ON THE CAUCHY PROBLEM FOR ANALYTIC SEMIGROUPS WITH WEAK SINGULARITY

By

Kenichiro UMEZU

I. Introduction and Results

Let X be a Banach space with norm $\| \cdot \|$ and \mathbb{A} a linear operator defined in X. We consider the following initial-value problem: Given an element $u_0 \in X$ and an X-valued function f defined on an interval $I=[0, T]$, find an X-valued function u defined on I such that

\[
\begin{cases}
\frac{du}{dt}(t)=\mathbb{A}u(t)+f(t), & 0 < t \leq T, \\
u(0)=u_0.
\end{cases}
\]

In this paper, under the condition that the operator \mathbb{A} generates an analytic semigroup with weak singularity, we give sufficient conditions on the function f for the existence and uniqueness of solutions of the problem (\ast).

We say that a function $u(t)$ is a strict solution or simply a solution of the problem (\ast) if it satisfies the following three conditions:

\begin{align*}
(1.1) & \quad u \in C([0, T]; X) \cap C^{1}((0, T]; X), \\
(1.2) & \quad u(t) \text{ is in the domain } \mathcal{D}(\mathbb{A}) \text{ of the operator } \mathbb{A} \text{ for } 0 < t \leq T, \\
(1.3) & \quad u(0)=u_0 \quad \text{and} \quad \frac{du}{dt}(t)=\mathbb{A}u(t)+f(t), \quad 0 < t \leq T.
\end{align*}

Here $C([0, T]; X)$ denotes the space of continuous functions on $[0, T]$ taking values in X, and $C^{1}((0, T]; X)$ denotes the space of continuously differentiable functions on $(0, T]$ taking values in X, respectively.

We recall the following fundamental result in the theory of analytic semigroups (cf. Pazy [2]; Tanabe [4]):

Theorem 1.0. Assume that the following three assumptions are satisfied:

(A.1) The operator \mathbb{A} is a densely defined, closed linear operator in X.

(A.2) There exist constants $0 < \omega < \pi/2$ and $\lambda_{0} > 0$ such that the resolvent set of \mathbb{A} contains the region $\Sigma(\omega)=\{\lambda \in \mathbb{C}; |\text{arg}(\lambda-\lambda_{0})| < \pi/2 + \omega\}$.

Received April 17, 1990, Revised October 2, 1990.
(A.3) If $0<\varepsilon<\omega$, then there exists a constant $C(\varepsilon)>0$ such that the resolvent $(\mathcal{A}-\lambda)^{-1}$ satisfies the estimate:

\[
\| (\mathcal{A}-\lambda)^{-1} \| \leq \frac{C(\varepsilon)}{1+|\lambda|}, \quad \lambda \in \Sigma(\varepsilon).
\]

Then the operator \mathcal{A} generates a semigroup $e^{\mathcal{A}t}$ in X which is analytic in the sector $\Delta(\omega) = \{ z = t + is \in \mathbb{C} : z \neq 0, |\arg z| < \omega \}$.

If $0<\gamma<1$, we let

\[C^\gamma([0,T];X) = \text{the space of } X\text{-valued, continuous functions } f(t) \text{ on } [0,T] \text{ such that we have } \| f(t)-f(s) \| \leq M|t-s|^{\gamma}, \ t, s \in [0,T] \text{ for some constant } M>0. \]

Now it is known (cf. Pazy [2], Theorem 3.2) that the following theorem holds.

Theorem 1.1. Assume that the operator \mathcal{A} satisfies Assumptions (A.1), (A.2) and (A.3). If $f \in C^\gamma([0,T];X)$ with $0<\gamma\leq 1$, then, for any $u_0 \in X$, the problem (*) has a unique solution which takes the following form:

\[
u(t) = e^{\mathcal{A}t}u_0 + \int_0^t e^{(t-s)\mathcal{A}}f(s)ds.
\]

The next Besov space version of Theorem 1.1 is due to Muramatu [1] (see [1], Theorem B).

Theorem 1.2. Assume that the operator \mathcal{A} satisfies Assumptions (A.1), (A.2) and (A.3). If f belongs to the Besov space $B^\gamma_{\infty,1}((0,T);X)$, then, for any $u_0 \in X$, the problem (*) has a unique solution which takes the form of (1.4).

Remark 1.1. Theorem 1.2 is a generalization of Theorem 1.1. In fact, the following inclusion holds:

\[
\bigcup_{0<\gamma\leq 1} C^\gamma([0,T];X) \subseteq B^\gamma_{\infty,1}((0,T);X).
\]

Example 1.1. The following function f belongs to the space $B^\gamma_{\infty,1}((0,T);\mathbb{R})$, but does not belong to the spaces $C^\gamma([0,T];\mathbb{R})$ for any $0<\gamma\leq 1$.

\[
f(t) = \begin{cases}
1 / \log t & \text{if } 0<t\leq T, \\
0 & \text{if } t=0.
\end{cases}
\]

For the precise definition of the Besov space $B^\gamma_{\infty,1}((0,T);X)$, we refer to Section 2.
We say that the operator \mathfrak{A} satisfies Assumption $(AS)_{\theta}$ with $0<\theta<1$ if it satisfies Assumptions $(A.1)$ and $(A.2)$ and the following weaker assumption than $(A.3)$:

$(A.3)_{\theta}$ If $0<\varepsilon<\omega$, then there exists a constant $C(\varepsilon)>0$ such that the resolvent $(\mathfrak{A} - \lambda)^{-1}$ satisfies the estimate:

$$
\| (\mathfrak{A} - \lambda)^{-1} \| \leq \frac{C(\varepsilon)}{(1 + |\lambda|)^{\theta}}, \quad \lambda \in \Sigma(\varepsilon).
$$

By Theorem 5.3 of Taira [3], we know that the operator \mathfrak{A} which satisfies Assumption $(AS)_{\theta}$ with $0<\theta<1$ generates an analytic semigroup $e^{t\mathfrak{A}}$ such that

$$
\| e^{t\mathfrak{A}} \| \leq \frac{M_{\theta}}{|z|^{1-\theta}}, \quad z \in \Delta(\omega).
$$

Thus, such an analytic semigroup as $e^{t\mathfrak{A}}$ may be called an analytic semigroup with weak singularity. We remark that Assumption $(A.3)_{1}$ is nothing but Assumption $(A.3)$.

A concrete example of \mathfrak{A} which satisfies Assumption $(AS)_{\theta}$ is given by Taira [3]. Furthermore, Taira [3] has demonstrated that the operator \mathfrak{A} generates an analytic semigroup $e^{t\mathfrak{A}}$ which does not necessarily have the following property:

$$
\lim_{t \to 0^+} e^{t\mathfrak{A}} u_0 = u_0 \quad \text{for all } u_0 \in X.
$$

Here $\Delta(\omega) = \{ \lambda \in C : |\arg \lambda| < \omega \}$. More precisely, using fractional powers of the operator \mathfrak{A}, Taira [3] has proved that if Assumption $(AS)_{\theta}$ is satisfied, then the operator \mathfrak{A} generates an analytic semigroup $e^{t\mathfrak{A}}$ which has the property

$$
\lim_{t \to 0^+} e^{t\mathfrak{A}} u_0 = u_0
$$

for all $u_0 \in \mathcal{D}(\mathfrak{A})$ with $1-\theta<\alpha<1$. Here if the operator \mathfrak{A} satisfies Assumptions $(A.1)$, $(A.2)$ and $(A.3)_{\theta}$, we can define the fractional powers $(-\mathfrak{A})^{-\alpha}$ of \mathfrak{A} for $1-\theta<\alpha<1$ by

$$
(-\mathfrak{A})^{-\alpha} = \frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} t^{-\alpha} (t-\mathfrak{A})^{-1} dt,
$$

and also define the fractional powers $(-\mathfrak{A})^{\alpha}$ by

$$
(-\mathfrak{A})^{\alpha} = \text{the inverse of } (-\mathfrak{A})^{-\alpha}.
$$

By the definition of $(-\mathfrak{A})^{\alpha}$, we have the following:

$$
\mathcal{D}(\mathfrak{A}) \subset \mathcal{D}(\mathfrak{A})^{\alpha} \subset X, \quad 1-\theta<\alpha<\theta,
$$

$$
\mathcal{D}(\mathfrak{A})^{\alpha} = X.
$$
The following theorem is due to Taira [3] (cf. [3], Theorem 8.2). In the case $\theta=1$, the theorem coincides with Theorem 1.1.

Theorem 1.3. Assume that the operator \mathfrak{A} satisfies Assumption $(AS)_{\theta}$ with $1/2<\theta<1$. If $f \in C^\gamma([0, T]; X)$ with $1-\theta<\gamma\leq 1$, then, for any $u_0 \in \mathcal{D}((-\mathfrak{A})^{\alpha})$ with $1-\theta<\alpha<\theta$, the problem (\ast) has a unique solution which takes the form of (1.4).

In this paper, using Besov space theory, we prove the following result:

Theorem 1.4. Assume that the operator \mathfrak{A} satisfies Assumption $(AS)_{\theta}$ with $1/2<\theta<1$. If f belongs to the Besov space $B^\alpha_{\infty, r}((0, T); X)$, then, for any $u_0 \in \mathcal{D}((-\mathfrak{A})^{\alpha})$ with $1-\theta<\alpha<\theta$, the problem (\ast) has a unique solution which takes the form of (1.4).

Remark 1.2. Theorem 1.4 is a generalization of Theorem 1.3 and Theorem 1.2. In fact, the following inclusion holds (cf. Corollary 2.1 and Remark 2.2):

\[\bigcup_{1-\theta<\gamma<1} C^\gamma([0, T]; X) \subseteq B^\alpha_{\infty, r}((0, T); X). \]

Example 1.2. The following function f belongs to the space $B^\alpha_{\infty, r}((0, T); \mathbb{R})$, but does not belong to the spaces $C^\gamma([0, T]; \mathbb{R})$ for any $1-\theta<\gamma\leq 1$.

\[f(t) = \begin{cases} \frac{t^{1-\theta}}{\log t} & \text{if } 0<t\leq T, \\ 0 & \text{if } t=0. \end{cases} \]

The rest of this paper is organized as follows:

In Section 2 we state the basic definition and properties of Besov spaces that will be used in the sequel.

In Section 3 we present a brief description of the analytic semigroups with weak singularity generated by the operator \mathfrak{A} which satisfies Assumption $(AS)_{\theta}$ with $0<\theta<1$.

Section 4 is devoted to the proof of our main Theorem 1.4 by following the argument in the proof of Theorem B of Muramatu [1].

2. Besov spaces

This section is devoted to a description of the definition and properties of Besov spaces (for the details, see Muramatu [1]). We define Besov spaces on an open set Ω in \mathbb{R}^N, but, in this paper, only use the case when Ω is an open interval $I(N=1)$.
Let \mathcal{Q} be an open set in \mathbb{R}^N, X a Banach space with norm $\| \cdot \|$, $1 \leq p \leq \infty$ and m a non-negative integer. For an X-valued function f on \mathcal{Q}, we define

$$
\| f \|_{L^p(\mathcal{Q}; X)} = \begin{cases}
\left(\int_{\mathcal{Q}} |f(x)|^p \, dx \right)^{1/p} & \text{if } 1 \leq p < \infty, \\
\text{ess sup} \|f(x)\| & \text{if } p = \infty,
\end{cases}
$$

$$
\| f \|_{L^\infty(\mathcal{Q}; X)} = \begin{cases}
\left(\int_{\mathcal{Q}} \frac{|f(x)|^p}{|x|^N} \, dx \right)^{1/p} & \text{if } 1 \leq p < \infty, \\
\text{ess sup} \|f(x)\| & \text{if } p = \infty,
\end{cases}
$$

$$
\| f \|_{H^m(\mathcal{Q}; \mathcal{Q}; X)} = \sum_{|\alpha| \leq m} \| \partial^\alpha f \|_{L^p(\mathcal{Q}; X)}.
$$

Here all the derivatives $\partial^\alpha f$ are taken in the sense of distributions. If $X = \mathbb{R}$, we simply write $\| f \|_{L^p(\mathcal{Q}; \mathcal{Q}; X)}$, $\| f \|_{L^\infty(\mathcal{Q}; \mathcal{Q}; X)}$ and $\| f \|_{H^m(\mathcal{Q}; \mathcal{Q}; X)}$ as $\| f \|_{L^p}$, $\| f \|_{L^\infty}$ and $\| f \|_{H^m}$ respectively.

We introduce function spaces as follows:

$L^p(\mathcal{Q}; X)$ = the space of X-valued functions such that $\| f \|_{L^p(\mathcal{Q}; X)}$ is finite.

$L^\infty(\mathcal{Q}; X)$ = the space of X-valued functions such that $\| f \|_{L^\infty(\mathcal{Q}; X)}$ is finite.

$H^m(\mathcal{Q}; X)$ = the space of functions $f \in L^p(\mathcal{Q}; X)$ whose derivatives $\partial^\alpha f$, $|\alpha| \leq m$, in the sense of distributions, belong to $L^p(\mathcal{Q}; X)$.

The spaces $L^p(\mathcal{Q}; X)$ and $H^m(\mathcal{Q}; X)$ are Banach spaces with the norms $\| \cdot \|_{L^p(\mathcal{Q}; X)}$ and $\| \cdot \|_{H^m(\mathcal{Q}; X)}$, respectively.

Definition of Besov spaces. Let X be a Banach space with norm $\| \cdot \|$, \mathcal{Q} an open set in \mathbb{R}^N, $1 \leq p, q \leq \infty$ and σ a real number such that $\sigma = m + \theta$ with an integer m and $0 < \theta \leq 1$.

(a) The case $m \geq 0$ and $0 < \theta < 1$: The Besov space $B^\sigma_{p,q}(\mathcal{Q}; X)$ is the set of all functions $f \in H^m(\mathcal{Q}; X)$ such that the seminorm

$$
|f|_{B^\sigma_{p,q}(\mathcal{Q}; X)} = \sum_{|\alpha| \leq m} \left(\int_{\mathcal{Q}} \| \partial^\alpha f(x+y) - \partial^\alpha f(x) \|_{L^p(\mathcal{Q}; X)} \, dy \right)^{\frac{1}{q}}
$$

is finite. Here $\mathcal{Q}_{k,v} = \left\{ \frac{k}{v} \mathcal{Q} - jy : j \in \mathbb{Z} \right\}$. $\mathcal{Q} - jy = \{z - jy : z \in \mathcal{Q}\}$.

(b) The case $m \geq 0$ and $\theta = 1$: The Besov space $B^\sigma_{p,q}(\mathcal{Q}; X)$ consists of all functions $f \in H^m(\mathcal{Q}; X)$ such that the seminorm

$$
|f|_{B^\sigma_{p,q}(\mathcal{Q}; X)} = \sum_{|\alpha| \leq m} \left(\int_{\mathcal{Q}} \| \partial^\alpha f(x+y) - 2\partial^\alpha f(x+y) + \partial^\alpha f(x) \|_{L^p(\mathcal{Q}; X)} \, dy \right)^{\frac{1}{q}}
$$
The space $B_{p,q}^s(\Omega; X)$ is a Banach space with the norm

$$\|f\|_{B_{p,q}^s(\Omega; X)} = \|f\|_{H^m_p(\Omega; X)} + \|f\|_{B_{p,q}^s(\Omega; X)}.$$

(c) The case $m<0$: The Besov space $B_{p,q}^s(\Omega; X)$ is the set of all distributions f of the form

$$f = \sum_{\alpha \subset \mathbb{Z}^n} \partial^\alpha f_\alpha, \quad f_\alpha \in B_{p,q}^s(\Omega; X).$$

The space $B_{p,q}^s(\Omega; X)$ is a Banach space with the norm

$$\|f\|_{B_{p,q}^s(\Omega; X)} = \inf \sum_{\alpha \subset \mathbb{Z}^n} \|f_\alpha\|_{B_{p,q}^s(\Omega; X)},$$

where the infimum is taken over all expressions of the form (2.1).

In the rest of this section we describe a characterization theorem of Besov spaces. In the following we denote the interval $(0, T)$ by I.

We introduce two function spaces.

(i) $\mathcal{K}_d(I)$ is the set of all functions $\phi \in C^\infty(\mathbb{R}^n)$ which satisfy the following conditions:

(2.2) For any $t \in \mathbb{R}$, there exists a compact set K_t in \mathbb{R} such that K_t contains the support of $\phi(t, \cdot)$.

(2.3) For any compact set K in I, there is a compact set $K_t \subset I$ such that $\text{supp} \phi(t, (t-\cdot)/\tau) \subset K_t$ for $t \in K$ and $0 < \tau \leq 1$.

(ii) $\mathcal{K}_m(I)$ is the set of m-th derivatives $\partial^m \phi(t, s)$ of the functions in $\mathcal{K}_d(I)$.

Let ϕ_0 be a function in $C^\infty(\mathbb{R})$ which satisfies the conditions:

$$\text{supp} \phi_0 \subset I, \int_\mathbb{R} \phi_0(t) dt = 1.$$

If $0 < c \leq 1$, we define ϕ, e_m, e_m^* as follows:

$$\phi(t, s) = \frac{m}{m!} s^m \phi_0(t-s),$$

$$e_m(t, s) = \sum_{k=0}^{m!} \frac{1}{k!} s^k \phi_0(t-s), \quad m=1, 2, \ldots,$$

$$e_m^*(t, s) = 2e_m(t, s) - \int e_m(t, r)e_m(t, s-r) dr, \quad m=1, 2, \ldots.$$

Then we have the following results:

Lemma 2.1. The functions ϕ, e_m and e_m^* introduced above belong to the space $\mathcal{K}_d(I)$. Further ϕ, e_m and e_m^* belong to the space $\mathcal{K}_d(J)$ for any open interval $J \supset I$.

Kenichiro UMEZU
Lemma 2.2 (Integral representation of distributions). Let $0 < c \leq 1$ and $m = l + h$ where l and h are non-negative integers. Let ϕ, e^s_m be the functions as above. If f is an X-valued distribution on I, then it can be represented as follows:

$$f(t) = \int_0^t \left(\frac{1}{r^l} \phi_{h,k}(t, \frac{t-s}{r}) u_{l}(\tau, s) \right) \frac{d\tau}{r}$$

$$+ \sum_{j=0}^{h} \int_0^t \left(\frac{1}{r^l} \phi_{h,m+e}(t, \frac{t-s}{r}) u_{j}(\tau, s) \right) \frac{d\tau}{r}$$

$$+ \frac{1}{c} \left(\langle e^s_m(t, \frac{t-s}{c}), f(s) \rangle \right)$$

where \langle , \rangle_s denotes the pairing of $\mathcal{D}(R) \times \mathcal{D}'(R; X)$ and

$$\phi_{h,k}(t, s) = \partial^{h} \partial^{l} \phi(t, s),$$

$$u_{l}(\tau, t) = \left(\frac{1}{r^l} \sum_{k=0}^{l} \right) \frac{1}{r^l} \phi_{h,l-m+e}(t, \frac{t-s}{r}) f(s) \frac{d\tau}{r},$$

$$u_{j}(\tau, t) = \left(\frac{1}{r^l} \sum_{k=0}^{l} \right) \frac{1}{r^l} \phi_{h,l-m+e}(t, \frac{t-s}{r}) f(s) \frac{d\tau}{r}.$$

Theorem 2.1 (Characterization of Besov spaces). Let $1 \leq p, q \leq \infty$, $\sigma \in R$ and m a non-negative integer such that $m > \sigma$, and $0 < c \leq 1$. An X-valued distribution f on I belongs to the space $B^{\sigma}_{p,q}(I; X)$ if and only if the following conditions are satisfied:

$$\langle \phi(t, \frac{t-s}{c}), f(s) \rangle_s \in L^p(I; X) \quad \text{for any } \phi \in \mathcal{J}(I),$$

$$\tau^{-\sigma} \langle \phi(t, \frac{t-s}{c}), f(s) \rangle_s \in L^q((0, c); L^p(I; X)) \quad \text{for any } \phi \in \mathcal{J}(I).$$

Remark 2.1. (A) Let m, h and l be integers such that $-h < \sigma < l$, $m = l + h$. Set

$$\phi_{k}(t, s) = \partial^{k} \phi^{*}_{m}(t, s), \quad k = 0, \ldots, l.$$

Then $f \in B^{\sigma}_{p,q}(I; X)$ if the following conditions are satisfied:

$$\tau^{-\sigma} \left(\frac{1}{r^l} \phi_{h,m+e}(s, \frac{s-r}{r}), f(r) \right) \in L^q((0, c); L^p(I; X))$$

for $k = 0, \ldots, l,$

$$\tau^{-\sigma} \left(\frac{1}{r^l} \phi_{h-l-e}(s, \frac{s-r}{r}), f(r) \right) \in L^q((0, c); L^p(I; X))$$

for $j = 0, \ldots, h,$

$$\langle \phi_{k}(t, \frac{t-s}{c}), f(s) \rangle_s \in L^p(I; X) \quad \text{for } k = 0, \ldots, l.$$
Furthermore, the norm of f in $B_{p,q}(I, X)$ is equivalent with the sum of the corresponding norms of the above functions.

Corollary 2.1. We have the following inclusions:

(2.6) \[B_{p,q_1}^1(I; X) \subset B_{p,q_2}^2(I; X) \] for $1 \leq q_1, q_2 \leq \infty$, $\sigma_1 < \sigma_2$.

(2.7) \[B_{p,q_1}(I; X) \subset B_{p,q_2}(I; X) \] for $1 \leq q_1, q_2 \leq \infty$, $\sigma \in \mathbb{R}$.

(2.8) \[B_{p,1}(I; X) \subset L^\omega(I; X). \]

(2.9) \[B_{p,1}(I; X) \subset C^m([0, T]; X) \] if m is a non-negative integer.

(2.10) \[B_{p,\infty}(I; X) = C^\theta([0, T]; X) \] for $0 < \theta < 1$.

Further the inclusions (2.6), (2.7) and (2.8) are continuous.

Remark 2.2. From the inclusions (2.6) and (2.10), it follows that

\[C([0, T]; X) \subset B_{\infty, \infty}^1(I; X) \] for $1 - \theta < \gamma \leq 1$.

Theorem 2.2. Let $1 \leq p, q \leq \infty$ and $\sigma \in \mathbb{R}$. If $g \in B_{p,q}^\sigma(I; X)$, then there exists a sequence $\{g_n\}_{n=1}^\infty$ such that

\[g_n \in B_{p,q}^\sigma(I; X) \cap C^\gamma([0, T]; X), \]

\[g_n \longrightarrow g \text{ in } B_{p,q}^\sigma(I; X) \cap L^\gamma(I; X) \text{ as } n \longrightarrow \infty. \]

3. Analytic semigroups with weak singularity

In this section we briefly state properties of analytic semigroups with weak singularity which will be used in the following section.

Theorem 3.1. Assume that a linear operator A satisfies conditions (A.1), (A.2) and (A.3) for $0 < \theta < 1$. Then we have the following:

(3.1) The operator A generates a semigroup e^{tA} on X which is analytic in the sector $\mathcal{D}(\omega)$.

(3.2) The operators $A^m e^{tA}$ and $(d^m/dz^m)e^{tA}$ are bounded operators on X for any non-negative integer m and $z \in \mathcal{D}(\omega)$, and satisfy the following relation and estimate.

\[\frac{d^m}{dz^m} e^{tA} = A^m e^{tA}, \quad z \in \mathcal{D}(\omega). \]

\[\|A^m e^{tA}\| \leq M_m |z|^\theta - m, \quad z \in \mathcal{D}(\omega). \]

Here the letter M_m is a constant depending on m and ω.
On the Cauchy problem for analytic semigroups

Proof. We can define the semigroup e^{zt} for any $0 < t < \omega$ as follows:

$$e^{zt} = -\frac{1}{2\pi i} \int_{\Gamma} e^{zt}(\mathbb{U} - \lambda)^{-1} d\lambda.$$

Here Γ is a path in the set $\Sigma(\varepsilon)$ such that $\Gamma = -\Gamma_1 + \Gamma_2$ where

$$\Gamma_1 = \{re^{i(s/2 + \varepsilon)}; \ 0 \leq r < \infty\}.$$

$$\Gamma_2 = \{re^{i(s/2 + \varepsilon)}; 0 \leq r < \infty\}.$$

Then, according to Theorem 5.3 of Taira [3], we have the conditions (3.1) and (3.2) for $m=0,1$. In the following we show the condition (3.2) for general $m \geq 2$.

First we show the following formula:

$$d^m e^{zt} = -\frac{1}{2\pi i} \int_{\Gamma} \lambda^m e^{zt}(\mathbb{U} - \lambda)^{-1} d\lambda, \quad m \geq 1, \ z \in \mathcal{A}(\varepsilon).$$

For $z \in \mathcal{A}(\varepsilon)$ and $\lambda \in \Gamma_1$, we set

$$z = |z| e^{i\alpha}, \quad 0 \leq \alpha < \varepsilon,$$

$$\lambda = re^{i(s/2 + \varepsilon)}, \quad 0 \leq r < \infty.$$

Then we have

$$|e^{zt}| = |e^{iz} r (\cos(\alpha - \pi/2 - \varepsilon) + i \sin(\alpha - \pi/2 - \varepsilon))|$$

$$= e^{-iz} r \cdot \sin(\varepsilon - \alpha).$$

Hence it follows that for $z \in \mathcal{A}(\varepsilon)$ and $\lambda \in \Gamma_1$

$$\|\lambda^m e^{zt}(\mathbb{U} - \lambda)^{-1}\| \leq r^m e^{-iz} r \cdot \sin(\varepsilon - \alpha) \frac{C(\varepsilon)}{(1+r)^\theta}.$$

Similarly, for $z \in \mathcal{A}(\varepsilon)$ and $\lambda \in \Gamma_2$, we let

$$z = |z| e^{i\alpha}, \quad 0 \leq \alpha < \varepsilon,$$

$$\lambda = r e^{i(\pi/2 + \varepsilon)}, \quad 0 \leq r < \infty.$$

Then we have

$$|e^{zt}| = |e^{iz} r (\cos(\alpha + \pi/2 + \varepsilon) + i \sin(\alpha + \pi/2 + \varepsilon))|$$

$$= e^{-iz} r \cdot \sin(\varepsilon + \alpha).$$

Hence it follows that for $z \in \mathcal{A}(\varepsilon)$ and $\lambda \in \Gamma_2$

$$\|\lambda^m e^{zt}(\mathbb{U} - \lambda)^{-1}\| \leq r^m e^{-iz} r \cdot \sin(\varepsilon + \alpha) \frac{C(\varepsilon)}{(1+r)^\theta}.$$

If $z \in \mathcal{A}(\varepsilon)$, we have by the estimates (3.4) and (3.5)
Let $$p = \frac{\kappa}{\sigma}$$.

By interchanging the integral order, we have

$$
\int_0^\infty \frac{r^m}{(1+r)^\theta} \left(e^{-\left| z \right| r \cdot \sin(\sigma - \Omega)} + e^{-\left| z \right| r \cdot \sin(\sigma + \Omega)} \right) dr
\leq |z|^\theta \int_0^\infty \rho^{m-\theta} \left(e^{-\rho \cdot \sin(\sigma - \Omega)} + e^{-\rho \cdot \sin(\sigma + \Omega)} \right) d\rho.
$$

Since $$\sin(\sigma - \Omega) > 0$$ and $$\sin(\sigma + \Omega) > 0$$, we obtain that

$$
\int_0^\infty \rho^{m-\theta} \left(e^{-\rho \cdot \sin(\sigma - \Omega)} + e^{-\rho \cdot \sin(\sigma + \Omega)} \right) d\rho < \infty.
$$

This implies that the operator $$\int_r \lambda^m e^{i\lambda} (\mathcal{A} - \lambda)^{-1} d\lambda$$ is bounded on $$X$$ for $$z \in \mathcal{A}$$.

Further we have

$$
(3.6) \quad \frac{d^m}{dz^m} (e^{i\lambda}) = -\frac{1}{2\pi i} \int_r \lambda^m e^{i\lambda} (\mathcal{A} - \lambda)^{-1} d\lambda, \quad z \in \mathcal{A}.
$$

and

$$
(3.7) \quad \left\| \frac{d^m}{dz^m} (e^{i\lambda}) \right\| \leq C |z|^\theta, \quad z \in \mathcal{A}.
$$

Here the letter $$C$$ is a constant depending on $$m$$ and $$\omega$$.

Next, using induction on $$m$$, we show that

$$
(3.8) \quad \frac{d^m}{dz^m} (e^{i\lambda}) = \mathcal{A}^m e^{i\lambda}, \quad z \in \mathcal{A}.
$$

By Theorem 5.3 of [3], we have the equality (3.8) for $$m=1$$. We assume that the equality (3.8) holds for $$m \geq 1$$. Then it follows from (3.6) that

$$
\frac{d^{m+1}}{dz^{m+1}} (e^{i\lambda}) = -\frac{1}{2\pi i} \int_r \lambda^{m+1} e^{i\lambda} (\mathcal{A} - \lambda)^{-1} d\lambda
= -\frac{1}{2\pi i} \int_r \lambda^m e^{i\lambda} (\mathcal{A} - \lambda)^{-1} d\lambda.
$$

By Remarks that $$\mathcal{A} (\mathcal{A} - \lambda)^{-1} = 1 + \lambda (\mathcal{A} - \lambda)^{-1}$$, it follows that
On the Cauchy problem for analytic semigroups

\[
\frac{d^{m+1}}{dz^{m+1}}(e^{z\lambda}) = -\frac{1}{2\pi i} \int_{\Gamma} \lambda^m \lambda^{m+i} \psi(\lambda) \lambda^{-i} d\lambda - \frac{1}{2\pi i} \int_{\Gamma} \lambda^m e^{z\lambda} d\lambda.
\]

The closedness of \(\mathfrak{M} \) tells us that

\[
-\frac{1}{2\pi i} \int_{\Gamma} \lambda^m e^{z\lambda} (\mathfrak{M} - \lambda)^{-1} d\lambda = \mathfrak{M} \left(-\frac{1}{2\pi i} \int_{\Gamma} \lambda^m e^{z\lambda} (\mathfrak{M} - \lambda)^{-1} d\lambda \right) = \mathfrak{M} \frac{d^m}{dz^m}(e^{z\lambda}) = e^{z\lambda}.
\]

Note that

\[
\int_{\Gamma} \lambda^m e^{z\lambda} d\lambda = 0 \quad \text{for} \quad m \geq 1.
\]

Hence it follows that

\[
\frac{d^{m+1}}{dz^{m+1}}(e^{z\lambda}) = \mathfrak{M}^{m+1} e^{z\lambda}, \quad z \in \Lambda(z).
\]

The statements (3.7) and (3.8) imply that

\[
\|\mathfrak{M}^{m} e^{z\lambda}\| \leq M_m |z|^\delta - m, \quad z \in \Lambda(z), \quad m \geq 1
\]

with a constant \(M_m > 0 \) depending on \(m \) and \(\omega \).

The proof of Theorem 3.1 is complete.

4. Proof of Theorem 1.4

In this section we prove Theorem 1.4 by following the proof of Theorem B of Muramatu [1]. If there exists a solution \(u \) of the problem (*) for \(u_0 \in \mathcal{D}(-\mathfrak{M}) \) with \(1 - \theta < \alpha < \theta \), we can uniquely write the solution in the following form:

\[
u(t) = e^{t\mathfrak{M} u_0} + \int_0^t e^{(t-s)\mathfrak{M}} f(s) ds, \quad 0 \leq t \leq T.
\]

First we verify that \(u \) satisfies the condition (1.1). Theorem 1.3 tells us that

\[
e^{t\mathfrak{M} u_0} \in C([0, T]; X) \cap C^\prime([0, T]; X).
\]

So, it suffices to show that

\[
F(t) = \int_0^t e^{(t-s)\mathfrak{M}} f(s) ds \in C([0, T]; X) \cap C^\prime([0, T]; X).
\]

Since it is clear that \(f \in B_{\alpha, \lambda}^2(I; X) \) implies \(F \in C([0, T]; X) \), we have only to verify that \(F \in C^\prime([0, T]; X) \). By Corollary 2.1, we have

\[
B_{\alpha, \lambda}^2([\varepsilon, T]; X) \subset C^\prime([\varepsilon, T]; X) \quad \text{for any} \quad 0 < \varepsilon < T.
\]
Therefore, if \(F \in B_{\phi, \kappa}(\varepsilon, T); X \) for any \(0 < \varepsilon < T \), it follows that \(F \in C^{1}(\{(0, T); X\}) \).

Let \(I_\varepsilon \) be the open interval \((\varepsilon, T)\). In the following we simply write \(\int_r \) as \(\int \). In order to verify that \(F \in B_{\phi, \kappa}(I_\varepsilon; X) \), we apply Theorem 2.1 with \(I = I_\varepsilon \) and \(m = 4 \). That is, we show that the function \(F \) satisfies the following conditions for \(0 < c \leq 1 \):

\[
\int \phi(\cdot, \frac{t-s}{c})F(s)ds \in L^\infty(I_\varepsilon; X) \quad \text{for} \quad \phi \in \mathcal{K}_0(I_\varepsilon),
\]

for \(\phi \in \mathcal{K}_4(I_\varepsilon) \cap \Phi(I) \) (cf. Lemma 2.1 and Remark 2.1(A)).

First, we show that \(F \) satisfies the condition (4.1). Since \(\phi \) satisfies the condition (2.3), we have

\[
\int \phi(t, \frac{t-s}{c})F(s)ds = \int_0^\tau \phi(t, \frac{t-s}{c})(\int_0^s e^{(t-r)\varepsilon}f(r)dr)ds.
\]

By interchanging the integral order of \(s \) and \(r \) and by integration by substitution with \(s-r=s' \), the right hand of (4.3) becomes

\[
\int \phi(t, \frac{t-s}{c})(\int_0^s e^{(t-r)\varepsilon}f(r)dr)ds \quad \text{for} \quad \phi \in \mathcal{K}_0(I_\varepsilon),
\]

Again, by interchanging the integral order of \(s \) and \(r \), it follows that

\[
\int \phi(t, \frac{t-s'-r}{c})e^{hr}ds'f(r)dr = \int_0^\tau \phi(t, \frac{t-s'-r}{c})e^{hr}ds'f(r)dr,
\]

Hence we have

\[
\int \phi(t, \frac{t-s}{c})F(s)ds = \int_0^\tau \phi(t, \frac{t-s-r}{c})f(r)dr.
\]

Now we cite a lemma which we use in order to estimate the right term (cf. Muramatu [1], Lemma 3).

Lemma 4.1. Suppose that \(1 \leq p \leq \infty \), \(0 < \tau \leq 1 \), \(f \in L^1(I; X) \) and \(\phi \in \mathcal{K}_0(I_\varepsilon) \).
On the Cauchy problem for analytic semigroups

Then there exists a constant $M_i > 0$ such that

$$\left\| \frac{1}{\tau} \int_0^\tau \phi(t, \cdot, \frac{t-s-r}{\tau}) f(r) dr \right\|_{L^p(I;X)} \leq M_i \tau^{-1+1/p} \| f \|_{L^1(I;X)}$$

for $0 \leq s \leq T$.

By making use of Lemma 4.1 and the estimate:

$$\| e^{sR} \| \leq M s^{\theta-1}, \quad s > 0,$$

it follows that

(4.4)

$$\left\| \int_0^\tau e^{sR} ds \right\|_{L^p(I;X)} \leq C \| f \|_{L^1(I;X)}.$$

Here and in the following the letter C is a general constant independent of f.

Next we show that F satisfies the condition (4.2). Let $0 < \tau \leq c$, $\phi \in \mathcal{K}_d(I) \cap \mathcal{K}_e(I)$ and

$$U(\tau, t) = \int_0^\tau \phi(t, \frac{t-s}{\tau}) F(s) ds.$$

We divide the integral with respect to s into two parts as follows:

$$U(\tau, t) = \int_0^\tau \phi(t, \frac{t-s}{\tau}) F(s) ds$$

$$= \int_0^\tau e^{sR} ds \int_0^\tau \phi(t, \frac{t-s-r}{\tau}) f(r) dr$$

$$= \left(\int_0^\tau e^{sR} ds \right) \int_0^\tau \phi(t, \frac{t-s-r}{\tau}) f(r) dr$$

$$= U_1(\tau, t) + U_2(\tau, t).$$

We cite a lemma which is used in order to estimate U_1 and U_2 (cf. Muramatu [1], Lemma 4).

Lemma 4.2. Assume that $1 \leq p \leq \infty$, $0 < \tau \leq c$, $f \in L^p(I;X)$ and $\phi \in \mathcal{K}_d(I)$. Then there exists a constant $M_2 > 0$ such that

$$\left\| \frac{1}{\tau} \int_0^\tau \phi(t, \cdot, \frac{t-s-r}{\tau}) f(r) dr \right\|_{L^p(I;X)}$$

$$\leq \sum_{j=0}^\infty \int_0^\tau \| u_j(\tau, \cdot) \|_{L^p(I;X)} + M_2 s^2 \tau^{-1+1/p} \| f \|_{L^1(I;X)}.$$
for $0 \leq s \leq \varepsilon$. Here

$$u_j(t, s) = \int_0^s \frac{1}{r} \phi_j, 0(t, \frac{t-r}{s}) f(r) dr,$$

$$\phi_j, k(t, s) = \partial_i \partial_j \phi_j(t, s).$$

Now we may assume that $0 < c \leq \varepsilon$. Lemma 4.2 gives that

\begin{equation}
\|U_\varepsilon(t, \cdot)\|_{L^\infty(I_x; x)} \leq \int_0^T \|e^{s\varepsilon}\|_{H^1} ds \|\int_0^{T-s} \frac{1}{r} \phi(t, \frac{t-s-r}{r}) f(r) dr\|_{L^\infty(I_x; x)}
\end{equation}

\begin{equation}
\leq \int_0^T M \varepsilon^{-1} \left(\sum_{j=0}^{5} \varepsilon^j \|u_j(t, \cdot)\|_{L^\infty(I_x; x)} + M \varepsilon^{-1} \|f\|_{L^1(I; x)} \right) ds
\end{equation}

\begin{equation}
\leq C \varepsilon^\theta \left(\sum_{j=0}^{5} \varepsilon^j \|u_j(t, \cdot)\|_{L^\infty(I_x; x)} + \varepsilon^\tau \|f\|_{L^1(I; x)} \right).
\end{equation}

Since $\phi \in \mathcal{K}(I_x) \cap \mathcal{K}(I)$, we can represent ϕ as $\phi(t, s) = \partial_1 \phi_j(t, s)$ where $\phi \in \mathcal{K}(I_x) \cap \mathcal{K}(I)$. By interchanging the integral order, we have

\begin{equation}
U_\varepsilon(t, s) = \int_0^s e^{s\varepsilon} ds \int_0^{T-s} \frac{1}{r} \phi(t, \frac{t-s-r}{r}) f(r) dr
\end{equation}

\begin{equation}
= \int_0^{T-s} \left(\int_0^s \frac{1}{r} \phi(t, \frac{t-s-r}{r}) e^{s\varepsilon} ds \right) f(r) dr
\end{equation}

\begin{equation}
= \int_0^{T-s} \left(\int_0^s \frac{1}{r} \phi(t, \frac{t-s-r}{r}) e^{s\varepsilon} ds \right) f(r) dr
\end{equation}

where $\phi_{j, k}(t, s) = \partial_1 \partial_j \phi_j(t, s)$. By integration by parts, it follows that

\begin{equation}
\int_0^{T-s} \frac{1}{r} \phi(t, \frac{t-s-r}{r}) e^{s\varepsilon} ds = \sum_{k=0}^{5} \phi_{0, k}(t, \frac{t-s-r}{r}) (\varepsilon \delta^k e^{s\varepsilon})
\end{equation}

\begin{equation}
+ \int_0^{T-s} \varepsilon^k \phi(t, \frac{t-s-r}{r}) \delta^k \varepsilon^{s\varepsilon} ds.
\end{equation}

Hence we obtain that

\begin{equation}
U_\varepsilon(t, s) = \int_0^{T-s} \left(\sum_{k=0}^{5} \phi_{0, k}(t, \frac{t-s-r}{r}) (\varepsilon \delta^k e^{s\varepsilon})
\end{equation}

\begin{equation}
+ \int_0^{T-s} \varepsilon^k \phi(t, \frac{t-s-r}{r}) \delta^k \varepsilon^{s\varepsilon} ds \right) f(r) dr.
\end{equation}

We write the first and second terms of (4.6) as

\begin{equation}
V_k(t, s) = \varepsilon^k \delta^k e^{s\varepsilon} \int_0^{T-s} \frac{1}{r} \phi_{0, k}(t, \frac{t-s-r}{r}) f(r) dr, \quad k = 0, 1, 2, 3,
\end{equation}

\begin{equation}
V_j(t, s) = \int_0^{T-s} \varepsilon^k \phi(t, \frac{t-s-r}{r}) \delta^k \varepsilon^{s\varepsilon} ds f(r) dr.
\end{equation}
On the Cauchy problem for analytic semigroups

respectively. That is, \(U_2(\tau, t) \) is written as

\[
U_2(\tau, t) = \sum_{k=0}^{3} V_k(\tau, t) + V_3(\tau, t).
\]

By noting that

\[
\| A^m e^{itH} \| \leq M_m t^{\theta - 1 - m}, \quad t > 0
\]

with a constant \(M_m > 0 \) for \(m = 0, 1, 2, \ldots \), Lemma 4.2 gives that

\[
(4.7) \quad \| V_k(\tau, \cdot) \|_{L^\infty(I; x)} \leq C \tau^k \left(\sum_{j=0}^{3} \| \tau^j v_{jk}(\tau, \cdot) \|_{L^\infty(I; x)} + \| f \|_{L^1(I; x)} \right)
\]

for \(k = 0, 1, 2, 3 \).

Here

\[
v_{jk}(\tau, t) = \int_0^T \frac{1}{\tau} \phi_j(s(t, \frac{t-s}{\tau})) f(r) dr,
\]

for \(j = 0, 1, 2, k = 0, 1, 2, 3 \).

\(V_3(\tau, t) \) is, by interchanging the integral order of \(s \) and \(r \), written by the following form:

\[
V_3(\tau, t) = \tau^{s} \left[\sum_{j=0}^{3} \frac{1}{\tau} \int_0^T \phi_j(s(t, \frac{t-s}{\tau})) f(r) dr \right].
\]

Lemma 4.1 and Lemma 4.2 give that

\[
(4.8) \quad \| V_k(\tau, \cdot) \|_{L^\infty(I; x)} \leq C \tau^k \left(\sum_{j=0}^{3} \frac{1}{\tau} \int_0^T \phi_j(s(t, \frac{t-s}{\tau})) f(r) dr \right)
\]

for \(k = 0, 1, 2, 3 \).

Hence we have

\[
(4.9) \quad \| U_3(\tau, \cdot) \|_{L^\infty(I; x)} \leq \sum_{k=0}^{3} \| V_k(\tau, \cdot) \|_{L^\infty(I; x)}
\]

\[
\leq C \tau^\theta \left(\sum_{k=0}^{3} \| V_k(\tau, \cdot) \|_{L^\infty(I; x)} + (\tau^3 + \tau^{3-\theta}) \| f \|_{L^1(I; x)} \right).
\]

By the estimates (4.5) and (4.9), we have
\[\| \tau^{-1} U(t, \cdot) \|_{L^1((0, \tau); L^\infty(I; X))} \]
\[
= \int_0^\tau \tau^{-1}\| U(t, \cdot) \|_{L^\infty(I; X)} \frac{d\tau}{\tau}
\leq C \left(\sum_{j=0}^\infty \| \tau^{-(1-\theta)} U_j(t, \cdot) \|_{L^1((0, \tau); L^\infty(I; X))}
+ \sum_{j=0}^\infty \sum_{k=0}^\infty \| \tau^{-(1-\theta)} T^{j,k}(t, \cdot) \|_{L^1((0, \tau); L^\infty(I; X))} + \| f \|_{L^1(I; X)} \right).
\]

By Remark 2.1 (B), it follows that
\[\| \tau^{-1} U(t, \cdot) \|_{L^1((0, \tau); L^\infty(I; X))} \leq C(\| f \|_{B_{\Omega}^{-\theta}(t; X)} + \| f \|_{L^1(I; X)}).\]

It has been proved that \(F \) satisfies the condition (4.2).

Now, by making use of Remark 2.1 (B), the estimates (4.6) and (4.11) imply that
\[\| F \|_{B_{\Omega}^{1-\theta}(t; X)} \leq C(\| f \|_{B_{\Omega}^{-\theta}(t; X)} + \| f \|_{L^1(I; X)}).\]

Now we verify that \(u \), given by the formula
\[u(t) = e^{t\Omega} u_0 + \int_0^t e^{(t-s)\Omega} f(s) \, ds, \]
satisfies the conditions (1.2) and (1.3). Theorem 1.3 tells us that \(e^{t\Omega} u_0 \) satisfies the conditions (1.2) and (1.3). By virtue of Theorem 2.2, there exists a sequence \(\{ f_n \}_{n=1}^\infty \) such that
\[f_n \in B_{\Omega}^{-\theta}(t; X) \cap C([0, T]; X), \]
\[f_n \longrightarrow f \text{ in } B_{\Omega}^{1-\theta}(t; X) \cap L^1(I; X). \]

We let
\[F_n(t) = \int_0^t e^{(t-s)\Omega} f_n(s) \, ds. \]

Then we have by Theorem 1.3
\[F_n \in C([0, T]; X), \]
\[F_n(t) \in \mathcal{D}(\Omega), \quad 0 < t \leq T, \]
\[\frac{dF_n(t)}{dt} = \Omega F_n(t) + f_n(t), \quad 0 < t \leq T. \]

By applying the inequality (4.12) to \(f - f_n \) and \(F - F_n \), we have
\[\| F - F_n \|_{B_{\Omega}^{1-\theta}(t; X)} \leq C(\| f - f_n \|_{B_{\Omega}^{-\theta}(t; X)} + \| f - f_n \|_{L^1(I; X)}). \]

Using the statement (4.14), we obtain that
On the Cauchy problem for analytic semigroups

\[\| F_n - F \|_{\mathcal{B}_{\infty,1}(t_0; X)} \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty. \]

On the other hand, we have

\[
\begin{align*}
\| \mathcal{U} F_n - \frac{dF}{dt} + f \|_{\mathcal{B}_{\infty,1}(t_0; X)} \\
= \| -f_n + \frac{dF_n}{dt} - \frac{dF}{dt} + f \|_{\mathcal{B}_{\infty,1}(t_0; X)} \\
\leq \| f_n - f \|_{\mathcal{B}_{\infty,1}(t_0; X)} + \left\| \frac{dF_n}{dt} - \frac{dF}{dt} \right\|_{\mathcal{B}_{\infty,1}(t_0; X)}.
\end{align*}
\]

We estimate the two terms of the right. The inclusion (2.6) and the statement (4.14) tell us that

\[\| f_n - f \|_{\mathcal{B}_{\infty,1}(t_0; X)} \leq C \| f_n - f \|_{\mathcal{B}_{1-\delta,1}(t_0; X)} \leq C \| f_n - f \|_{\mathcal{B}_{1-\delta,1}(t_0; X)} \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty. \]

The definition of Besov spaces and (4.15) give that

\[\| \frac{dF_n}{dt} - \frac{dF}{dt} \|_{\mathcal{B}_{\infty,1}(t_0; X)} \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty. \]

From (4.16) and (4.17), it follows that

\[\| \mathcal{U} F_n - \frac{dF}{dt} - f \|_{\mathcal{B}_{\infty,1}(t_0; X)} \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty. \]

By using the inclusion (2.8), if \(t \in I_\varepsilon \), the statements (4.15) and (4.18) imply that as \(n \rightarrow \infty \)

\[F_n(t) \rightarrow F(t) \quad \text{in} \quad X, \]

\[\mathcal{U} F_n(t) \rightarrow \frac{dF}{dt}(t) - f(t) \quad \text{in} \quad X. \]

By virtue of the closedness of \(\mathcal{U} \), it follows that

\[F(t) \in \mathcal{D}(\mathcal{U}), \quad 0 < t \leq T, \]

\[\mathcal{U} F(t) = \frac{dF}{dt}(t) - f(t), \quad 0 < t \leq T. \]

The proof of Theorem 1.4 is now complete.

REMARK 4.1. The proof of Theorem 1.4 tells us that for any \(\varepsilon > 0 \)

\[f \in \mathcal{B}^\sigma_{\infty,q}(\varepsilon, T); X) \implies F \in \mathcal{B}^\sigma_{\infty,q}(\varepsilon, T); X). \]

This implies that the regularity of \(F \) is as maximal as possible. In other words, if \(\sigma > 1 \) and \(1 \leq q \leq \infty \), it does not necessarily hold that \(F \in \mathcal{B}^\sigma_{\infty,q}(\varepsilon, T); X) \) if
\[f \in B_{\infty,1}^{{\mathbf{H}}^{-\theta}}((0, \; \tau); \; X). \]

References

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki 305
Japan