]^p \rangle.
\]

Remark 3. By the definition of \(\Delta_1 \) we have

\[
\langle \Delta^n_{(1)} (\alpha_{i_1} \times \cdots \times \alpha_{i_p}), [M]^p \rangle = \langle (\alpha_{i_1} \times \cdots \times \alpha_{i_p}) \delta(1), [M]^p \rangle.
\]

From this we get

\[
y_{\pm k} = \sum_{(i_1, \ldots, i_p) \in I^p} (-1)^{\varepsilon(i_1, \ldots, i_p)} c_{i_1} \cdots i_p z_{h_1, \ldots, 2h_1, \ldots, 2h_p},
\]

where

\[
y_{\pm k} = \langle \alpha_{i_1} (T \ast^n_{(1)} \alpha_{i_1}) \cdots (T \ast^n_{1} \alpha_{i_p}) , [M] \rangle,
\]

\[
z_{k} = \langle \alpha_{\alpha i}, [M] \rangle,
\]

\[
\varepsilon(i_1, \ldots, i_p, k_1, \ldots, k_p) = \sum_{i=1}^{p-1} \alpha_i (| \alpha_{i_{1}}| + \cdots + | \alpha_{k_p}|),
\]

being \(| \alpha_i | = \deg \alpha_i \). The relations (2.3) for \((i_1, \ldots, i_p) \in I^p \) characterize the coefficients \(c_{i_1} \cdots i_p \) ([6]). In particular, if \(p = 2 \) we see that the matrix \((c_{ij}) \) is the inverse of the matrix \((y_{ij}) \).

Now the second main theorem is stated as follows, and it generalizes Theorem 1.2 (see Remark 5 below).

Theorem B. Let \(f : L \to M \) and \(g : L \to N \) be continuous maps of a manifold \(L \) to \(G \)-manifolds \(M \) and \(N \). Suppose that

i) \(i^* : H^q(M) \to H^q(M^G) \) is trivial for \(q \geq m|p \), where \(M^G \) is the fixed point set of \(M \), and \(i \) is the inclusion;

ii) the action on \(N \) is free;

iii) \(pl = (p-1)(m+n) \).

Then \(\lambda(f, g) \) and \(\lambda'(f, g) \) are independent of the choices of \((\alpha_i)_{i_1}, (\beta_{j})_{j_1}, R(I^p) \),...
Equivariant Point Theorems

Let \(f : N \to M \) be a continuous map between \(G \)-manifolds, and suppose that

i) \(i^* : H^q(M) \to H^q(M^o) \) is trivial for \(q \equiv m/p \);

ii) the action on \(N \) is free;

iii) \(n = (p-1)m \).

Then \(\lambda(f) \) is independent of the choices of \(\{a_i\}_{i=1}^p \) and \(R(f) \), and if \(\lambda(f) \neq 0 \) we have \(A(f) \neq \phi \).

Putting \(L = N \) and \(g = \text{id} \) in Theorem B we have

\[R(I^o) \], and we have \(\lambda(f, g) = \lambda'(f, g) \). If \(\lambda(f, g) \neq 0 \) we have \(A(f, g) \neq \phi \).

Corollary 1. Let \(f : N \to M \) be a continuous map between \(G \)-manifolds, and suppose that

i) \(i^* : H^q(M) \to H^q(M^o) \) is trivial for \(q \equiv m/p \);

ii) the action on \(N \) is free;

iii) \(n = (p-1)m \).

Then \(\lambda(f) \) is independent of the choices of \(\{a_i\}_{i=1}^p \) and \(R(f) \), and if \(\lambda(f) \neq 0 \) we have \(A(f) \neq \phi \).

Put \(L = M \) and \(f = \text{id} \) in Theorem B, and replace the notations \(M, N, g \) by \(N, M, f \) respectively. Then we get

Corollary 2. Let \(f : N \to M \) be a continuous map between \(G \)-manifolds, and suppose that

i) \(i^* : H^q(N) \to H^q(N^o) \) is trivial for \(q \equiv n/p \);

ii) the action on \(M \) is free;

iii) \(n = (p-1)m \).

Then the same conclusions as in Corollary 1 hold.

Remark 4. The above two corollaries for \(p = 2 \) have been obtained in [13]. The following proposition will be proved in §4 (see p. 407 of [2] for \(p = 2 \)).

Proposition 2.1. If \(M \) is a \(G \)-manifold such that \(i^* : H^{m/p}(M) \to H^{m/p}(M^o) \) is trivial, then

\[\langle \alpha(T^*\alpha) \cdots (T^{*p-1}\alpha), [M] \rangle = 0 \quad (\alpha \in H^k(M)) \].

Let \(M \) be the one in Proposition 2.1 for \(p = 2 \). Then, the proposition and the Poincaré duality show that \(H^*(M) \) has a homogeneous basis \(\{\mu_1, \ldots, \mu_r, \mu_1', \ldots, \mu_r'\} \) such that

\[\langle \mu_i(T^*\mu_k), [M] \rangle = 0, \langle \mu_i'(T^*\mu_k'), [M] \rangle = 0, \langle \mu_i(T^*\mu_k'), [M] \rangle = \delta_{ik} \].

In terms of this basis we see that

\[\lambda(f) = \sum_{i=1}^r \langle f^*\mu_i(T^*f^*\mu_i), [N] \rangle \]

if \(p = 2 \). In particular, if \(M = N \) and \(f^* = \text{id} \) then \(\lambda(f) \) equals the **semi-characteristic**

\[\chi_{1/2}(M) = \dim H^*(M)/2 \mod 2 \].

Thus, for \(p = 2 \) we have the following
COROLLARY 3. Let M be a manifold with a free involution T, and assume $\chi_{1/2}(M) \neq 0$. Let $f, g : M \rightarrow M$ be continuous maps such that $f^* = g^* = \text{id} : H^*(M) \rightarrow H^*(M)$. Then there exist $x, x' \in M$ such that $f(x') = T(f(x))$ and $g(x') = T(g(x))$. In particular, there exists a point $x \in M$ such that $fT(x) = Tf(x)$.

REMARK 5. Taking $M = a \mod 2$ homology m-sphere

in Corollary 3, we have the result due to Milnor [9], which is a direct generalization of Theorem 1.2.

In this section we shall explain how to prove Theorems A and B.

Let M be a G-manifold. If we regard M^p as a G-manifold by cyclic permutations, the map $\Delta : M \rightarrow M^p$ in (2.1) is an equivariant embedding. Regard S^{2k+1} as a G-manifold by the standard free action. Then we have a pair $(S^{2k+1} \times M^p, S^{2k+1} \times \Delta M)_G$ of manifolds, and hence the Thom isomorphism

$$\theta_k : H^q(S^{2k+1} \times \Delta M)_G \cong H^{q+(p-1)m}(S^{2k+1} \times (M^p, M^p - \Delta M)_G)$$

which is the composite of the duality isomorphisms for $S^{2k+1} \times \Delta M$ and for $(S^{2k+1} \times M^p, S^{2k+1} \times \Delta M)_G$ (see p. 353 of [14]). We denote the Thom class $\theta_k(1)$ by \hat{U}_k^G.

The isomorphisms θ_k for sufficiently large k define the Thom isomorphism

$$\theta : H^q(\Delta M) \cong H^{q+(p-1)m}(M^p, M^p - \Delta M)$$

of the equivariant cohomology. The element $\theta(1)$ is denoted by \hat{U}_M, and is called the equivariant fundamental cohomology class of M.

The image of \hat{U}_M in $H^m_m(p-1)(M^p)$ is denoted by \hat{U}_M^G, and is called the equivariant diagonal cohomology class of M.

If the action of G on M is free, the diagonal set dM is in $M^p - \Delta M$. In this case the image of \hat{U}_M in $H^m_m(p-1)(M^p, dM)$ is denoted by \hat{U}_M^G, and is called the modified equivariant diagonal cohomology class of M.

LEMMA 3.1. Let M and N be G-manifolds, and regard $M \times N$ as a G-manifold by the diagonal action. If the action on N is free, we have

$$\hat{U}_{M \times N} = \pm (q_1^* \hat{U}_N^G)(q_2^* \hat{U}_N^G),$$

where $q_1^* : H^\ast_G(M^p) \rightarrow H^\ast_G((M \times N)^p)$ and $q_2^* : H^\ast_G(N^p, dN) \rightarrow H^\ast_G((M \times N)^p, d(M \times N))$ are induced by the projections $q_1 : M \times N \rightarrow M$, $q_2 : M \times N \rightarrow N$.

Equivariant Point Theorems

PROOF. There are the following natural inclusions of manifolds:

\[(S^{2k+1} 	imes \Delta M) \times (S^{2k+1} \times \Delta N) \subset (S^{2k+1} \times M^p) \times (S^{2k+1} \times N^p)\]

\[\bigcup_{G} S^{2k+1} \times \Delta (M \times N) \subset \bigcup_{G} S^{2k+1} \times (M \times N)^p\]

From properties of the Thom class (see 325 of [4]), it follows that the Thom class for the pair in the upper line equals \(\pm \hat{O}^{(k)}_M \times \hat{O}^{(k)}_N\), and that it is sent to \(\pm \hat{O}^{(k)}_{M \times N}\) by the homomorphism \(i^*\) induced by the natural inclusion of the lower line to the upper. Therefore we have

\[\hat{O}^{(k)}_{M \times N} = \pm i^* (\hat{O}^{(k)}_M \times \hat{O}^{(k)}_N) = \pm i^* \left(p_1^* \hat{O}^{(k)}_M \cdot p_2^* \hat{O}^{(k)}_N \right) = \pm (q_1^* \hat{O}^{(k)}_M) \cdot (q_2^* \hat{O}^{(k)}_N),\]

where \(p_1, p_2\) are the projections of \((S^{2k+1} \times M^p) \times (S^{2k+1} \times N^p)\) to \(S^{2k+1} \times M^p, S^{2k+1} \times N^p\). This fact proves immediately the desired result.

Lemma 3.2. Let \(f : N \to M\) be a continuous map of a \(G\)-space \(N\) to a \(G\)-manifold \(M\), and define an equivariant map \(\tilde{f} : N \to M^p\) by

\[\tilde{f}(x) = (f(x), fT(x), \cdots, fT^{p-1}(x)) \quad (x \in N).\]

If the action on \(M\) is free, and if \(\tilde{f}^*(\hat{O}^p_M) \neq 0\) for the homomorphism \(\tilde{f}^* : H^p_\Sigma (M^p, dM) \to H^p_\Sigma (N, N^0)\), then we have \(A(f) \neq \phi\). If \(N\) is moreover a \(G\)-manifold, we have

\[\dim A(f) \geq n - (p-1)m \geq 0.\]

PROOF. In virtue of a commutative diagram

\[\begin{array}{ccc}
H^p_\Sigma (M^p, dM - \Delta M) & \xrightarrow{i^*} & H^p_\Sigma (M^p, dM) \\
\tilde{f}^* & \downarrow & \tilde{f}^* \\
H^p_\Sigma (N, N - A(f)) & \xrightarrow{i^*} & H^p_\Sigma (N, N^0),
\end{array}\]

\(\tilde{f}^*(\hat{O}^p_M) \neq 0\) implies \(H^m_\Sigma (N, N - A(f)) \neq 0\). Therefore \(A(f) \neq \phi\). If \(N\) is a \(G\)-manifold, we have isomorphisms

\[H^{n-m(p-1)}(A(f))/G \cong H^{m(p-1)}(N'/G, (N' - A(f))/G)\]

\[\cong H^{m(p-1)}(N'/G, (N' - A(f))/G) \cong H^{m(p-1)}(N', N' - A(f))\]

\[\cong H^{m(p-1)}_\Sigma (N, N - A(f)),\]

where \(N' = N - N^0\). Therefore \(H^{n-m(p-1)}(A(f))/G \neq 0\), and so \(\dim A(f) \geq n - m(p-1) \geq 0\). This completes the proof.

Proposition 3.3. Let \(f : L \to M\) and \(g : L \to N\) be continuous maps of a space
L to G-manifolds M and N. Suppose that the action on N is free. Then if
\[(f^p*\bar{U}_M)(g^p*\bar{U}_N) \in H_{G}^{p+n}(L^p, dL)\]
is not zero, we have \(A(f, g) \neq \phi\). If L is moreover a manifold, we have
\[\dim A(f, g) \geq pl - (p-1)(m+n) \geq 0.\]

Proof. Consider \(h : L^p \to M \times N\) defined by (1.3). Then, for the map \(h : L^p \to (M \times N)^p\) we have \(q^p_i \circ h = f^p_i, q^p_i \circ h = g^n_i\). Therefore by Lemma 3.1 we have
\[h^*(\bar{U}_{M \times N}) = \pm h^*((q^p_1 \circ \bar{U}_M)(q^p_2 \circ \bar{U}_N))\]
\[= \pm (f^p \circ \bar{U}_M)(g^p \circ \bar{U}_N).\]
This proves the desired result by Lemma 3.2.

We shall prove Theorems A and B by making use of Proposition 3.3. For this purpose we are asked to examine the following:

(i) structure of the equivariant cohomologies \(H_G^*(X^p)\) and \(H_G^*(X^p, dX)\) for a compact space \(X\).

(ii) the equivariant diagonal cohomology class \(\bar{U}_M\) and the modified equivariant diagonal cohomology class \(\bar{U}_N\) for a G-manifold \(M\).

As for (i) we have the results due to Steenrod and Thom, which are stated in § 4. Thus Theorems A and B will be proved by examining (ii), as seen in § 5 and § 6.

4. Preparations

In this section we shall recall some facts needed later.

Let \(X\) be a paracompact \(G\)-space. Then we have
\[H^*(X) = \lim_{\longrightarrow} H^*(K),\]
\[H_G^*(X, X^0) = \lim_{\longrightarrow} H^*(K/G, K^0/G),\]
where \(K\) ranges over the nerves of \(G\)-coverings of \(X\) (see Chap III, § 6 and Chap VII, § 1 of [2]). For each \(K\) a cochain map
\[\varphi_K : C^*(K) \to C^*(K/G, K^0/G)\]
is defined by
\[\langle \varphi_K(u), \pi(s) \rangle = \sum_{i=0}^{p-1} u(T^is),\]
where \(u \in C^*(K), s\) is a simplex of \(K\), and \(\pi : K \to K/G\) is the projection. Thus
we have a homomorphism

\[\pi_1 : H^*(X) \to H^*_G(X, X^o) \]

defined by the cochain maps \(\varphi_K \).

We define

\[\pi_1 : H^*(X) \to H^*_G(X) \]

to be the composite \(j^* \circ \pi'_1 \), where \(j^* : H^*_G(X, X^o) \to H^*_G(X) \) is induced by the inclusion. It follows that \(\pi_1 \) is the composite of the usual transfer \(H^*(X) \to H^*(X/G) \) and the canonical homomorphism \(H^*(X(G)) \to H^*_G(X) \).

We call \(\pi_1 \) in (4.2) the \textit{transfer}, and \(\pi'_1 \) in (4.1) the \textit{modified transfer}.

Put

\[\sigma^* = \sum_{i=0}^{p-1} T^i \ast : H^*(X) \to H^*(X). \]

Then it is easily seen that

\[\pi^* \circ \pi_1 = \sigma^* \]

for the canonical homomorphism \(\pi^* : H^*_G(X) \to H^*(X) \), and that

\[\pi_1(\alpha_1) \cdot \pi_1(\alpha_2) = \pi'_1(\alpha_1 \cdot \sigma^* \alpha_2) = \pi'_1(\sigma^* \alpha_1 \cdot \alpha_2) \]

\((\alpha_1, \alpha_2 \in H^*(X))\). We have also

\[\pi_1(\alpha) \cdot \delta^*(\beta) = 0 \quad (\alpha \in H^*(X), \beta \in H^*_G(X^o)) \]

for the coboundary homomorphism \(\delta^* : H^*_G(X^o) \to H^*_G(X, X^o) \).

In fact

\[(-1)^{\alpha_1} \pi_1(\alpha) \cdot \delta^*(\beta) = \delta^*(i^* \pi_1(\alpha) \cdot \beta) \]

\[= \delta^*(i^* j^* \pi'_1 (\alpha) \cdot \beta) = 0, \]

where \(i^* : H^*_G(X) \to H^*_G(X^o) \).

If \(X \) is a paracompact \(G \)-space, the Smith special cohomology groups \(H^*_G(X) \) are defined for \(\rho = \sigma = \sum_{i=0}^{p-1} T^i \) and \(\rho = \tau = 1 - T \), and we have the exact sequences

\[\cdots \to H^q(X) \to H^q(X) \oplus H^q(X^o) \to \]

\[H^q(X) \to H^q(X) \oplus H^q(X^o) \]

for \((\rho, \bar{\rho}) = (\sigma, \tau) \) and \((\tau, \sigma) \). We have also an isomorphism

\[H^*_G(X) \cong H^*_G(X, X^o). \]
(See p. 143 of [2].)

It follows that

\[(4.6) i^*_\pi = (\pi^*, i^*): H^*(X) \rightarrow H^*_G(X, X^0) \oplus H^*(X^0).\]

Lemma 4.1. If M is a G-manifold such that the action is not trivial, then it holds

\[\pi^*: H^m(M) \cong H^m_G(M, M^0).\]

Proof. In the exact sequence

\[H^m(M) \rightarrow H^m_G(M, M^0) \oplus H^m(M^0) \rightarrow H^m_G(M),\]

we have $H^m_G(M, M^0) = 0$, $H^m(M) \cong \mathbb{Z}_p$, $H^m(M^0) \cong H_0(M, M - M^0) = 0$, and moreover $H^m_G(M) \neq 0$ is proved as follows. Therefore we get the desired result by (4.6).

Suppose $H^m_G(M) = 0$. Then, by the Smith cohomology exact sequence, we see that $i^*_\pi: H^m(M) \cong H^m_G(M)$ and $\tau^*: H^m_G(M) \rightarrow H^m(M)$ is onto. This implies that $\tau^*: H^m(M) \rightarrow H^m_G(M)$ is onto and so $H^m_G(M)$ is equal to 0, which is a contradiction.

For a paracompact space X, consider the equivariant cohomology $H^*_G(X^p)$, where G acts on X^p by cyclic permutations. Then we have the external Steenrod p-th power operation

\[P: H^q(X) \rightarrow H^*_G(X^p),\]

which is related to the Steenrod square Sq^i if $p = 2$, and to the reduced p-th power \mathcal{S}^i and the Bockstein operation β^* if $p \neq 2$ as follows ([15]):

\[(4.7) d^*P(\alpha) = \begin{cases} \sum_{i=0}^{\lfloor q/2 \rfloor} \alpha(l_{i-1}) \times Sq^i \alpha & \text{if } p = 2, \\ h_q \sum_{i=0}^{\lfloor q/2 \rfloor} (-1)^i \alpha(l_{i-1}) \times \mathcal{S}^i \alpha - \alpha(l_{i-2}) \times \mathcal{S}^i \alpha & \text{if } p \neq 2, \end{cases}\]

where $d^*: H^*_G(X^p) \rightarrow H^*_G(BG \times X)$ is induced by the diagonal map, and

\[(4.8) h_q = \begin{cases} (-1)^{q/2} & \text{if } q \text{ is even}, \\ (-1)^{(q-1)/2}((p-1)/2)! & \text{if } q \text{ is odd}. \end{cases}\]

P is natural, and it satisfies also

\[(4.9) \pi^*P(\alpha) = \alpha^p\]

for the canonical homomorphism $\pi^*: H^*_G(X^p) \rightarrow H^*(X^p)$.
Lemma 4.2. Let \(M \) be a \(G \)-manifold, and let \(\alpha \in H^*(M) \) satisfy \(i^*(\alpha) = 0 \) for \(i^* : H^*(M) \to H^*(M^G) \). Then \(\Delta^*P(\alpha) \) is in the image of \(j^* : H^*_G(M, M^G) \to H^*_G(M) \) induced by the inclusion.

Proof. Consider a diagram

\[
\begin{array}{ccc}
H^*_G(M, M^G) & \xrightarrow{j^*} & H^*_G(M) \\
\downarrow \Delta^* & & \downarrow (id \times i)^* \\
H^*_G(M^G) & \xrightarrow{i^*} & H^*(BG \times M^G)
\end{array}
\]

in which the rectangle is commutative and the lower sequence is exact. Then it follows from (4.7) that \(i^* \Delta^*P(\alpha) = (id \times i)^*d^*P(\alpha) = 0 \). Therefore \(\Delta^*P(\alpha) \in \text{Im}j^* \).

Proof of Proposition 2.1. We may assume that the action is non-trivial and \(|\alpha| = m/p \). Consider a commutative diagram

\[
\begin{array}{ccc}
H^*_G(M, M^G) & \xrightarrow{j^*} & H^*_G(M) \\
\downarrow \pi^* & & \downarrow \pi^* \\
H^m(M) & \xrightarrow{\sigma^*} & H^m(M)
\end{array}
\]

By Lemmas 4.1 and 4.2, we see

\(\pi^* \Delta^*P(\alpha) \in \text{Im} \sigma^* \).

Since \(\sigma^* H^m(M) = 0 \) and

\(\pi^* \Delta^*P(\alpha) = \Delta^*(\alpha^p) = \alpha(T^* \alpha) \cdots (T^p - 1^* \alpha) \)

by (4.9), the proof completes.

The following theorem is due to Steenrod [15] (see also [12]).

Theorem 4.3. Let \(X \) be a compact space, and \(\{\alpha_i\}_{i \in I} \) be a homogeneous basis of \(H^*(X) \). Then the totality of elements

\[
\omega_I P(\alpha) \quad (i \in I, j \geq 0), \\
\pi_I (\alpha_{i_1} \times \cdots \times \alpha_{i_p}) \quad ((i_1, \ldots, i_p) \in R(I^*_G))
\]

is a homogeneous basis of \(H^*_G(X^p) \).

The following is due to Thom [16] (see also [1], [11], [17]).
Theorem 4.4. Let X be a compact space, and $(\alpha_i)_{i \in I}$ be a homogeneous basis of $H^\bullet(X)$. Then the totality of elements

$$
\partial^* (\omega_j \times \alpha_i) \quad (i \in I, \, 0 \leq j < (p-1)|\alpha_i|),
$$

$$
\pi_1(\alpha_1 \times \cdots \alpha_i) \quad ((i_1, \ldots, i_p) \in R(I^*_p))
$$

is a homogeneous basis of $H^\bullet_\bullet(X^p, dX)$, where $\partial^* : H^\bullet(BG \times X) = H^\bullet(dX) \longrightarrow H^\bullet_\bullet(X^p, dX)$ is the coboundary homomorphism. Furthermore we have

$$
\pi_1(\alpha \times \alpha) = \sum_{i=0}^{[\frac{q}{2}]} \partial^* (\omega_{|\alpha| - i - 1} \times Sq^i \alpha)
$$

if $p=2$, and

$$
\pi_1(\alpha \times \cdots \times \alpha) = \sum_{i=0}^{[\frac{q}{2}]} \varepsilon_i \partial^* (\omega_{|\alpha| - 2i - 1} \times \Sp^i \alpha)
$$

with some $\varepsilon_i \neq 0 \mod p$ if $p \neq 2$.

Remark. Theorems 4.3 and 4.4 are proved in the literatures for a compact polyhedron. However we can extend them to compact spaces by the device seen in [2].

5. Proof of Theorem A.

The equivariant diagonal cohomology class \hat{U}'_M in case the action on M is trivial has been studied by Haefliger. By Theorem 3.2 in his paper [6] and

(5.1)

$$
\pi^*(\hat{U}') = A_1(1),
$$

we have the following (see the proof of Theorem 9.1 in [13]).

Proposition 5.1. If the action on M is trivial, then

$$
\hat{U}'_M = \sum_{k=0}^{[m/2]} \omega_{m-2k} P(V_k) + \sum_{i_j}^{c_{ij}} (c_{ij} - c_{i_2i_j}) \pi_1(\alpha_i \times \alpha_j)
$$

if $p=2$, and

$$
\hat{U}'_M = h_m \sum_{k=0}^{[m/2]} (-1)^k \omega_{(p-1)(m-2k)p} P(V_k)
$$

$$
+ \sum_{(i_1, \ldots, i_p) \in R(I^*_p)} (c_{i_1 \cdots i_p} - c_{i_1 \cdots i_p}) \pi_1(\alpha_1 \times \cdots \alpha_p)
$$

if $p \neq 2$, where $(\alpha_i)_{i \in I}$ is a homogeneous basis of $H^\bullet(M)$, $c_{i_1 \cdots i_p}$, h_m are those in (2.2), (4.8), and $V_k \in H^\bullet(M)$ are the Wu classes given by

$$
\langle V_k \alpha, [M] \rangle = \begin{cases}
\langle Sq^k \alpha, [M] \rangle & \text{if } p = 2, \\
\langle \Sp^k \alpha, [M] \rangle & \text{if } p \neq 2.
\end{cases}
$$
We shall next prove

Proposition 5.2. If the action on M is free and $\omega_m \in H^p(M/G)$ is not zero, it holds

$$\omega_m \mathcal{U}_M = \delta^* (\omega_{p-1} \times \mu),$$

where μ is a generator of $H^m(M)$.

Proof. Let V be an equivariant open neighbourhood of dM in M_p, and put

$$W = M^p - \Delta M - dM, \quad C = M^p - \Delta M - V.$$

Then C/G is a closed connected and non-compact subset of W/G, and hence we have $H^{mp}(W/G, W/G - C/G) = 0$ (see p. 260 of [4]). Therefore it follows that

$$H^{mp}_G(M^p - \Delta M, V) \cong H^{mp}_G(W, W - C) \cong H^{mp}(W/G, W/G - C/G) = 0.$$

This shows that $i^*: H^{mp}_G(M^p, M^p - \Delta M) \longrightarrow H^{mp}_G(M^p, dM)$ is onto, and so is

$$i^* \circ \theta: H^p_G(\Delta M) \longrightarrow H^{mp}_G(M^p, dM).$$

It follows from Lemma 4.1 and the assumptions that $H^{mp}_G(\Delta M) \cong \mathbb{Z}_p$ is generated by ω_m. By Theorem 4.4, $H^{mp}_G(M^p, dM) \cong \mathbb{Z}_p$ is generated by $\delta^*(\omega_{p-1} \times \mu)$. Since $i^* \circ \theta$ is a homomorphism of $H^*(BG)$-modules and it sends 1 to \mathcal{U}_M, we have the desired result.

We shall now give

Proof of Theorem A. By the assumption ii) and Proposition 5.2, it holds

$$\omega_n \mathcal{U}_M = \delta^* (\omega_{p-1} \times \nu),$$

where ν is a generator of $H^*(N)$. Therefore we have

$$\omega_n (g^p \mathcal{U}_M) = \delta^* (\omega_{p-1} \times g^* \nu),$$

and this is not zero by the assumption v) and Theorem 4.4. Since $n \geq (p-1)m$ by the assumption iii), it holds

$$\omega_{p-1} (g^p \mathcal{U}_M) \neq 0.$$

On the other hand, it follows from the assumptions i), iv) and Proposition 5.1 that

$$f^p (\mathcal{U}_M) = h_m \omega_{p-1}$$

with $h_m \neq 0 \mod p$. Consequently we have

$$f^p (\mathcal{U}_M) \cdot g^p (\mathcal{U}_M) = h_m \omega_{p-1} \neq 0,$$

which completes the proof by Proposition 3.3.
6. Proof of Theorem B and an example.

The following proposition has been proved in [13] if \(p = 2 \). By the similar method we shall prove it for any \(p \).

Proposition 6.1. If \(i^* : H^q(M) \rightarrow H^q(M^G) \) is trivial for \(q \geq m/p \), then we have

\[
\hat{U}'_m = \sum_{(i, \ldots, i_p) \in \mathbb{N}^p} c_{i, \ldots, i_p} \pi_1(a_i, \ldots, a_p),
\]

where \((a_i)_{i=1}^n \) is a homogeneous basis of \(H^*(M) \), and \(c_{i, \ldots, i_p} \) are those in \((2.2)\).

Before we proceed to proof we make some preparations.

The equivariant homology group \(H^G_*(X^p) = H_*(EG \times X^p) \) is canonically identified with \(H_*(G; H_*(X)^p) \), the homology group of the group \(G \) with coefficients in \(H_*(X)^p = H_*(X) \otimes \cdots \otimes H_*(X) \) on which \(G \) acts by cyclic permutations. Taking the standard \(G \)-free acyclic complex \(W \), we have an element of \(H_*(G; H_*(X)^p) \) represented by \(w_0 \otimes a \otimes \cdots \otimes a \), where \(w_0 \in W \) is the basis of degree \(k \) and \(a \in H_*(X) \). The corresponding element in \(H^G_*(X^p) \) will be denoted by \(P_k(a) \).

Lemma 6.2. Suppose that \(i^* : H^q(M) \rightarrow H^q(M^G) \) is trivial for \(q \geq m/p \). Then, for any \(k \geq 0 \) and for any \(a \in H^*(M) \), we have

\[
\langle w_0 \hat{U}'_m, P_{k+1}(\alpha \wedge [M]) \rangle = 0
\]

if \(p = 2 \), and

\[
\langle \hat{U}'_m, P_{2k+1}(\alpha \wedge [M]) \rangle = 0,
\]

\[
\langle w_0 \hat{U}'_m, P_{2k+1}(\alpha \wedge [M]) \rangle = 0
\]

if \(p \neq 2 \).

Proof. Similarly to Lemma 4.4 in [13], the result for \(p \neq 2 \) is proved as follows.

It follows that \(P_{2k+1}([M]) \) is in the image of

\[
i_k : H_{2k+1+m^p}(S^{2k+1} \times M^p) \rightarrow H_{2k+1+m^p}^G(M^p)
\]

induced by the inclusion, and that \(i_k(\hat{U}'_m) \) is the image of \(1 \) under the homomorphism

\[
(id \times \Delta)^! : H^*(S^{2k+1} \times M) \rightarrow H^*(S^{2k+1} \times M^p).
\]

From these facts we see that \(\hat{U}'_m - P_{2k+1}([M]) \) is in the image of
Equivariant Point Theorems

\[H_{2k+1+m}(S^{2k+1} \times M) \xrightarrow{i_{k*}} H^G_{2k+1+m}(M) \xrightarrow{\Delta_*} H^G_{2k+1+m}(M^g). \]

Therefore it follows that

\[\langle \hat{U}_{l}', P_{2k+1}(\alpha - [M]) \rangle = \langle \hat{U}_{l}', P(\alpha) - P_{2k+1}([M]) \rangle = \langle P(\alpha), \hat{U}_{l}' - P_{2k+1}([M]) \rangle = \varepsilon_k \langle P(\alpha), \Delta_{g*}i_{k*} [S^{2k+1} \times M] \rangle = \varepsilon_k \langle a*P(\alpha), i_{k*} [S^{2k+1} \times M] \rangle \quad (\varepsilon_k \in \mathbb{Z}_p), \]

and similarly

\[\langle \omega_1 \hat{U}_{l}', P_{2k+1}(\alpha - [M]) \rangle = \varepsilon_k \langle \omega_1 a*P(\alpha), i_{k*} [S^{2k+1} \times M] \rangle. \]

To prove the desired two equalities, we may suppose \(p|\alpha| \geq m+1 \) in the first, and \(p|\alpha| \geq m \) in the second. Consequently it suffices to prove that

\[\Delta_* P(\alpha) = 0 \quad \text{if} \quad p|\alpha| \geq m+1, \]

\[\omega_1 a*P(\alpha) = 0 \quad \text{if} \quad p|\alpha| \geq m. \]

By Lemma 4.2, \(\Delta_* P(\alpha) \) and \(\omega_1 a*P(\alpha) \) are in the image of \(j_* : H^*_G(M, M^g) \rightarrow H^*_G(M) \), and the Smith cohomology exact sequence implies \(H^*_G(M, M^g) = 0 \) \((q > m)\). Therefore we have the desired results, and the proof completes.

Proof of Proposition 6.1. In virtue of Theorem 4.3 it can be written uniquely that

\[\hat{U}_{l}' = \sum_i \xi_{ij} \omega_j P(\alpha_i) + \sum_{(i_1, \ldots, i_p) \in \mathcal{R}(I_p^g)} \eta_{i_1 \cdots i_p} \pi_1(\alpha_{i_1} \times \cdots \times \alpha_{i_p}) \]

with some \(\xi_{ij}, \eta_{i_1 \cdots i_p} \in \mathbb{Z}_p \). Since it is easily seen that

\[\text{Im} \pi_1 \cap \pi_k(a') = 0, \]

\[\langle \omega_j P(\alpha), P_k(a) \rangle = \delta_{jk} \langle \alpha, a' \rangle \]

\((\alpha \in H^*(M), a' \in H^*_G(M))\), it follows from Lemma 6.2 that \(\xi_{ij} = 0 \). We see from (5.1) that \(\eta_{i_1 \cdots i_p} = c_{i_1 \cdots i_p} \) if \((i_1, \ldots, i_p) \in \mathcal{R}(I_p^g)\) and \(c_{i_1 \cdots} = 0 \) for any \(i \in I \). This completes the proof.

Remark 1. Working in the smooth category, Hattori [7] has given formulae for \(\hat{U}_{l}' \) with no assumption on \(M^g \).

The following is immediate from Proposition 6.1 and Theorem 4.5.

Proposition 6.3. If the action on \(M \) is free, then it can be written uniquely that
\[\tilde{U}_N = \sum_{(i_1, \ldots, i_p) \in R(P)} c_{i_1} \cdots c_{i_p} \alpha_{i_1} \times \cdots \times \alpha_{i_p} \]
\[+ \sum_{|\alpha_i| \geq m-m/p} \varepsilon_i \delta^*(\omega_{(p-1)m-|\alpha_i|-1} \times \alpha_i) \]

with some \(\varepsilon_i \in \mathbb{Z}_p \).

Remark 2. The author does not know how to determine \(\varepsilon_i \) in the above. If \(M \) is a mod \(p \) homology sphere, it follows from Propositions 5.2 and 6.3 that

\[\tilde{U}_N = \begin{cases} \pi_i(1 \times \mu) & \text{if} \quad p=2, \\ \pi_i(1 \times \mu \times \cdots \times \mu) + \varepsilon \delta^*(\omega_{(p-2)m-1} \times \mu) & \text{if} \quad p \neq 2, \end{cases} \]

where \(\varepsilon \neq 0 \mod p \), and \(\mu \in H^m(M) \) is a generator such that \(\langle \mu, [M] \rangle = 1 \).

We shall now give

Proof of Theorem B. By the assumption i) and Proposition 6.1 we have

\[f^p \tilde{U}_M = \pi_i f^p \left(\sum_{(i_1, \ldots, i_p) \in R(P)} c_{i_1} \cdots c_{i_p} \alpha_{i_1} \times \cdots \times \alpha_{i_p} \right), \]

and by the assumption ii) and Proposition 6.3 we have

\[g^p \tilde{U}_N = \pi_i g^p \left(\sum_{(i_1, \ldots, i_p) \in R(P)} d_{i_1} \cdots d_{i_p} \beta_{i_1} \times \cdots \times \beta_{i_p} \right) \]
\[+ \sum_{|\beta_j| \geq n-p} \varepsilon_j \delta^*(\omega_{(p-1)m-1} \times \beta_{i_1} \times \cdots \times \beta_{i_p}). \]

It follows from (5.1) and Proposition 6.1 that

\[\sigma^* \left(\sum_{(i_1, \ldots, i_p) \in R(P)} c_{i_1} \cdots c_{i_p} \alpha_{i_1} \times \cdots \times \alpha_{i_p} \right) = \sigma(1), \]
\[\sigma^* \left(\sum_{(i_1, \ldots, i_p) \in R(P)} d_{i_1} \cdots d_{i_p} \beta_{i_1} \times \cdots \times \beta_{i_p} \right) = \sigma(1). \]

Thus, by (4.4), (4.5) and the assumption ii), we have

\[(f^p \tilde{U}_M) \cdot (g^p \tilde{U}_N) = \pi_i \left(f^p \sum_{(i_1, \ldots, i_p) \in R(P)} c_{i_1} \cdots c_{i_p} \alpha_{i_1} \times \cdots \times \alpha_{i_p} \right) \left(g^p \sigma(1) \right) \]
\[= \pi_i \left(f^p \sigma(1) \right) \left(g^p \sum_{(i_1, \ldots, i_p) \in R(P)} d_{i_1} \cdots d_{i_p} \beta_{i_1} \times \cdots \times \beta_{i_p} \right) \]

in \(H^k_0(L, dL) \).

It follows from Theorem 4.4 that \(H^k_0(L, dL) \equiv \mathbb{Z}_p \) is generated by \(\delta^*(\omega_{p-1} \times \cdots \times \rho) \) or \(\pi_i(\rho \times \cdots \times \rho) \), where \(\rho \in H^L(L) \) is a generator such that \(\langle \rho, [L] \rangle = 1 \).

Consequently we have

\[(f^p \tilde{U}_M) \cdot (g^p \tilde{U}_N) = \lambda(f, g) \pi_i(\rho \times \cdots \times \rho) \]
\[= \lambda(f, g) \pi_i(\rho \times \cdots \times \rho), \]
which completes the proof by Proposition 3.3.

Theorem B for \(p=2 \), particularly corollary 3 in § 2, has interesting applications as is seen in [13]. The author does not know so interesting applications of Theorems B for \(p \neq 2 \). However there is the following example for which Theorem B for \(p=3 \) is applicable.

Let \(n=1,3 \) or 7, and take in Theorem B

\[L = S^n \times S^n, \quad M = S^n \times S^n, \quad N = S^n, \]

where the action on \(N \) is any free \(G \)-action, and action on \(M \) is given as follows:

\[T(x, y) = (y, y^{-1}x^{-1}), \]

\(x, y \) being complex numbers, quaternions or Cayley numbers according as \(n=1,3 \) or 7. It follows that the fixed point set of \(M \) is homeomorphic to \(S^{n-1} \)-point. Thus the assumptions i), ii), iii) in Theorem B are satisfied.

Let \(\nu \in H^*(S^n) \) denote a generator, and put \(\nu_1 = \nu \times 1, \quad \nu_2 = 1 \times \nu \in H^*(S^n \times S^n) \). Then, by Remark 3 in § 2, it can be seen that

\[A_1(1) = \sigma^*(1 \times \nu_1 \nu_2 - \nu_1 \times \nu_1 \nu_2 - \nu_2 \times \nu_2 \nu_1 - \nu_2 \times \nu_1 \nu_2) \]

for the homomorphism \(A_1 : H^*(M) \to H^*(M^3) \), and

\[A_1(1) = \sigma^*(1 \times \nu \nu) \]

for the homomorphism \(A_1 : H^*(N) \to H^*(N^3) \). Therefore, if continuous maps \(f : L \to M, \ g : L \to N \) satisfy

\[f^*(\nu_1) = a_1 \nu_1 + a_2 \nu_2, \quad g^*(\nu) = b_1 \nu_1 + b_2 \nu_2 \]

\((a_{ij}, b_i \in \mathbb{Z}_2)\), simple calculation shows

\[\lambda(f, g) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \begin{vmatrix} a_{21} & a_{22} \\ b_1 & b_2 \end{vmatrix} - \begin{vmatrix} a_{21} & a_{22} \\ b_1 & b_2 \end{vmatrix} \begin{vmatrix} a_{11} & a_{12} \\ b_1 & b_2 \end{vmatrix} = 0 \]

This yields by Theorem B the following

Theorem 6.4. Let \(n=1,3 \) or 7, and let \(f_1, f_2, g : S^n \times S^n \to S^n \) be continuous maps of type \((a_{11}, a_{12}), (a_{21}, a_{22}), (b_1, b_2)\) respectively. Let \(T : S^n \to S^n \) be a homomorphism of period 3 without fixed points. Then, if

\[\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \begin{vmatrix} a_{21} & a_{22} \\ b_1 & b_2 \end{vmatrix} - \begin{vmatrix} a_{21} & a_{22} \\ b_1 & b_2 \end{vmatrix} \begin{vmatrix} a_{11} & a_{12} \\ b_1 & b_2 \end{vmatrix} \equiv 0 \mod 3, \]

there exist \(x, y, z \in S^n \times S^n \) such that

\[(f_2(x), f_2(y), f_2(z)) = (f_1(y), f_1(z), f_1(x)), \]
$$(Tg(x), Tg(y), Tg(z)) = (g(y), g(z), g(x)),
\quad f_1(x)f_1(y)f_1(z) = 1.$$

In particular, taking $f_i =$ projection to the i-th factor, we have

Corollary. If $b_1 + b_2 \neq 0$ then there exist $x, y, z \in S^n$ such that
$$Tg(x) = g(y), \quad Tg(y) = g(z), \quad x y z = 1,$$

where n, g and T are those in Theorem 6.4.

References

M. Nakaoka
Department of Mathematics
Osaka University
Toyonaka 560 Japan