THE GROTHENDIECK RING OF VECTOR SPACES
WITH TWO IDEMPOTENT ENDOMORPHISMS

By

D. TAMBARA

Introduction.

In this paper we are concerned with a particular bialgebra A over a field k, which is generated as an algebra by e_1, e_2 with defining relations $e_1^2 = e_1$, $e_2^2 = e_2$, and whose comultiplication $\Delta: A \rightarrow A \otimes A$ and counit $\varepsilon : A \rightarrow k$ are given by the formulas

\[
\Delta(e_1) = e_1 \otimes e_1 + (1-e_1) \otimes (1-e_2)
\]
\[
\Delta(e_2) = (1-e_2) \otimes (1-e_1) + e_2 \otimes e_2
\]
\[
\varepsilon(e_1) = \varepsilon(e_2) = 1.
\]

The purpose of this paper is to compute the representation ring of A, namely the Grothendieck ring of finite dimensional A-modules with respect to \oplus and \otimes, when k is an algebraically closed field of characteristic zero. The classification of indecomposable A-modules is known and our main task is to decompose tensor product of indecomposable A-modules.

The results are summarized at the end of Section 1. Our computations involve the decomposition of tensor product of \mathbb{Z}_e-graded $k[x]$-modules. More generally we do this for $\mathbb{Z}_e(=\mathbb{Z}/e\mathbb{Z})$-graded $k[x]$-modules for any integer $e \geq 2$. Here, for \mathbb{Z}_e-graded $k[x]$-modules A, B, we give $A \otimes B$ the standard grading and let x act on it by

\[
x(a \otimes b) = xa \otimes b + \omega^i a \otimes xb \quad \text{deg } a = i,
\]

where ω is a fixed primitive e^{th} root of 1.

The bialgebra A comes from a certain universal construction. In general, for k-algebras A, B such that $\dim A < \infty$, there is a k-algebra $a(A, B)$ equipped with a k-algebra map $\rho : B \rightarrow A \otimes a(A, B)$ having the following property: For any k-algebra C, the map $\text{Hom}_{k-\text{alg}}(a(A, B), C) \rightarrow \text{Hom}_{k-\text{alg}}(B, A \otimes C)$ induced by ρ is a bijection. The algebra $a(A, A)$ becomes naturally a bialgebra. The bialgebra $a(A, A)^*$ in the dual space $a(A, A)^*$ is the universal measuring bialgebra.
of A in the terminology of Sweedler [3]. Our bialgebra A is isomorphic to $a(A, A)$ with $A=k \times k$. General theory of such bialgebras will appear elsewhere.

1. Main results.

Throughout this paper k is an algebraically closed field of characteristic zero, \otimes is over k and all modules are finite dimensional over k. Let A be a k-algebra generated by e_{ij}, $i, j=1, 2$, with defining relations

$1=\sum_j e_{ij}$, \quad $i=1, 2$

$e_{ij}e_{ik}=\delta_{jk}e_{ij}$, \quad $i, j, k=1, 2$.

We make A a bialgebra, defining comultiplication $\Delta: A \rightarrow A \otimes A$ and counit $\varepsilon: A \rightarrow k$ by the formulas

$\Delta(e_{ik})=\sum_j e_{ij} \otimes e_{jk}$

$\varepsilon(e_{ij})=\delta_{ij}$.

This bialgebra is identified with the one in Introduction by $e_{ii}=e_i$. For right A-modules V, W, we always regard $V \otimes W$ as a right A-module through the map Δ. Our object is to decompose A-modules $V \otimes W$ for all indecomposable A-modules V, W.

We begin with a parametrization of indecomposable A-modules. Since a A-module structure on V is determined by the subspaces Ve_{ij} of V, the classification of A-modules is a special case of that of quadruples of subspaces in vector spaces, which was done by Gelfand and Ponomarev, and by Nazarova.

For vector spaces V_{ij}, $i, j=1, 2$, and an isomorphism $\alpha: V_{11} \oplus V_{12} \rightarrow V_{21} \oplus V_{22}$, define a A-module $M(\alpha)$ as the vector space $V_{11} \oplus V_{12}$ on which e_{11}, e_{12} act as the projections to V_{11}, V_{12}, and e_{21}, e_{22} act as the projections to $\alpha^{-1}(V_{21}), \alpha^{-1}(V_{22})$ respectively. We write the isomorphism α in a matrix form

$\alpha=\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}$, \quad $\alpha_{ij}: V_{ij} \rightarrow V_{1i}$.

Let \mathcal{C} be the category of $k[x]$-modules on which x acts nilpotently. Indecomposable objects of \mathcal{C} are $V_n:=k[x]/(x^{n+1})$, $n \geq 0$. By a Z_2-graded $k[x]$-module we mean a $k[x]$-module A equipped with a $Z_2(=Z/2Z)$-grading $A=A_0 \oplus A_1$ such that $x(A_i) \subseteq A_{i+1}$ for $i \in Z_2$. A homomorphism of Z_2-graded $k[x]$-modules is a $k[x]$-linear map preserving grading. Let \mathcal{D} be the category of Z_2-graded $k[x]$-modules on which x acts nilpotently. For each $n \geq 0$ and $j=0, 1,$
let V'_k be a \mathbb{Z}_2-graded $k[x]$-module which has a basis v, xv, \ldots, x^nv such that $\deg v = j$ and $x^{n+1}v = 0$. The modules V'_n for $n \geq 0, j = 0, 1$ form a complete list of indecomposable objects in \mathcal{O}.

For an object A of \mathcal{O}, define A-modules $L_i(A), L_0(A)$ by

$$L_i(A) = M\begin{pmatrix} f_0 & 1_{A_1} \\ 1_{A_0} & f_1 \end{pmatrix}$$

$$L_0(A) = M\begin{pmatrix} 1_{A_0} & f_1 \\ f_0 & 1_{A_1} \end{pmatrix}$$

where $f_0 : A_0 \to A_1$, $f_1 : A_1 \to A_0$ are multiplication by x. For an object A of \mathcal{E} and $\lambda \in k - \{0, 1\}$, define a A-module $L_2(A)$ by

$$L_2(A) = M\begin{pmatrix} 1_A & 1_A \\ 1_A & f \end{pmatrix}$$

where $f : A \to A$ is the map $a \to (1 - \lambda)a + xa$. From the table of indecomposable representations of the D_7^*-graph in Dlab and Ringel [1], we see the following.

Proposition 1.1. The A-modules

$$L_i(V'_k), L_0(V'_k) \quad n \geq 0, j = 0, 1$$

$$L_2(V'_n) \quad n \geq 0, \lambda \in k - \{0, 1\}$$

form a complete list of indecomposable A-modules.

Obviously $L_i(V'_0) \cong k$, the trivial A-module. We define functors

$$\otimes : \mathcal{E} \times \mathcal{E} \to \mathcal{E}$$

$$\otimes : \mathcal{O} \times \mathcal{O} \to \mathcal{O}$$

$$\otimes' : \mathcal{O} \times \mathcal{O} \to \mathcal{O}$$

$$p^* : \mathcal{O} \to \mathcal{E}$$

$$p_* : \mathcal{E} \to \mathcal{O}$$

$$(\sim) : \mathcal{O} \to \mathcal{O}$$

in the following way. If A, B are $k[x]$-modules, the $k[x]$-module $A \otimes B$ is defined to be the vector space $A \otimes B$ on which x acts as

$$x(a \otimes b) = xa \otimes b + a \otimes xb.$$

If A, B are \mathbb{Z}_2-graded $k[x]$-modules, the \mathbb{Z}_2-graded $k[x]$-modules $A \otimes B$ and
$A \otimes' B$ have the underlying space $A \otimes B$, and the grading and the action of x are defined as

$$A \otimes B : (A \otimes B)_k = \bigoplus_{i+j=k} A_i \otimes B_j$$

$$x(a \otimes b) = xa \otimes b + (-1)^{i}a \otimes xb, a \in A_i, b \in B$$

$$A \otimes' B : (A \otimes' B)_k = A \otimes B_k$$

$$x(a \otimes b) = xa \otimes xb.$$

If we exhibit a \mathbb{Z}_2-graded $k[x]$-module $A = A_0 \oplus A_1$ and a $k[x]$-module B by the diagrams

$$
\begin{array}{ccc}
A_0 & \xrightarrow{f_0} & A_1 \\
\downarrow{f_1} & & \downarrow{g} \\
B & & B \otimes g
\end{array}
$$

where f_0, f_1, g are multiplication by x, the functors p_*, p^*, $(_)$ are defined as

$$p^* : A_0 \xrightarrow{f_0} A_1 \quad \longrightarrow \quad A_0 \otimes f_1 f_0 \oplus A_1 \otimes f_0 f_1$$

$$p_* : B \otimes g \quad \longrightarrow \quad B \xrightarrow{1} B \oplus B \xrightarrow{g} B$$

$$(_): A_0 \xrightarrow{f_0} A_1 \quad \longrightarrow \quad A_1 \xrightarrow{f_1} A_0.$$

Theorem 1.2. Let $\lambda, \mu \in \mathbb{k}$ and let A, B be objects of \mathcal{D} or \mathcal{E}. Then we have an isomorphism of A-modules

$$L_\lambda(A) \otimes L_\mu(B) \cong L_{\lambda \mu}(C)$$

where C is an object of \mathcal{D} or \mathcal{E} defined as follows.

(i) \quad $C = A \otimes B$ \quad if $\lambda = \mu = 1$

(ii) \quad $C = p^* A \otimes B$ \quad if $\lambda = 1, \mu \neq 0, 1$

(iii) \quad $C = A \otimes p^* B$ \quad if $\lambda \neq 0, 1, \mu = 1$

(iv) \quad $C = A \otimes B \oplus A \otimes B$ \quad if $\lambda, \mu
eq 0, 1, \lambda \mu
eq 1$

(v) \quad $C = p_*(A \otimes B)$ \quad if $\lambda, \mu
eq 0, 1, \lambda \mu = 1$

(vi) \quad $C = B \otimes \dim A$ \quad if $\lambda = 1, \mu = 0$

(vii) \quad $C = B \otimes \dim A$ \quad if $\lambda \neq 0, 1, \mu = 0$

(viii) \quad $C = A \otimes \dim \mathbb{B} \oplus A \otimes \dim \mathbb{B}_1$ \quad if $\lambda = 0, \mu = 1$
The Grothendieck ring of vector spaces

\(C = A^\oplus \dim B \oplus \overline{A^\oplus \dim B} \) if \(\lambda = 0, \mu \neq 0, 1 \)

\(C = A \otimes B \) if \(\lambda = \mu = 0 \).

Proof will be given in Section 2.

We next describe the effect of the functors \(\otimes, \otimes', p^*, p_* \) on indecomposable modules in \(\mathcal{O} \) and \(\mathcal{E} \).

PROPOSITION 1.3. (i) We have isomorphisms in \(\mathcal{E} \)

\[V_m \otimes V_n \cong \bigoplus_{j=0}^{\min(m,n)} V_{m+n-2j} \]

for all \(m, n \geq 0 \).

(ii) The Grothendieck ring \(S \) of \((\mathcal{E}, \oplus, \otimes) \) is the polynomial ring on one generator \([V_1]\).

This is well-known and an immediate consequence of the Clebsch-Gordan rule for tensor product of simple \(\mathfrak{sl}_2 \)-modules. See also Littlewood [2, p. 195].

PROPOSITION 1.4. (i) We have isomorphisms in \(\mathcal{D} \)

\[V_i^m \otimes V_i^n \cong \begin{cases} \bigoplus_{j=0}^{\min(m,n)} V_{i+j+j} \otimes V_{i+j-2j} & \text{if } mn \text{ is even} \\ \bigoplus_{j, \text{even}}^{\min(m,n)-1} (V_{i+j+j} \otimes V_{i+j-2j}) \oplus V_{i+j+1} \otimes V_{i+j+1} & \text{if } mn \text{ is odd} \end{cases} \]

for all \(m, n \geq 0, i, j \in \mathbb{Z}_2 \).

(ii) The Grothendieck ring \(R \) of \((\mathcal{D}, \oplus, \otimes) \) is a commutative ring generated by the classes \([V_1], [V_2], [V_3] \) with defining relations

\[[V_1]^2 = 1([V_2]) \]

\[[V_2]^3 = [V_3]^2 + [V_1]^2 V_2 \].

We shall prove this in Section 3. In fact we shall determine decomposition of tensor product of \(\mathbb{Z}_e \)-graded \(k[x] \)-modules for any \(e \geq 2 \).

PROPOSITION 1.5. (i) We have isomorphisms in \(\mathcal{D} \)

\[V_i^m \otimes V_i^n \cong \begin{cases} \bigoplus_{j=0}^{n-1} V_i^j \oplus V_i^{m+j-n} \otimes V_i^{m+j-n-1} & \text{if } m \leq n \\ \bigoplus_{j=0}^{m-1} V_i^j \oplus V_i^{n+j-m} \otimes V_i^{n+j-m-1} & \text{if } m > n \end{cases} \]

for all \(m, n \geq 0, i, j \in \mathbb{Z}_2 \).

(ii) The Grothendieck ring \(T \) (without 1) of \((\mathcal{D}, \oplus, \otimes') \) has a \(\mathbb{Z} \)-basis \(\{e_n: n \geq 0, j \in \mathbb{Z}_2\} \), where

\[e_n^j = [V_n^j] - [V_{n-1}^j] - [V_{n+1}^j] + [V_{n+1}^j] \]
with the convention $V^i_j = V^j_i = 0$ and we have
\[
e_n^n e_n^i = \begin{cases} e_n^i & \text{if } m = n \\ 0 & \text{if } m \neq n. \end{cases}
\]

Proposition 1.6. (i) We have isomorphisms
\[
p_n^* V^i_n = \begin{cases} V_{n/2} \oplus V_{n/2} & \text{if } n \text{ is even} \\ V_{(n-1)/2} \oplus V_{(n-1)/2} & \text{if } n \text{ is odd} \end{cases}
\]
\[
p_n^* V^i_n = V^i_{n+1} \oplus V^i_{n+1}
\]
for all $n \geq 0$, $i \in \mathbb{Z}_n$.

(ii) The functor $p_n^* : \mathcal{D} \to \mathcal{E}$ induces a surjective ring homorphism $p_n^* : R \to S$ such that
\[
p_n^*[V^i_n] = 1, \quad p_n^*[V^i_n] = 2, \quad p_n^*[V^i_n] = 1 + [V^i_n]
\]
and the functor $p_n^* : \mathcal{E} \to \mathcal{D}$ induces an injective homomorphism $p_n^* : S \to R$ such that
\[
p_n^* p_n^*(a) = (1 + [V^i_n])[V^i_n] a
\]
for all $a \in R$.

Proofs of Propositions 1.5, 1.6 are easy and omitted.

Combining these results, we see that the representation ring of A is isomorphic to the ring K defined as follows. The additive group of K is the direct sum
\[
K = \bigoplus_{\lambda \in \mathbb{Z}_n} K_\lambda
\]
where
\[
K_\lambda = \begin{cases} R & \text{if } \lambda = 1 \\ S & \text{if } \lambda \neq 0, 1 \\ T & \text{if } \lambda = 0 \end{cases}
\]
and
\[
R = \mathbb{Z}[\varepsilon, \phi, \phi^2] \text{ a commutative ring with defining relations} \varepsilon^2 = 1, \quad \phi(\phi^2 - 1 - \varepsilon) = 0,
\]
\[
S = \mathbb{Z}[\phi] \text{ a polynomial ring},
\]
\[
T = \bigoplus_{n \geq 0, j = 1} \mathbb{Z} e_n^j \text{ is a ring without 1 such that } e_n^m e_n^i = \delta_{m,n} e_n^i.
\]

$1 \in R$ is the identity element of K. For $a \in K_\lambda$, $b \in K_\mu$, the product $a \cdot b$ lies in
The Grothendieck ring of vector spaces

\[K_\mu \] and

\[
\begin{align*}
\lambda = \mu = 1 & \implies a \cdot b = ab \\
\lambda = 1, \mu \neq 0, 1 & \implies a \cdot b = p^*(a)b \\
\lambda \neq 0, 1, \mu = 1 & \implies a \cdot b = a p^*(b) \\
\lambda, \mu \neq 0, 1, \lambda \mu \neq 1 & \implies a \cdot b = 2ab \\
\lambda, \mu \neq 0, 1, \lambda \mu = 1 & \implies a \cdot b = p_\#(ab) \\
\lambda = \mu = 0 & \implies a \cdot b = ab \\
\lambda = 0 & \implies \varepsilon \cdot a = a, \quad a \cdot \varepsilon = \tilde{a} \\
\phi_1 \cdot a = 2a, \quad a \cdot \phi_1 = a + \tilde{a} \\
\phi_2 \cdot a = 3a, \quad a \cdot \phi_2 = 2a + \tilde{a} \\
\phi^t \cdot a = 2^{t+1}a, \quad a \cdot \phi^t = 2^t(a + \tilde{a})
\end{align*}
\]

where the multiplications in the right hand sides are those of the rings \(R, S \) or \(T \), and

\[p^*: R \to S \] is a ring homomorphism such that \(\varepsilon \mapsto 1, \phi_1 \mapsto 2, \phi_2 \mapsto 1 + \phi \)

\[p_\#: S \to R \] is an \(R \)-linear map such that \(1 \mapsto (1 + \varepsilon) \phi_1 \)

\[(\cdot): T \to T \] is an additive map interchanging \(e_n^0 \) and \(e_n^1 \) for all \(n \geq 0 \).

\section{2. Proof of Theorem 1.2.}

Let \(\lambda, \mu \in k - \{0\} \) and let

\[
A = \left(A_0 \xrightarrow{f_0} A_1 \right), \quad B = \left(B_0 \xrightarrow{g_0} B_1 \right)
\]

be \(\mathbb{Z}_2 \)-graded \(k[x] \)-modules with the notation in Section 1 and suppose that \(1 - \lambda - f_0 f_1, 1 - \lambda - f_1 f_0, 1 - \mu - g_0 g_1, 1 - \mu - g_1 g_0 \) are nilpotent.

We restate Theorem 1.2 in terms of the functor \(M \) as follows:

\[(2.1) \] If \(\lambda = \mu = 1 \), then

\[
M\left(\begin{array}{c} f_0 \\ f_1 \end{array} \right) \otimes M\left(\begin{array}{c} g_0 \\ g_1 \end{array} \right) \cong M\left(\begin{array}{c} l_0 \\ l_1 \end{array} \right)
\]

where

\[
A_0 \otimes B_0 \oplus A_1 \otimes B_1 \overset{l_0}{\underset{l_1}{\longrightarrow}} A_0 \otimes B_1 \oplus A_1 \otimes B_0
\]
232

D. TAMBARA

\[l_{\varepsilon} = \begin{pmatrix} 1 \otimes g_0 & f_1 \otimes 1 \\ f_0 \otimes 1 & -1 \otimes g_1 \end{pmatrix} \]

\[l_{i} = \begin{pmatrix} 1 \otimes g_1 & f_1 \otimes 1 \\ f_0 \otimes 1 & -1 \otimes g_0 \end{pmatrix}. \]

(2.2) If \(\lambda \mu \neq 1 \), then

\[
M \left(\begin{array}{cc} f_0 & 1 \\ 1 & f_1 \end{array} \right) \otimes M \left(\begin{array}{cc} g_0 & 1 \\ 1 & g_1 \end{array} \right) = M \left(\begin{array}{cc} 1 & 1 \\ 1 & l_{i} \end{array} \right) \oplus M \left(\begin{array}{cc} 1 & 1 \\ 1 & l_{\varepsilon} \end{array} \right)
\]

where

\[
1 - \lambda \mu - l_{\varepsilon} = (1 - \lambda - f_1) \otimes 1 \otimes 1 + 1 \otimes (1 - \mu - g_1 g_0) \in \text{End}(A_0 \otimes B_1)
\]

\[
1 - \lambda \mu - l_{i} = (1 - \lambda - f_1) \otimes 1 \otimes 1 + 1 \otimes (1 - \mu - g_1 g_0) \in \text{End}(A_1 \otimes B_0).
\]

(2.3) If \(\lambda, \mu \neq 1, A_0 = A_1, B_0 = B_1, f_0 = 1, g_0 = 1 \), then

\[
M \left(\begin{array}{cc} 1 & 1 \\ 1 & f_1 \end{array} \right) \otimes M \left(\begin{array}{cc} 1 & 1 \\ 1 & g_1 \end{array} \right) = M \left(\begin{array}{cc} 1 & 1 \\ 1 & l \end{array} \right) \oplus M \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right)
\]

where

\[
- l = (1 - \lambda - f_1) \otimes 1 \otimes 1 + 1 \otimes (1 - \mu - g_1) \in \text{End}(A_1 \otimes B_1).
\]

(2.4) If \(\mu = 1 \), then

\[
M \left(\begin{array}{cc} f_0 & 1 \\ 1 & f_1 \end{array} \right) \otimes M \left(\begin{array}{cc} g_0 & 1 \\ 1 & g_1 \end{array} \right) = M \left(\begin{array}{cc} 1 \otimes 1 & 1 \otimes g_1 \\ 1 \otimes g_0 & 1 \otimes 1 \end{array} \right)
\]

where the left factor 1 in \(1 \otimes 1, 1 \otimes g_0, 1 \otimes g_1 \) is the identity map on \(A_0 \oplus A_1 \).

(2.5) If \(\lambda = 1 \), then

\[
M \left(\begin{array}{cc} 1 & f_1 \\ f_0 & 1 \end{array} \right) \otimes M \left(\begin{array}{cc} g_0 & 1 \\ 1 & g_1 \end{array} \right) = M \left(\begin{array}{cc} 1 \otimes 1_{B_0} & f_1 \otimes 1_{B_0} \\ f_0 \otimes 1_{B_0} & 1 \otimes 1_{B_0} \end{array} \right) \oplus M \left(\begin{array}{cc} 1 \otimes 1_{B_1} & f_1 \otimes 1_{B_1} \\ f_0 \otimes 1_{B_1} & 1 \otimes 1_{B_1} \end{array} \right).
\]

(2.6) If \(\lambda = \mu = 1 \), then

\[
M \left(\begin{array}{cc} 1 & f_1 \\ f_0 & 1 \end{array} \right) \otimes M \left(\begin{array}{cc} g_0 & 1 \\ 1 & g_1 \end{array} \right) = M \left(\begin{array}{cc} 1 & f_0 \otimes g_1 \\ f_0 \otimes g_0 & 1 \end{array} \right) \oplus M \left(\begin{array}{cc} 1 & f_0 \otimes g_1 \\ f_0 \otimes g_0 & 1 \end{array} \right).
\]

Indeed, cases (2.1)-(2.6) correspond to cases (i)-(x) in Theorem 1.2 in the following way

(2.1) \(\iff \) (i)

(2.2) \(\iff \) (ii), (iii), (iv)

(2.3) \(\iff \) (v)

(2.4) \(\iff \) (vi), (vii)
The Grothendieck ring of vector spaces

(2.5) \iff (viii), (ix)

(2.6) \iff (x)

Note that in some cases the present A, B, λ, μ are different from A, B, λ, μ in Theorem 1.2.

Lemma 2.7. Given isomorphisms

$$
\alpha = \begin{pmatrix}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{pmatrix} : V_{11} \oplus V_{12} \longrightarrow V_{21} \oplus V_{22}
$$

$$
\beta = \begin{pmatrix}
\beta_{11} & \beta_{12} \\
\beta_{21} & \beta_{22}
\end{pmatrix} : W_{11} \oplus W_{12} \longrightarrow W_{21} \oplus W_{22}
$$

$$
\beta^{-1} = \begin{pmatrix}
\beta_{11}' & \beta_{12}' \\
\beta_{21}' & \beta_{22}'
\end{pmatrix} : W_{21} \oplus W_{22} \longrightarrow W_{11} \oplus W_{12}
$$

with $\alpha_{ij} : V_{ij} \rightarrow V_{2i}$, $\beta_{ij} : W_{ij} \rightarrow W_{2i}$, $\beta_{ij}' : W_{2j} \rightarrow W_{1j}$, we have an isomorphism of A-modules

$$M(\alpha) \otimes M(\beta) \cong M(\gamma)$$

where

$$
\gamma : Z_{11} \oplus Z_{12} \longrightarrow Z_{21} \oplus Z_{22}
$$

$$
Z_{jk} = \bigoplus_{ij} V_{ij} \otimes W_{jk}
$$

$$
\gamma = \begin{pmatrix}
\alpha_{11} \otimes 1 & \alpha_{12} \otimes \beta_{11}' & 0 & \alpha_{12} \otimes \beta_{12}' \\
\alpha_{21} \otimes \beta_{11} & \alpha_{22} \otimes 1 & \alpha_{21} \otimes \beta_{12} & 0 \\
0 & \alpha_{12} \otimes \beta_{21}' & \alpha_{11} \otimes 1 & \alpha_{12} \otimes \beta_{22}' \\
\alpha_{21} \otimes \beta_{21} & \otimes & \alpha_{21} \otimes \beta_{22} & \alpha_{22} \otimes 1
\end{pmatrix}
$$

The columns of this matrix correspond to $V_{11} \otimes W_{11}$, $V_{12} \otimes W_{21}$, $V_{11} \otimes W_{12}$, $V_{12} \otimes W_{22}$, and the rows correspond to $V_{21} \otimes W_{11}$, $V_{21} \otimes W_{21}$, $V_{22} \otimes W_{12}$, $V_{22} \otimes W_{22}$ in order.

Proof is straightforward. Now we shall prove (2.1)-(2.6).

(1) Let

$$
\alpha = \begin{pmatrix}
f_0 & 1 \\
1 & f_1
\end{pmatrix}, \quad \beta = \begin{pmatrix}
g_0 & 1 \\
1 & g_1
\end{pmatrix}
$$

Then

$$
\beta^{-1} = \begin{pmatrix}
(g_1 g_0 - 1)^{-1} g_1 & -(g_1 g_0 - 1)^{-1} \\
-(g_0 g_1 - 1)^{-1} g_0 & (g_0 g_1 - 1)^{-1} g_0
\end{pmatrix}
$$

so $M(\alpha) \otimes M(\beta) \cong M(\gamma)$ with
Multiplying an invertible matrix with γ on the left, we have

$$\gamma = \begin{pmatrix}
1 \otimes g & f_i \otimes 1 & 1 \otimes 1 & 0 \\
1 \otimes g & 0 & 1 \otimes f_i & 0 \\
0 & 1 \otimes 1 & f_i \otimes 1 & 1 \otimes g \\
0 & 1 \otimes 1 & f_i \otimes (1 - g_1 g_i) & -1 \otimes g_0
\end{pmatrix} = \begin{pmatrix} h_0 & 1 \\
0 & h_1 \end{pmatrix},$$

where

$$h_0 = \begin{pmatrix} f_i \otimes 1 & 1 \otimes g \\
1 \otimes (1 - g_1 g_i) & -1 \otimes g_0
\end{pmatrix}, \quad h_1 = \begin{pmatrix} f_i \otimes 1 & 1 \otimes g \\
1 \otimes (1 - g_1 g_i) & -1 \otimes g_0
\end{pmatrix}.$$

(1a) We shall prove (2.1). Let $\lambda = \mu = 1$. Then $A, B \in \mathcal{D}$. Let l_0, l_1 be as in (2.1).

Lemma 2.8. The \mathbb{Z}_2-graded $k[x]$-modules

$$A_0 \otimes B_0 \oplus A_0 \otimes B_1 \xrightarrow{l_0} A_0 \otimes B_1 \oplus A_0 \otimes B_0$$

$$A_0 \otimes B_0 \oplus A_1 \otimes B_1 \xrightarrow{h_0} A_0 \otimes B_1 \oplus A_1 \otimes B_0.$$

are isomorphic.

From this we have

$$M(\gamma) \cong M(h_0 \ 1) \cong M(l_0 \ 1)$$

which proves (2.1).

Proof of Lemma 2.8. The both \mathbb{Z}_2-graded $k[x]$-modules have the common underlying graded space $A \otimes B$, and x acts on the first module as

$$x(a \otimes b) = xa \otimes b + (-1)^i a \otimes xb \quad a \in A_i$$

and on the second module as

$$x(a \otimes b) =
\begin{cases}
xa \otimes (1 - x^4) b + a \otimes xb & \text{if } a \in A_i \\
xa \otimes b - a \otimes xb & \text{if } a \in A_1.
\end{cases}$$

We may assume that A, B are indecomposable. Let $\dim A = m, \dim B = n$, and let $u \in A, v \in B$ be homogeneous generators. Let $G = k[s, t]$ be a graded k-algebra
The Grothendieck ring of vector spaces

with defining relations \(s^n = t^n = 0 \), \(ts = -st \) and \(\deg s = \deg t = 1 \). \(G \) acts on the vector space \(A \otimes B \) in two different ways.

The first action:
\[
s(a \otimes b) = xa \otimes b, \quad a \in A_i.
\]

The second action:
\[
s(a \otimes b) = \begin{cases} xa \otimes (1-x^2)b & \text{if } a \in A_s \\ xa \otimes b & \text{if } a \in A_t \\ \end{cases},
\]
\[
t(a \otimes b) = (-1)^s a \otimes xb, \quad a \in A_i.
\]

To prove the lemma, it is enough to show that these two \(\mathbb{Z}_2 \)-graded \(G \)-modules \(A \otimes B \) are isomorphic. With respect to either action, \(s^i t^j (u \otimes v) \) (\(0 \leq i < m \), \(0 \leq j < n \)) form a basis of \(A \otimes B \). Hence the both \(G \)-modules are free on the generator \(u \otimes v \). This proves the lemma.

(1b) Suppose next that \(\lambda \mu \neq 1 \). We shall prove (2.2). Putting
\[
k_s = f_s f_i \otimes (1-g_0 g_i) + 1 \otimes g_0 g_i,
\]
\[
k_t = f_s f_i \otimes (1-g_0 g_i) + 1 \otimes g_0 g_i,
\]
we have
\[
h_s h_t = \begin{pmatrix} k_s & 0 \\ 0 & k_t \end{pmatrix}.
\]

Since \(1 - k_s, 1 - k_t \) have the unique eigenvalue \(\lambda \mu \), \(h_s h_t \) is an isomorphism. Similarly \(h_t h_s \) is an isomorphism. Therefore
\[
\gamma \cong \begin{pmatrix} 1 & 1 \\ 1 & h_s h_t \end{pmatrix} \cong \begin{pmatrix} 1 & 1 \\ 1 & k_s \end{pmatrix} \oplus \begin{pmatrix} 1 & 1 \\ 1 & k_t \end{pmatrix}.
\]

Lemmas 2.9. Let \(s \in \text{End} V, t \in \text{End} W \) be nilpotent endomorphisms and \(\lambda, \mu \in k - \{0\} \). Then \((\lambda + s)(\mu + t) - \lambda \mu, s \otimes 1 + 1 \otimes t \in \text{End}(V \otimes W) \) are conjugate.

The proof of the lemma is similar to that of Lemma 2.8. Let \(l_0, l_1 \) be as in (2.2). Applying the lemma to \(s = 1 - \lambda - f_s, t = 1 - \mu - g_0 g_i \), we see that \(k_s \) and \(l_0 \) are conjugate. Similarly \(k_t \) and \(l_1 \) are conjugate. Thus
\[
\gamma \cong \begin{pmatrix} 1 & 1 \\ 1 & l_0 \end{pmatrix} \oplus \begin{pmatrix} 1 & 1 \\ 1 & l_1 \end{pmatrix}
\]
which proves (2.2).

(1c) Suppose \(\lambda, \mu \neq 1, \lambda \mu = 1 \). Let \(A_s = A_1, f_s = 1, B_s = B_1, g_s = 1 \). Then
where P, Q are some invertible matrices and $k = f_i \otimes (1-g_1)+1 \otimes g_1$. Let l_o be as in (2.3). Using Lemma 2.9 with $s=1-\lambda-f_i, t=1-\mu-g_1$, we see that k and l are conjugate. Hence

$$\gamma \equiv \begin{pmatrix} 1 & 1 \\ k & 1 \end{pmatrix} \oplus \begin{pmatrix} -k & 1 \\ 1 & -1 \end{pmatrix} \equiv \begin{pmatrix} 1 & 1 \\ l & 1 \end{pmatrix} \oplus \begin{pmatrix} l & 1 \\ 1 & 1 \end{pmatrix}.$$

This proves (2.3).

(2) We shall prove (2.4). Let

$$\alpha = \begin{pmatrix} f_i & 1 \\ 1 & f_i \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & g_1 \\ g_1 & 1 \end{pmatrix}, \quad \mu = 1.$$

Then

$$\beta^{-1} = \begin{pmatrix} (1-g_1g_1)^{-1} & -(1-g_1g_1)^{-1}g_1 \\ -g_1^{-1}g_1^{-1}g_1 & (1-g_1g_1)^{-1} \end{pmatrix}.$$

So

$$\gamma = \begin{pmatrix} f_i \otimes 1 & 1 \otimes (1-g_1 g_1)^{-1} & 0 & -1 \otimes (1-g_1 g_1)^{-1} g_1 \\ 0 & 1 \otimes g_1 & 0 & 0 \\ 0 & -1 \otimes (1-g_1 g_1)^{-1} & 1 \otimes 1 & f_i \otimes 1 \\ 1 \otimes g_1 & 0 & 1 \otimes 1 & f_i \otimes 1 \\ f_i \otimes (g_1g_1-1) & -1 \otimes 1 & 0 & 1 \otimes g_1 \\ 1 \otimes g_1 & 0 & 1 \otimes 1 & f_i \otimes 1 \\ 0 & -1 \otimes g_1 & f_i \otimes (g_1g_1-1) & -1 \otimes 1 \end{pmatrix} \equiv \begin{pmatrix} 1 \otimes 1 & f_i \otimes 1 & 1 \otimes g_1 & 0 \\ 0 & 1 \otimes g_1 & 0 & 1 \otimes g_1 \\ 0 & 1 \otimes g_1 & f_i \otimes (g_1g_1-1) & -1 \otimes 1 \end{pmatrix}.$$

Put

$$h_0 = \begin{pmatrix} f_i \otimes 1 \\ 1 \otimes g_1 \end{pmatrix} \in \text{End}(A \otimes B, \otimes A \oplus B \otimes)$$

$$h_1 = \begin{pmatrix} 1 \otimes 1 \\ f_i \otimes 1 \end{pmatrix} \in \text{End}(A \otimes B, \otimes A \oplus B \otimes).$$

These are isomorphisms, so

$$\gamma \equiv \begin{pmatrix} 1 \otimes 1 \otimes 1 & (1 \otimes g_1)h_1^{-1} \\ (1 \otimes g_1)h_0^{-1} & 1 \otimes 1 \otimes 1 \end{pmatrix},$$

where $A = A \oplus A$. We claim that the following two objects of \mathcal{D} are isomorphic.

$$A \otimes B_0 \stackrel{(1 \otimes g_0)h_0^{-1}}{\longrightarrow} A \otimes B$$

$$A \otimes B_1 \stackrel{(1 \otimes g_1)h_1^{-1}}{\longrightarrow} A \otimes B_1.$$
The Grothendieck ring of vector spaces

\[A \otimes B_0 \xrightarrow{1 \otimes g_0} A \otimes B_1. \]

Note that the isomorphism class of an object \(C = C_0 \oplus C_1 \) of \(\mathcal{D} \) is determined by the integers \(\text{dim Ker}(x^n : C_i \to C_{i+n}) \) for \(n > 0, i = 0, 1 \). Since

\[
(1 \otimes g_0) h_0 = h_1(1 \otimes g_0), \quad (1 \otimes g_1) h_1 = h_0(1 \otimes g_1),
\]

we have

\[
\text{dim Ker}(1 \otimes g_i) h_i^{-1} \cdots (1 \otimes g_{i+n}) h_{i+n}^{-1} = \text{dim Ker}(1 \otimes g_i) \cdots (1 \otimes g_{i+n}) h_{i+n}^{-1}
\]

where indices are taken modulo 2. Thus the above two objects are isomorphic. It follows that

\[
\begin{pmatrix}
1 & (1 \otimes g_i) h_i^{-1} \\
(1 \otimes g_0) h_0 & 1
\end{pmatrix}
\cong
\begin{pmatrix}
1 & 1 \otimes g_1 \\
1 \otimes g_0 & 1
\end{pmatrix}.
\]

This proves (2.4).

(3) Let

\[
\begin{align*}
\alpha &= \begin{pmatrix} 1 & f_1 \\ f_0 & 1 \end{pmatrix}, \quad \lambda = 1 \\
\beta &= \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix} \\
\beta^{-1} &= \begin{pmatrix} \beta'_{11} & \beta'_{12} \\ \beta'_{21} & \beta'_{22} \end{pmatrix}
\end{align*}
\]

Then \(M(\alpha) \otimes M(\beta) \cong M(\gamma) \), where

\[
\begin{pmatrix}
1 \otimes 1 & f_1 \otimes \beta'_{11} & 0 & f_1 \otimes \beta'_{12} \\
f_0 \otimes \beta_{11} & 1 \otimes 1 & f_0 \otimes \beta_{12} & 0 \\
0 & f_1 \otimes \beta'_{21} & 1 \otimes 1 & f_1 \otimes \beta'_{22} \\
f_0 \otimes \beta_{21} & 0 & f_0 \otimes \beta_{22} & 1 \otimes 1
\end{pmatrix}
\cong
\begin{pmatrix}
1 \otimes 1 - f_1 f_0 \otimes \beta'_{11} \beta_{11} & 0 & 0 & f_1 \otimes \beta'_{12} \\
0 & 1 \otimes 1 & f_0 \otimes \beta_{12} & 0 \\
0 & f_1 \otimes \beta'_{21} & 1 \otimes 1 - f_1 f_0 \otimes \beta'_{21} \beta_{22} & 0 \\
f_0 \otimes \beta_{21} & 0 & 0 & 1 \otimes 1
\end{pmatrix}
\cong
\begin{pmatrix}
h_0 & f_1 \otimes \beta'_{11} & 0 & 0 \\
f_0 \otimes \beta_{21} & 1 \otimes 1 & f_0 \otimes \beta_{12} & 0 \\
0 & 0 & f_1 \otimes \beta'_{21} & h_1
\end{pmatrix}
\]

with

\[
h_0 = 1 \otimes 1 - f_1 f_0 \otimes \beta'_{11} \beta_{11}.
\]
Since \(f_1 f_s \) is nilpotent, \(h_0, h_1 \) are isomorphisms. Hence

\[
γ \equiv \left(\begin{array}{cc}
1 & h_0^{-1}(f_1 \otimes β_{s1}) \\
\otimes β_{s1} & 1
\end{array} \right) \oplus \left(\begin{array}{cc}
1 & f_0 \otimes β_{s1} \\
h_1^{-1}(f_1 \otimes β_{s1}) & 1
\end{array} \right).
\]

(3a) To prove (2.5) we let

\[
β = \begin{pmatrix} g_0 & 1 \\ 1 & g_1 \end{pmatrix}.
\]

Then

\[
γ \equiv \left(\begin{array}{cc}
1 & k_0^{-1}(f_1 \otimes 1) \\
f_0 \otimes 1 & 1
\end{array} \right) \oplus \left(\begin{array}{cc}
1 & f_0 \otimes 1 \\
k_1^{-1}(f_1 \otimes 1) & 1
\end{array} \right),
\]

where

\[
k_0 = f_1 f_0 \otimes g_0 g_0 - 1 \otimes g_0 g_0 + 1 \otimes 1 \quad \text{and} \quad k_1 = f_1 f_0 \otimes g_0 g_0 - 1 \otimes g_0 g_0 + 1 \otimes 1.
\]

Put

\[
k_0' = f_0 f_1 \otimes g_0 g_0 - 1 \otimes g_0 g_0 + 1 \otimes 1 \quad \text{and} \quad k_1' = f_0 f_1 \otimes g_0 g_0 - 1 \otimes g_0 g_0 + 1 \otimes 1.
\]

These are isomorphisms and we have

\[
\begin{align*}
(f_0 \otimes 1) k_0 &= k_0'(f_0 \otimes 1) \\
(f_1 \otimes 1) k_1' &= k_1'(f_1 \otimes 1).
\end{align*}
\]

Then, by the same argument as in (2), we know that there are isomorphisms in \(\mathcal{D} \)

\[
\begin{array}{cccc}
A_0 \otimes B_0 & \xrightarrow{f_0 \otimes 1} & A_0 \otimes B_0 & \xrightarrow{f_0 \otimes 1} & A_0 \otimes B_0 \\
\| & k_0^{-1}(f_1 \otimes 1) & \| & f_0 \otimes 1 & \| \\
A_0 \otimes B_0 & \xleftarrow{f_0 \otimes 1} & A_0 \otimes B_0 & \xleftarrow{f_0 \otimes 1} & A_0 \otimes B_0,
\end{array}
\]

Thus

\[
γ \equiv \left(\begin{array}{cc}
1 & f_1 \otimes 1 \\
f_0 \otimes 1 & 1
\end{array} \right) \oplus \left(\begin{array}{cc}
1 & f_0 \otimes 1 \\
f_1 \otimes 1 & 1
\end{array} \right)
\]

which proves (2.5).

(3b) Finally we prove (2.6). Let

\[
β = \begin{pmatrix} 1 & g_1 \\ g_0 & 1 \end{pmatrix}, \quad \mu = 1.
\]
The Grothendieck ring of vector spaces

Then

\[γ \cong \begin{pmatrix} 1 & \kappa^{-1}(f_i \otimes g_i) \\ f_i \otimes g_{0} & 1 \end{pmatrix} + \begin{pmatrix} 1 & g_i \otimes f_i \\ k_i^{-1}(f_i \otimes g_{0}) & 1 \end{pmatrix}, \]

where

\[k_0 = f_i f_i \otimes 1 + 1 \otimes g_{0} - 1 \otimes 1, \]

\[k_1 = f_i f_i \otimes 1 + 1 \otimes g_{0} - 1 \otimes 1. \]

Put

\[k'_0 = f_i f_i \otimes 1 + 1 \otimes g_{0} - 1 \otimes 1, \]

\[k'_1 = f_i f_i \otimes 1 + 1 \otimes g_{0} - 1 \otimes 1. \]

Then

\[
\begin{align*}
(f_i \otimes g_0) k_0 &= k'_0 (f_i \otimes g_0) \\
(f_i \otimes g_0) k'_0 &= k_0 (f_i \otimes g_0) \\
(f_i \otimes g_0) k_1 &= k'_1 (f_i \otimes g_0) \\
(f_i \otimes g_0) k'_1 &= k_1 (f_i \otimes g_0).
\end{align*}
\]

As in (2) there are isomorphisms in \(\mathcal{O} \)

\[
\begin{align*}
A_0 \otimes B_0 &\xrightarrow{f_0 \otimes g_0} A_1 \otimes B_0 \xrightarrow{k^{-1}(f_i \otimes g_{0})} A_0 \otimes B_1 \\
A_0 \otimes B_0 &\xrightarrow{k^{-1}(f_i \otimes g_{0})} A_1 \otimes B_0 \xrightarrow{f_0 \otimes g_0} A_0 \otimes B_1.
\end{align*}
\]

Thus

\[γ \cong \begin{pmatrix} 1 & f_i \otimes g_1 \\ f_i \otimes g_0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & g_i \otimes f_i \\ f_i \otimes g_{0} & 1 \end{pmatrix}. \]

This proves (2.6).

3. **Tensor product of graded \(k[\underline{x}] \)-modules.**

Throughout this section we fix \(\omega \in k \) a primitive \(e^{th} \) root of unity with \(e \geq 2 \).

By a graded \(k[\underline{x}] \)-module we mean a \(k[\underline{x}] \)-module \(M = \bigoplus_{i \in \mathbb{Z}} M_i \) such that \(\dim M < \infty \), \(x M_i \subset M_{i+1} \) for all \(i \in \mathbb{Z} \). If \(M, N \) are graded \(k[\underline{x}] \)-modules we make the vector space \(M \otimes N \) a graded \(k[\underline{x}] \)-module in the following way.

\[
(M \otimes N)_i = \bigoplus_{i+j=i} M_i \otimes N_j,
\]

\[
x(a \otimes b) = xa \otimes b + \omega^i a \otimes xb \quad a \in M_i, b \in N.
\]

This operation \(\otimes \) on graded \(k[\underline{x}] \)-modules is associative. For each \(m \geq 0 \) and \(i \in \mathbb{Z} \), let \(V^m_i \) be a graded \(k[\underline{x}] \)-module of dimension \(m+1 \) generated by an element of degree \(i \). The modules \(V^m_i \) for \(m \geq 0, i \in \mathbb{Z} \) furnish a complete list of indecomposable graded \(k[\underline{x}] \)-modules. The main result of this section is the
following.

Theorem 3.1. For any \(m, n \geq 0 \) we have an isomorphism of graded \(k[x] \)-modules

\[
V_m^r \otimes V_n^s \cong \bigoplus_{l \in \mathbb{N}} V_{l}^t,
\]

where \(l \mapsto l^t \) is defined in the following way. Write \(m = re+i, n = se+j, l = qe+h \) with \(r, s, q \in \mathbb{N}, 0 \leq i, j, h < e \).

\[
l^t = \begin{cases}
 m+n-2l & \text{if } \max(i+j-e+2, 0) \leq h \leq \min(i, j) \\
 or & \min(i, j) + 1 \leq h \leq \min(i+j+1, e-1) \\
 (r+s-2q+1)e-1 & \text{if } 0 \leq h \leq i+j-e+1 \\
 (r+s-2q)e-1 & \text{if } \min(i, j) + 1 \leq h \leq \max(i, j) \\
 (r+s-2q-1)e-1 & \text{if } i+j+2 \leq h \leq e-1.
\end{cases}
\]

Here we understand \(V_{-1}^t = 0 \).

Proposition 1.4 (i) follows from this, by letting \(e = 2 \) and reducing the grading modulo 2. See also Lemma 3.5 and the end of this section.

The proof of Theorem 3.1 goes as follows. We first decompose \(V_m \otimes V_n, V_m \otimes V_n, V_m \otimes V_n \) directly. In the Grothendieck ring we can express all \([V_m^t] \) as polynomials of \([V_0^t], [V_1^t], [V_2^t]\). Then a straightforward computation gives the desired formula.

We begin with preliminary observation. Let \(m, n \geq 0 \) and let \(G = k[s, t] \) be a graded \(k \)-algebra with defining relations \(ts = st, s^m = t^n = 0 \) and \(\deg s = \det t = 1 \). Let \(G_k \) be the degree \(k \) part of \(G \) for each \(k \geq 0 \). Put \(x = s + t \). Since

\[
x \cdot s^{t} = s^{t+1} + \omega^{t} s^{t+1},
\]

when \(G \) is viewed as a graded \(k[x] \)-module by left multiplication, \(G \) is isomorphic to \(V_m^r \otimes V_n^s \). Since \(tx = oxt + (1 - o)t^2 \) and

\[
0 = s^{m+1} = (x-t)^{m+1} = x^{m+1} + c_1 x^{m} t + \cdots + c_{m+1} t^{m+1}
\]

for some \(c_1, \ldots, c_{m+1} \in k \), \(G \) has a basis \(x^t \), \(0 \leq i \leq m, 0 \leq j \leq n \). Assume \(m \geq n \) and put

\[
z = x^m + c_1 x^{m-1} t + \cdots + c_m t^m.
\]

Then the following hold.

(i) The left multiplication \(x: G_k \rightarrow G_{k+1} \) is injective for \(k < n \), bijective for \(n \leq k < m \), and surjective for \(m \leq k \).
The Grothendieck ring of vector spaces

(ii) G/xG has a basis $t^j \mod xG$, $0 \leq j \leq n$.

(iii) $\text{Ker}(x : G \rightarrow G)$ has a basis zt^j, $0 \leq j \leq n$.

(iv) For each $0 \leq j \leq n$, put

$$l_j = \sup\{l : zt^j \in x^l G_{m+j-l}\}.$$

Then

$$G \cong \bigoplus_{j=0}^{n} V_{m+j-l_j}$$

as graded $k[x]$-modules.

(i) is clear and (ii), (iii) follow from (i). To see (iv), decompose $G = \bigoplus_i k[x]u_i$ with u_i homogeneous elements such that $x^{m_i}u_i \neq 0$, $x^{m_i+1}u_i = 0$. Then the elements $x^{m_i}u_i$ form a basis of $\text{Ker}(x : G \rightarrow G)$. Since zt^j, $0 \leq j \leq n$, have mutually different degrees $m + j$, the bases $\{zt^j\}$ and $\{x^{m_i}u_i\}$ of $\text{Ker}(x : G \rightarrow G)$ are equal up to a permutation and scalar multiples. Hence $\{l_j\}$ is a permutation of $\{m_i\}$. This proves (iv).

Lemma 3.2. For any $m \geq 0$ we have

$$V_n \otimes V_n^* \cong \begin{cases} V_n \oplus V_n^* & \text{if } m+1 \equiv 0 \pmod{e} \\ V_n^* \oplus V_n & \text{if } m+1 \equiv 0 \pmod{e}. \end{cases}$$

Proof. We may assume $e > 0$. In the above observation we specialize (m, n) to $(m, 1)$. Then $t^2 = 0$, $tx = oxt$ and

$$0 = (x-t)^{m+1} = x^{m+1} - \frac{\omega^{m+1}-1}{\omega-1} x^m t,$$

so

$$z = x^{m+1} \frac{\omega^{m+1}-1}{\omega-1} x^{m-1} t \quad zt = x^{m-1} t.$$

If $m+1 \equiv 0$, then $(\omega^{m+1}-1)/(\omega-1) \neq 0$, so

$$z \in x^{m-1} G_1, \quad z \notin x^{m} G_0$$

$$zt = \frac{\omega-1}{\omega^{m+1}-1} x^{m+1} \in x^{m+1} G_0.$$

Thus, by (iv) of the observation, $G \cong V_{m+1} \oplus V_{m+1}^* \cong V_{m} \oplus V_{m}^*$ as graded $k[x]$-modules.

If $m+1 \equiv 0$, then $z = x^{m}$, $x^{m+1} = 0$. So $zt \notin x^{m+1} G_0$. Thus $G \cong V_{m} \oplus V_{m}^*.$

Lemma 3.3. For any $r > 0$ we have

$$V_{e} \otimes V_{e}^* \cong V_{e} \otimes V_{e}^* \cong V_{2e} \otimes V_{2e}^* \cong V_{e} \otimes V_{e}^* \cong \cdots \cong V_{re} V_{re} \oplus V_{re}^*.$$
PROOF. We specialize (m, n) in the previous observation to (r, e). Then $t^{e+1} = 0$, $x^e = s^e + t^e$ and s^e, t^e are central elements in G. We have

$$0 = (x - t)^{e+1} = (x^e - t^e)(x - t) = x^{r+1} - x^et - r x^{(r-1)e+1} t^e,$$

so

$$z = x^e - x^{e-1} t - r x^{(r-1)e+1} t^e$$

and

$$zt^j = x^e t^j - x^{e-1} t^{j+1}, \quad 1 \leq j \leq e - 1$$

$$zt^e = x^e t^e.$$

Let us determine the integers $l_j := \sup \{l : zt^l \in x^l G_{r+e-1} \}$ for $0 \leq j \leq e$. Clearly $l_e = (r-1)e$. By induction on j, we see easily that

$$x^{r+e+j} = x^e t^j + r x^{(r-1)e+j} t^e, \quad j \geq 1$$

$$x^e G_j = \langle x^e t^j, x^{(r-1)e+j} t^e \rangle, \quad j \geq 1.$$

It follows that $x^{r+e+j} e = x^e G_j$ for $1 \leq j < e - 1$, hence $l_j = r e - 1$. We have

$$x^{r+e+1} - (r+1) x^{r+e} t = -r z t^{e-1},$$

and $x^{r+e+1}, z t^{e-1}$ are linearly independent. So $l_i = r e + e - 2$. Finally, since $x^{r+e} = (r+1) z t^e$, we have $l_e = r e + e$. Thus

$$G \cong V_{(r+1)e} \oplus V_{(r+1)e-2} \oplus V_{r-1} \oplus \cdots \oplus V_{r-1} \oplus V_{(r-1)e}$$

as graded $k[x]$-modules.

Lemma 3.4. $V^i \otimes V_m \cong V_m \otimes V^i$ for all $m \geq 0$.

Proof. We can decompose $V^i \otimes V_m$ in the same manner as $V_m \otimes V^i$.

Lemma 3.5. $V^i \otimes V_m \cong V^i \otimes V^j \cong V^i \otimes V^j$ for all $n \geq 0$ and $i, j \in \mathbb{Z}$.

Proof. Let u, v, w be homogeneous generators of $V^i, V^i, V^i \otimes V^j$, respectively. The correspondences $u^k u \otimes x^k v \otimes x^k w \mapsto x^k v \otimes u, 0 \leq k \leq n$, give the isomorphisms.

Let Q be the Grothendieck ring of the category of graded $k[x]$-modules with respect to \oplus, \otimes. The classes $[V^i]$ in Q form a basis of Q. We set

$$\varepsilon = [V^i],$$

$$\phi_n = [V^i] \quad n \geq 0,$$

$$\phi_{-1} = 0.$$

Then $\phi_1 = 1$ and by Lemma 3.5 ε is a central invertible element in Q and
The Grothendieck ring of vector spaces

By Lemma 3.4 \(\phi_1 \) is also central and by Lemma 3.2

\[
(3.6) \quad \phi_i \phi_j = \begin{cases}
\phi_{m+1} + \varepsilon \phi_{m-1} & \text{if } m+1 \not\equiv 0 \pmod{e} \\
(1+\varepsilon) \phi_m & \text{if } m+1 \equiv 0 \pmod{e}
\end{cases}
\]

for \(m \geq 0 \) and by Lemma 3.3

\[
(3.7) \quad \phi_r \phi_s = \phi_{(r+s)} + \varepsilon \phi_{(r+s)-2} + (\varepsilon^2 + \cdots + \varepsilon^{r-1}) \phi_{(r-1)} + \varepsilon \phi_{(r-1)s}
\]

for \(r > 0 \). It follows that \(Q \) is generated by \(\varepsilon, \, \phi_1, \, \phi_e \) and in particular \(Q \) is commutative.

For each integer \(n \geq -1 \), define a polynomial \(H_n(s, t) \) with integral coefficients by

\[
H_n(x + y, xy) = \frac{x^{n+1} - y^{n+1}}{x - y}
\]

with \(x, \, y \) indeterminates. Then \(H_{-1} = 0, \, H_0 = 1 \) and we have a formula

\[
H_m(s, t)H_n(s, t) = \sum_{l=0}^{\min(m, n)} t^l H_{m+n-2l}(s, t)
\]

for \(m, \, n \geq -1 \). Put

\[
\theta_n = H_n(\phi_{-e} - \varepsilon \phi_{-2}, \, \varepsilon^2) \in Q
\]

\[
\sigma_n = H_n(\phi_1, \, \varepsilon) \in Q
\]

for \(n \geq -1 \). Then

\[
(3.8) \quad \theta_m \theta_n = \sum_{l=0}^{\min(m, n)} \varepsilon^{l+m-n-2l} \theta_{m+n-2l}
\]

\[
(3.9) \quad \sigma_m \sigma_n = \sum_{l=0}^{\min(m, n)} \varepsilon^l \sigma_{m+n-2l}.
\]

By an easy induction it follows from (3.6) and (3.9) that

\[
(3.10) \quad \sigma_i = \phi_i, \quad 0 \leq i \leq e - 1
\]

\[
(3.11) \quad \sigma_{e-1-i} = (1 + \varepsilon^i) \phi_{e-1} - \varepsilon^i \phi_{e-1-i}, \quad 0 \leq i \leq e - 1.
\]

Lemma 3.12. We have

\[
\phi_i \phi_j = \sum_{h=\max(i+j-e+2, 0)}^{\min(i+j, e)} \varepsilon^h \phi_{i+j-2h} + \sum_{h=0}^{i+j-e+1} \varepsilon^h \phi_{e-1}
\]

for \(-1 \leq i, \, j \leq e - 1\).

Proof. We may assume \(i \geq j \geq 0 \). When \(i + j \leq e - 2 \), the formula results from (3.9), (3.10). Let \(i + j = e - 1 + l \) with \(0 \leq l \leq e - 1 \). Then by (3.9) and (3.11)
we have
\[\phi_i \phi_j = \sigma_i \sigma_j \]
\[= \sum_{k=0}^{j} e^h \sigma_{i+j-k} \]
\[= \sum_{0 \leq h \leq l} (1 + e^{l-2h}) \phi_{e-1} - e^{l-2h} \phi_{e-1+1+2h} + \sum_{l \leq h \leq j} e^h \phi_{e-1+1+2h} \]
\[= \sum_{0 \leq h \leq l} (e^h + e^{l-h}) \phi_{e-1} - \sum_{0 \leq h \leq l} e^{l-h} \phi_{e-1+1+2h} \]
\[+ \sum_{l \leq h \leq j} e^h \phi_{e-1+1+2h} + \sum_{l \leq h \leq j} e^h \phi_{e-1+1+2h} \]
\[= \sum_{k=0}^{j} e^h \phi_{e-1} + \sum_{h=\lceil l+1 \rceil}^{j} e^h \phi_{i+j-k} , \]
which proves the lemma.

Lemma 3.13. \(\phi_{r+1} = \theta_r \phi_i + e^{i+1} \theta_{r+1} \phi_{r+1} \) for \(r \geq 0, 0 \leq i \leq e-1 \).

Proof. Denoting by \(\phi_{r+1} \) the right hand side, it is enough to show that
\[\phi_i = 1 \]
\[\phi_{r+1} \phi_i = \phi_{r+1} \phi_i + e^{i+1} \theta_{r+1} \phi_{r+1} \]
\[0 \leq i \leq e-2, r \geq 0 \]
\[\phi_{r+1} \phi_i = \phi_{r+1} + e^{i+1} \theta_{r+1} \phi_{r+1} \]
\[r > 0 . \]
The second equality follows from the definition of \(\theta_i \), and the third follows from (3.6) without difficulty. For the last, using (3.8) and Lemma 3.12, we have
\[\phi_{r+1} \phi = (\theta_r + e \theta_{r+1} \phi_{r+1})(\theta_r + e \phi_{r+1}) \]
\[= \theta_r \phi + e \theta_{r+1} \phi_{r+1} + e \theta_{r+1} \phi_{r+1} + e^2 \theta_{r+1} \phi_{r+1} \]
\[= \theta_r \phi + e \theta_{r+1} + e \theta_{r+1} \phi_{r+1} + e^2 \theta_{r+1} \phi_{r+1} \]
\[+ e \theta_{r+1} \phi_{r+1} + e^2 \theta_{r+1} \phi_{r+1} + e^3 \theta_{r+1} \phi_{r+1} + e^4 \theta_{r+1} \phi_{r+1} + e^5 \theta_{r+1} \phi_{r+1} \]
\[+ \cdots + e^{r-1} \theta_{r-1} \phi_{r-1} + e^r \theta_{r+1} \phi_{r+1} \]
\[+ (e^r + \cdots + e^{r-1}) \theta_{r+1} \phi_{r+1} + e^r \theta_{r+1} \phi_{r+1} , \]
as required.

Proof of Theorem 3.1. From Lemmas 3.12 and 3.13 we can deduce easily that
\[\phi_{r+1} \psi_j = \min \{ i, j \} \sum_{h=\max(1, j) - e+2}^{i+j+1} e^h \phi_{r+1} + \sum_{h=\max(1, j) - e+2}^{i+j+1} e^h \phi_{r+1} + \sum_{h=\max(1, j) - e+2}^{i+j+1} e^h \phi_{r+1} \]
The Grothendieck ring of vector species

for \(r \geq 0, 0 \leq i \leq e - 1, -1 \leq j \leq e - 1 \). Replacing \(j \) by \(e - 2 - j \) and multiplying \(\varepsilon^{j+1} \), we have

\[
\phi_{re+i\varepsilon^{j+1}} \phi_{r-2-i} = \sum_{h = \max(i, j)+1}^{\min(r+1, e-1)} \varepsilon^h \phi_{re+i+j+e-2h} + \sum_{h = j+1}^{r-e-1} \varepsilon^h \phi_{(r+1)h-1} + \sum_{h = r+j+2}^{e} \varepsilon^h \phi_{re-1}
\]

for \(r \geq 0, 0 \leq i, j \leq e - 1 \). Using (3.8) and Lemma 3.13, we can also see

\[
\phi_{re+k} = \sum_{q, h} \varepsilon^q \phi_{(r+s-2q)e+i} \]

if \(r \geq 0, r \geq s \geq -1, 0 \leq k \leq e - 1 \) or if \(r, s \geq -1, k = e - 1 \).

Now let \(m = re+i, n = se+j \) with \(r, s \geq 0, 0 \leq i, j \leq e - 1 \). The formula to prove is symmetric in \(m, n \), so we may assume \(r \geq s \). By the above three formulas, we have

\[
\phi_{re+i} \phi_{re+j} = \phi_{re+i} \phi_{re+j} + \phi_{re+i} \phi_{re-j} \phi_{se-1}
\]

\[
= \sum_{q, h} \varepsilon^{q+2h} \phi_{(r+s-2q)e+i+j-2h} + \sum_{q, h} \varepsilon^{q+2h} \phi_{(r+s-1-2q)e+i+j+e-2h}
\]

\[
+ \sum_{q, h} \varepsilon^{q+2h} \phi_{(r+s-2q)e+i+e-1} + \sum_{q, h} \varepsilon^{q+2h} \phi_{(r+s-1-2q)e+i+e-1},
\]

where the \(k \)th summation \(\sum_{(q, h)} \) is over the elements \((q, h) \) in the set \(I_k \) defined below.

\[
I_1: 0 \leq q \leq \min(r, s), \quad \max(i+j-e+2, 0) \leq h \leq \min(i, j)
\]

\[
I_2: 0 \leq q \leq \min(r, s-1), \quad \max(i, j)+1 \leq h \leq \min(i+j+1, e-1)
\]

\[
I_3: 0 \leq q \leq \min(r, s), \quad 0 \leq h \leq i+j-e+1
\]

\[
I_4: 0 \leq q \leq \min(r-1, s), \quad i+1 \leq h \leq j
\]

\[
I_5: 0 \leq q \leq \min(r, s-1), \quad j+1 \leq h \leq i
\]

\[
I_6: 0 \leq q \leq \min(r-1, s-1), \quad i+j+2 \leq h \leq e-1.
\]

As observed earlier, \((V_m \otimes V_n) / x(V_m \otimes V_n) \) has a basis consisting of homogeneous elements of degrees 0, 1, \(\cdots \), \(\min(m, n) \). Therefore the map \(\mathcal{I}_1 \cdots \mathcal{I}_k \rightarrow [0, \min(m, n)] \) taking \((q, h) \) to \(qe+h \) must be a bijection. Since the ranges of \(h \) in \(I_1, \ldots, I_6 \) give a partition of \([0, e-1]\), putting \(l = qe+h \), we have

\[
\phi_m \phi_n = \sum_{l \in \mathcal{I}_k} \varepsilon^l \phi_l
\]

with \(l_\# \) as described in Theorem 3.1. This proves the theorem.

Proposition 3.14. The ring \(Q \) is a commutative ring generated by \(\varepsilon, \varepsilon^{-1}, \phi, \phi_\# \) with a defining relation
\[H_{e_i}(\phi_1, \epsilon)(\phi_1 - 1 - \epsilon) = 0. \]

Proof. This follows from (3.6) and the fact that \(\{ \epsilon^k \phi_i : k \in \mathbb{Z}, 0 \leq i \leq e - 1, r \geq 0 \} \) is a basis of \(Q \). Details are omitted.

Finally we pass from the \(\mathbb{Z} \)-graded case to the \(\mathbb{Z}_e \)-graded case. We consider only \(\mathbb{Z}_e(=\mathbb{Z}/e\mathbb{Z}) \)-graded \(k[x] \)-modules \(M = \bigoplus_{i \in \mathbb{Z}_e} M_i \) such that \(x M_i \subseteq M_{i+1} \) for all \(i \in \mathbb{Z}_e \) and \(x \) acts on \(M \) nilpotently. For such modules \(M, N \), we make the space \(M \otimes N \) a \(\mathbb{Z}_e \)-graded \(k[x] \)-module in the same manner as in the beginning of this section. For a graded \(k[x] \)-module \(M \), let \(\pi_\# M \) be the \(\mathbb{Z}_e \)-graded \(k[x] \)-module such that \(\pi_\# M = M \) as \(k[x] \)-modules and \((\pi_\# M)_j = \bigoplus_{i \in \mathbb{Z}_e} M_i \) for \(j \in \mathbb{Z}_e \), where \(\pi : \mathbb{Z} \rightarrow \mathbb{Z}_e \) is the natural projection. Then the assignment \(M \mapsto \pi_\# M \) commutes with \(\otimes \), and the objects \(\pi_\# V_n, n \geq 0, 0 \leq j \leq e - 1 \), form a complete list of indecomposable \(\mathbb{Z}_e \)-graded \(k[x] \)-modules. Therefore the Grothendieck ring of the category of \(\mathbb{Z}_e \)-graded \(k[x] \)-modules is isomorphic to \(Q/(\epsilon^e - 1) \). When \(e = 2 \), we obtain Proposition 1.4 (ii) from Proposition 3.14.

References

Department of Mathematics
Hokkaido University
Sapporo
Japan