ON RINGS WITH FINITE SELF-INJECTIVE DIMENSION II

(Dedicated to Professor Goro Azumaya on his 60th birthday)

By

Yasuo Iwanaga

For a module M over a ring R (with an identity), $\text{pd}(M)$ and $\text{id}(M)$ denote the projective and injective dimension of M, respectively. In the previous paper [5] and [6], we called a (left and right) noether ring R n-Gorenstein if $\text{id}(R_R) \leq n$ and $\text{id}(R_R) \leq n$ for an $n \geq 0$, and Gorenstein if R is n-Gorenstein for some n. This note is concerned with two subjects on Gorenstein rings. In §1, we consider the modules of finite projective or injective dimension over a Gorenstein ring and, first, show that the finiteness of projective dimension coincides with one of injective dimension. Then it follows that the highest finite projective (or injective) dimension is n for modules over an n-Gorenstein ring and, next, such modules over an artinian Gorenstein ring are investigated. Finally, we present some example to compare with Auslander’s definition of an n-Gorenstein ring.

In §2, for a Gorenstein ring R, we consider a quasi-Frobenius extension of R and show it also is a Gorenstein ring. Further we generalize [3, Corollary 8 and 8'] to the case of a quasi-Frobenius extension. Also an example concerning with a maximal quotient ring of a Gorenstein ring is presented.

1. Modules of finite projective or injective dimension

We start with the next proposition which states [4, Korollar 1.12] and [7, Corollary 5] more precisely:

Proposition 1. For a noether ring R,

$$\text{id}(R_R) = \sup \{\text{flat dim } (E); \text{ } R E \text{ is an injective left } R\text{-module} \}.$$

Proof. By [2, Chap. VI, Proposition 5.3],

\begin{equation}
\text{Tor}_i^R (A_R, R E) \cong \text{Hom}_R (\text{Ext}_R^i (A_R, R R_R), R E)
\end{equation}

for any finitely generated right R-module A_R, injective left R-module $R E$ and $i > 0$.

First assume $\text{id}(R_R) = n < \infty$, then $\text{Ext}_R^{n+i} (A, R) = 0$ for any finitely generated

Received May 17, 1979. Revised December 11, 1979.
\[A_R \text{ and so } \text{Tor}^R_{n+1}(A, E)=0 \text{ for any injective } R E. \] Further, for any \(X \), we can represent \(X=\lim \rightarrow A_x \) such that each \(A_x \) is finitely generated and hence
\[\text{Tor}^R_{n+1}(X, R E)=\lim \rightarrow \text{Tor}^R_{n+1}(A_n, E)=0. \]
Therefore flat \(\text{dim} \) \((E)\leq n \).
Conversely, if flat \(\text{dim} \) \((E)\leq n<\infty \) for any injective \(R E \), (*) induces
\[\text{Hom}_R(\text{Ext}^R_{n+1}(A, R), E)\cong \text{Tor}^R_{n+1}(A, E)=0 \]
for any finitely generated \(A_R \). Now then, by taking \(R E \) as an injective cogenerator, it holds that \(\text{Ext}^R_{n+1}(A, R)=0 \) for any finitely generated \(A_R \) and hence \(\text{id}(R_E)\leq n \).

The following was shown in [5] and [6] under certain assumption on the dominant dimension, but now we can release this assumption and include completely the commutative case.

Theorem 2. For an \(n \)-Gorenstein ring \(R \) and an \(R \)-module \(M \), the following are equivalent:

1. \(\text{pd}(M)<\infty \),
2. \(\text{pd}(M)\leq n \),
3. \(\text{id}(M)<\infty \),
4. \(\text{id}(M)\leq n \).

Proof. Since the implications (1) \(\Rightarrow \) (2) and (2) \(\Rightarrow \) (4) are proved in [1] and [5], respectively, we prove only (3) \(\Rightarrow \) (2).

Let
\[
0 \rightarrow M \xrightarrow{f_0} E_0 \xrightarrow{f_1} E_1 \rightarrow \cdots \rightarrow E_m \rightarrow 0
\]
be an injective resolution of \(M \) and \(K_{i-1}=\ker(f_i) \) \((i=1, \ldots, m) \), then in the exact sequence
\[
0 \rightarrow K_{m-1} \rightarrow E_{m-1} \rightarrow E_m \rightarrow 0,
\]
if \(\text{pd}(E_{m-1}), \text{pd}(E_m)\leq n \), then \(\text{pd}(K_{m-1})\leq n \) by [5, Lemma 4]. For an arbitrary \(i \), in the exact sequence
\[
0 \rightarrow K_{i-1} \rightarrow E_{i-1} \rightarrow K_i \rightarrow 0,
\]
if \(\text{pd}(K_i), \text{pd}(E_{i-1})\leq n \), then \(\text{pd}(K_{i-1})\leq n \) and therefore \(\text{pd}(M)=\text{pd}(K_0)\leq n \) by the induction. Thus, it is enough to show \(\text{pd}(E)\leq n \) for any injective left module \(R E \).

Now, since flat \(\text{dim} \) \((E)\leq n \) by Proposition 1, let
\[
0 \rightarrow U_n \xrightarrow{f_n} U_{n-1} \xrightarrow{f_{n-1}} \cdots \rightarrow U_0 \rightarrow E \rightarrow 0
\]
be a resolution of \(R E \) by flat modules \(U_i \) \((i=0, 1, \ldots, n) \) and \(C_{i-1}=\text{cok}(f_i) \) \((i=1, \ldots, n) \), then \(\text{pd}(U_i)<\infty \) for \(i=0, 1, \ldots, n \) by [7, Proposition 6]. First,
from the exact sequence

$$0 \rightarrow U_n \rightarrow U_{n-1} \rightarrow C_{n-1} \rightarrow 0$$

with $\text{pd}(U_n), \text{pd}(U_{n-1}) < \infty$, it follows that $\text{pd}(C_{n-1}) < \infty$. For an arbitrary i, in the exact sequence

$$0 \rightarrow C_{i+1} \rightarrow U_i \rightarrow C_i \rightarrow 0,$$

if $\text{pd}(C_{i+1}), \text{pd}(U_i) < \infty$, then it follows that $\text{pd}(C_i) < \infty$ and hence $\text{pd}(E) = \text{pd}(C_i) < \infty$ by the induction, which is equivalent to $\text{pd}(E) \leq n$ by the implication $(1) \Rightarrow (2)$. From Theorem 2, we are interested in modules M satisfying $\text{pd}(M) = n$ or $\text{id}(M) = n$ over an n-Gorenstein ring. Thus we next consider such modules.

For a module M, we define $E^i(M)$ for $i \geq 0$ as the $(i+1)$-th term in a minimal injective resolution of M and $E(M) = E^0(M)$, i.e.

$$0 \rightarrow M \rightarrow E^0(M) \rightarrow \cdots \rightarrow E^i(M) \rightarrow \cdots$$

is a minimal injective resolution of M. Dually, if M has a minimal projective resolution, we define $P^i(M)$ for $i \geq 0$, similarly.

Theorem 3. Let R be an artinian n-Gorenstein ring, $0 \rightarrow R \rightarrow E_0 \rightarrow \cdots \rightarrow E_n \rightarrow 0$ a minimal injective resolution for R and R a left R-module.

(1) If $\text{id}(M) = n$, then $\text{id}(M) = \text{pd}(E^i(M)) = n$ and, for any direct summand RE of $E^i(M)$, $\text{pd}(E) = n$.

If $\text{pd}(M) = n$, then $\text{id}(P^n(M)) = \text{pd}(M) = n$ and, for any direct summand RP of $P^n(M)$, $\text{id}(P) = n$.

In particular, $\text{id}(P^n(E_n)) = \text{pd}(E_n) = n$ provided $\text{id}(R) = n$.

(2) If $\text{pd}(M) = n$, then $E^nP^n(M)$ is isomorphic to a direct sum of a direct sum of copies of E_n.

Especially, $E^nP^n(E_n)$ is isomorphic to a direct summand of E_n.

Proof. (1) Suppose $\text{id}(M) = n$ and RE an indecomposable summand of $E^i(M)$, then since E is of the form $E(S)$ for some simple module $_RS$, the exact sequence

$$0 \rightarrow _RS \rightarrow _RE(S) \rightarrow _RE(S)/S \rightarrow 0$$

induces

$$\text{Ext}^k_R(E(S), M) \rightarrow \text{Ext}^k_R(S, M) \rightarrow \text{Ext}^{k+1}_R(E(S)/S, M) \text{ (exact)}.$$

Here, $\text{Ext}^{k+1}_R(E(S)/S, M) = 0$ but $\text{Ext}^k_R(S, M) \neq 0$ by [6, Lemma 1] since $_RS$ is monomorphic to $E^n(M)$, and hence $\text{Ext}^k_R(E(S), M) \neq 0$. So $\text{pd}(E(S)) \geq n$ implies $\text{pd}(E(S)) = n$ by Theorem 2.

Next, assume $\text{pd}(M) = n$ and RP an indecomposable summand of $P^n(M)$, then
for any simple homomorphic image \(\kappa S \) of \(P \), the exact sequence

\[
0 \rightarrow \kappa K \rightarrow \kappa P \rightarrow \kappa S \rightarrow 0
\]

induces

\[
\text{Ext}_R^i(M, P) \rightarrow \text{Ext}_R^{i+1}(M, S) \rightarrow \text{Ext}_R^{i+1}(M, K) \quad \text{(exact)}.
\]

Now, since \(\text{Ext}_R^{i+1}(M, K) = 0 \) but \(\text{Ext}_R^i(M, S) \neq 0 \) by the dual of [6, Lemma 1], \(\text{Ext}_R^i(M, P) \neq 0 \) and hence \(\text{id}(P) = n \) again by Theorem 2.

(2) Decompose \(\kappa R \) into projective indecomposables, then for any projective indecomposable \(\kappa P \) with \(\text{id}(P) = n \), \(E^n(P) \) is isomorphic to a direct summand of \(E^n \).

On the other hand, if \(\text{pd}(M) = n \), \(\text{id}(\text{Ext}_R^i(M, S)) = 0 \) by (1) and hence \(E^n P^n(M) \) is isomorphic to a summand of a direct sum of copies of \(E_n \).

Corollary 4. Let \(R \) be an \(n \)-Gorenstein ring with \(\text{dom-dim}_R R \leq n \) and assume \(\kappa M \) a left \(R \)-module with \(\text{id}(M) = n \), then \(E^n(M) \) is isomorphic to a direct summand of a direct sum of copies of \(E_n \).

Now we present an example which seems itself interesting.

Example. Let \(R \) be an artinian Gorenstein ring with \(\text{id}(\kappa R) = n \) and \(0 \rightarrow \kappa R \rightarrow E_0 \rightarrow \cdots \rightarrow E_n \rightarrow 0 \) a minimal injective resolution of \(\kappa R \), then we see from Theorem 3 that \(E_n \) has the largest projective dimension \(n \). Here, we give an example of an \(n \)-Gorenstein ring \(R \) with \(\text{pd}(E_0) = \cdots = \text{pd}(E_n) = n \), which shows that our definition of an \(n \)-Gorenstein ring is different from Auslander's one.

Let \(k \) be a field and \(R \) a subalgebra of \((k)_8 \), all \(8 \times 8 \) matrices over \(k \), having \(\{c_{11} + c_{88}, c_{22} + c_{55}, c_{33} + c_{44}, c_{66}, c_{77}, c_{31}, c_{43}, c_{82}, c_{87}, c_{86}, c_{68}, c_{85}, c_{67}\} \) as a \(k \)-basis where \(c_{ij} \) is a matrix unit in \((k)_8 \) Then \(\text{id}(\kappa R) = \text{id}(R_R) = 2 \), i.e. \(R \) is \(2 \)-Gorenstein, \(\text{gl-dim} R = \infty \) and \(\text{pd}(E_0) = \text{pd}(E_1) = \text{pd}(E_2) = 2 \). Further any left \(R \)-module of projective dimension \(=2 \) is a summand in a direct sum of copies of \(E_0 \oplus E_1 \oplus E_2 \).

2. A quasi-Frobenius extension of a Gorenstein ring

For rings \(R \subseteq T \), \(T/R \) is called a left quasi-Frobenius (=QF) extension if \(\kappa T \) is finitely generated projective and \(\tau T_R \) is isomorphic to a direct summand in a direct sum of copies of \(\tau \text{Hom}_R(\kappa T, R_R)_R \). A quasi-Frobenius extension is a left and right quasi-Frobenius extension. See [9] for details.

In this section we show a QF extension of a Gorenstein ring is also a Gorenstein ring. First we observe the following.

Let \(R, T \) be rings and \(F : \kappa M \rightarrow \kappa M \) a functor of the category of left \(R \)-modules to one of left \(T \)-modules, which satisfies the condition:

1) \(F \) is exact,
On rings with finite self-injective dimension II

2) if \(_RE \) is injective, so is \(\tau F(E) \),
then \(\text{id}(\tau F(M)) \leq \text{id}(_RM) \) for any left \(R \)-module \(_RM \). Further if
3) \(F \) preserves an essential monomorphism
is satisfied, \(\text{id}(\tau F(M)) = \text{id}(_RM) \) for any \(_RM \).

The next is a generalization of [3, Corollary 8] to a quasi-Frobenius extension and concerns with the case of a Gorenstein order [10, Lemma 5].

Proposition 5. Let \(T \) be a left quasi-Frobenius extension of a ring \(R \) and \(_RM \) a left \(R \)-module, then

\[
\text{id}(\tau T \otimes_R M) \leq \text{id}(_RM).
\]

Proof. By [2, VI Proposition 5.2],
\[
\tau T \otimes_R M \cong \tau \otimes_R \text{Hom}_R(_R, _RM)
\cong \text{Hom}_R(_R \text{Hom}_R(\tau T, _R), _RM).
\]

Here, \(T_R \) is projective by [9, Satz 2] and since \(\text{Hom}_R(\tau T, _R) \) is projective ([9, Satz 2]), \(\tau \otimes_R E \) is injective for any injective left \(R \)-module \(_RE \). Therefore the functor \(\tau \otimes_R \rightarrow : _RM \rightarrow _TM \) satisfies the conditions 1)—2) and so

\[
\text{id}(\tau T \otimes_R M) \leq \text{id}(_RM).
\]

The following should be compared with [9, satz 3].

Corollary 6. A quasi-Frobenius extension of an \(n \)-Gorenstein ring also is an \(n \)-Gorenstein ring.

In connection with [1, Example (2)] and [3, Corollary 8'], we state the following.

Proposition 7. (1) Let \(T \) be a left quasi-Frobenius extension of a ring \(R \) and suppose \(T_R \) a generator, then

\[
\text{id}(\tau T \otimes_R M) = \text{id}(_RM)
\]

for any left \(R \)-module \(M \) and especially \(\text{id}(\tau T) = \text{id}(_R) \).

Moreover, for a finite group \(G \) and a ring \(R \),
\[
\text{id}(_R G) \rightarrow _R[G] = \text{id}(_R).
\]

(2) Let \(T \) be a quasi-Frobenius extension of a ring \(R \) and suppose \(A T \) (or \(T_R \)) a generator, then

\[
\text{id}(\tau T) = \text{id}(_R) \text{ and } \text{id}(T_R) = \text{id}(R_R).
\]

Proof. (1) Let \(F = \tau \otimes_R M \rightarrow _TM \), then \(F \) satisfies the conditions 1)—3) for \(T_R \) is a prognerator by [9, Satz 2].
(2) Let $F=\text{Hom}_R(\tau T, -): \tau M \to \tau M$, then τT is a progenerator and so $\text{id}(\tau \text{Hom}_R(\tau T, R)) = \text{id}(\tau F(R)) = \text{id}(R)$. Now, since T/R is a left (resp. right) quasi-Frobenius extension, $\tau \text{Hom}_R(\tau T, R)$ is a generator (resp. finitely generated projective) and therefore $\text{id}(\tau \text{Hom}_R(\tau T, R)) = \text{id}(\tau T)$. Also $\text{id}(\tau T) = \text{id}(R)$ follows from (1).

REMARK. In Proposition 7, if we replace a ring T by an R-module and its endomorphism ring, then we obtain the following.

Let R be a ring, RP a projective left R-module, $T=\text{End}_R(P)$ and assume P flat, then the functor $F=\text{Hom}_R(RP, -): RP \to \tau M$ satisfies 1–2) by [2, VI Proposition 5.1] and hence $\text{id}(\tau F(P)) \leq \text{id}(RP)$. Observing this fact,

(i) Let R be a left noether ring, RP a projective generator and $T=\text{End}_R(P)$, then $\text{id}(\tau T) \leq \text{id}(R)$. Therefore it follows immediately that an endomorphism ring of a faithful finitely generated projective module over a quasi-Frobenius ring also is a quasi-Frobenius ring. (Curtis and Morita)

(ii) If rings R and T are Morita equivalent, then $\text{id}(R) = \text{id}(\tau T)$ and $\text{id}(R) = \text{id}(\tau T)$.

Now, if rings R and T are Morita equivalent, there exists a finitely generated projective generator (i.e. progenerator) RP and $T=\text{End}_R(P)$. However, if we delete that RP is a generator, it happens that R is Gorenstein but T is not and we see also that faithfulness in Curtis-Morita theorem above is necessary. For example, let R be a self-basic serial ring and $R=Re_1 \oplus Re_2 \oplus Re_3$ a decomposition into primitive left ideals such that $|Re_1|=|Re_2|=|Re_3|=5$ and Re_1, (resp. Re_2) is epimorphic to Ne_1 (resp. Ne_2) where N is the radical of R. Then R is a quasi-Frobenius ring, but $\text{id}(Re_1Re_2)$ is infinite for $e=e_1+e_2$.

Finally we state an example concerning with a maximal quotient ring of a Gorenstein ring.

EXAMPLE. It is easily seen that a classical quotient ring or more generally a flat epimorphic extension of a Gorenstein ring also is a Gorenstein ring, but it is not known yet that a maximal quotient ring of a Gorenstein ring is also so. (See [11] in the special case.) Here we present an example of a Gorenstein ring R whose left maximal quotient ring Q has id $(\tau Q) > \text{id}(R)$.

Let k be a field, R a subalgebra of $(k)^5$ whose k-basis consists of $c_{11}+c_{23}$, $c_{25}+c_{44}$, c_{33}, c_{31}, c_{22}, c_{44} and Q (resp. Q_1) a left (resp. right) maximal quotient ring of R. Then R is 1-Gorenstein, id (τQ_1) = 2 and Q_1 is a quasi-Frobenius ring.

ACKNOWLEDGEMENT The author wishes to thank the referee for valuable advices and simplification of the proof of Proposition 5.
On rings with finite self-injective dimension II

References

Institute of Mathematics
University of Tsukuba
Ibaraki, 305 Japan