ROOTS OF KAC-MOODY LIE ALGEBRAS

By

Jun Morita

0. Introduction.

The notion of Kac-Moody Lie algebras has recently been introduced and studied as a natural generalization of a finite dimensional split semisimple Lie algebra with successful applications to Macdonald type identities (cf. Lepowsky [3]). Such a Lie algebra has a root system, which is a natural analogue of the usual root systems in the sense of Bourbaki [1]. In this paper, we will give a characterization of positive root systems of Kac-Moody Lie algebras as a subset of a lattice. (See Proposition 1 and Theorem 1 below.)

Let A be a generalized Cartan matrix and L the Kac-Moody Lie algebra associated with A, and let Δ (resp. Δ_+) be the root system (resp. the positive root system) of L (for the definition, see §1). In §2, we will consider the special positive root system $P(A)$ associated with L. This system $P(A)$ satisfies the conditions $(X1)$, $(X2)$, $(Y1)$, $(Y2)$ and $(Y3)$, which are specified in §2. Conversely we will show that any set satisfying these conditions coincides with the system $P(A)$ arising from some Kac-Moody Lie algebra. In particular, Δ_+ is uniquely determined by $(Y1)$, $(Y2)$ and $(Y3)$ when A is given.

On the other hand, there are two kinds of roots in Δ, called real roots and imaginary roots respectively. In §3, we will present a characterization of imaginary roots. In §4, we will give a way to produce the roots of L inductively from simple roots.

The author wishes to express his sincere gratitude to Prof. N. Iwahori for his valuable advice. Also he wishes to thank the referee for showing him several comments on this paper—especially a simplification in the proof of Theorem 2.

In this section, we will review the notion of a Kac-Moody Lie algebra and its root system (cf. Kac [2], Lepowsky [3], Moody [4]). Let I be a positive integer, and set $I=\{1, \cdots, l\}$. Let $A=(a_{ij})$ be an $l\times l$ generalized Cartan matrix—that is $a_{ij} \in \mathbb{Z}$ for all $i, j \in I$, $a_{ij}=2$ for all $i \in I$, $a_{ij} \leq 0$ for distinct $i, j \in I$. Received July 30, 1980.
\[a_{ij} = 0 \text{ whenever } a_{ji} = 0 \text{ for each } i, j \in I. \]

For any generalized Cartan matrix \(A = (a_{ij}) \) and for any field \(K \) of characteristic zero, \(L \) denotes the Lie algebra over \(K \) generated by 3l generators \(e_1, \ldots, e_l, h_1, \ldots, h_l, f_1, \ldots, f_l \) with the defining relations \([h_i, h_j] = 0, [e_i, f_j] = \delta_{ij} h_i, [h_i, e_j] = a_{ij} e_j, [h_i, f_j] = -a_{ij} f_j \) for all \(i, j \in I \), and \((\text{ad} e_i)^{a_{ij}+1} e_j = 0, (\text{ad} f_i)^{a_{ij}+1} f_j = 0 \) for distinct \(i, j \in I \). We call the algebra \(L \) the (standard) Kac-Moody Lie algebra over \(K \) associated with \(A \).

Let \(\Gamma = \sum_{\alpha \in I} \mathbb{Z} \alpha_i \) be the free \(\mathbb{Z} \)-module with free generators \(\alpha_1, \ldots, \alpha_l \). We give the structure of a \(\Gamma \)-graded Lie algebra to \(L \) by defining \(\deg(e_i) = \alpha_i \), \(\deg(h_i) = 0 \) and \(\deg(f_i) = -\alpha_i \) for all \(i \in I \). For any \(\alpha \in \Gamma \), let \(L_{\alpha} \) be the subspace of \(L \) consisting of all elements with degree \(\alpha \). Set \(H = L_0 \), which equals \(K h_1 \oplus \cdots \oplus K h_l \). We call a nonzero element \(\alpha \in \Gamma \) a root of \(L \) if \(L_{\alpha} \neq 0 \). Let \(\Delta \) be the set of all roots of \(L \), called the root system of \(L \), so \(L = H \oplus \sum_{\alpha \in \Gamma} L_{\alpha} \). Then \(\Delta \) is contained in \(\Gamma_+ \cup (-\Gamma_+) \), where \(\Gamma_+ = \{ \alpha = \sum_{i \in I} k_i \alpha_i | k_i \geq 0, \alpha \neq 0 \} \). Set \(\Delta_+ = \Delta \cap \Gamma_+ \) and \(\Delta_- = \Delta \cap (-\Gamma_+) \). We call \(\Delta_+ \) the positive root system of \(L \). We note \(\Delta_- = -\Delta_+ \). For each \(\alpha = \sum_{i \in I} k_i \alpha_i \in \Delta_+ \) (resp. \(\Delta_- \)), \(L_{\alpha} \) is the subspace of \(L \) spanned by the elements

\[
[\alpha_1, [\alpha_2, \ldots, [\alpha_{l-1}, \alpha_l] \ldots]] \\
(\text{resp. } [\alpha_1, [\alpha_2, \ldots, [\alpha_{l-1}, \alpha_l] \ldots]]),
\]

where \(\alpha_j \) (resp. \(f_j \)) occurs \(|k_j| \) times. In particular, \(L_{\alpha_i} = Ke_i \) and \(L_{-\alpha_i} = Kf_i \).

Set \(H' = \{ \alpha_1, \ldots, \alpha_l \} \), called simple roots. For each \(i \in I \), let \(U_i \) be the subalgebra of \(L \) generated by \(e_i, h_i, f_i \), which is isomorphic to \(\text{sl}(2, K) \).

Lemma 1. (cf. Lepowsky [3, Proposition 1.4]). The subspace \(\sum_{\alpha \in \Lambda_{\alpha, \alpha}} L_{\alpha} \) is a direct sum of finite dimensional irreducible \(U_i \)-modules for each \(i \in I \).

Lemma 2. Let \(\alpha \in \Delta_+ \setminus \Pi \). Then there is \(\alpha_i \in \Pi \) such that \(\alpha - \alpha_i \in \Delta_+ \).

Proof. Since \(L_{\alpha} \neq 0 \), there is a nonzero generator \([\alpha_1, [\alpha_2, \ldots, [\alpha_{l-1}, \alpha_l] \ldots]] \) in \(L_{\alpha} \). Then \([\alpha_1, [\alpha_2, \ldots, [\alpha_{l-1}, \alpha_l] \ldots] \) is a nonzero element of \(L_{\alpha - \alpha_i} \). Therefore such \(\alpha - \alpha_i \) is in \(\Delta_+ \).

q.e.d.

2. Abstract positive root systems.

Let \(\Gamma = \sum_{i \in I} \mathbb{Z} \alpha_i \) be the free \(\mathbb{Z} \)-module with free generators \(\Pi = \{ \alpha_1, \ldots, \alpha_l \} \), and let \(\Gamma_+ = \{ \alpha = \sum_{i \in I} k_i \alpha_i \in \Gamma | k_i \geq 0, \alpha \neq 0 \} \) as in §1. Set \(\Gamma^* = \text{Hom}_\mathbb{Z}(\Gamma, \mathbb{Z}) \), the dual of \(\Gamma \). A pair \(\Phi = (X, Y) \) consisting of a subset \(X \) of \(\Gamma^* \) and a subset \(Y \) of \(\Gamma \) is called an abstract positive root system (in the lattice \(\Gamma \)) if the following axioms (X1), (X2), (Y1), (Y2) and (Y3) are satisfied.

(X1) \(X \) consists of \(l \) distinct elements \(\phi_1, \ldots, \phi_l \), labeled by \(I \).
(X2) $\phi_i(\alpha_i)=2$ for all $i \in I$.

(Y1) $\Pi \subseteq Y \subseteq \Delta$.

(Y2) For each $i \in I$, if $\alpha \in Y - \{\alpha_i\}$, then there are nonnegative integers $p=p(i, \alpha)$ and $q=q(i, \alpha)$ satisfying

\[
\begin{align*}
\begin{array}{c}
\phi_i(\alpha_i) = 2 \\
\end{array}
\end{align*}
\]

and

\[
\begin{align*}
\begin{array}{c}
\phi_i(\alpha_i) = 2 \\
\end{array}
\end{align*}
\]

(Y3) If $\alpha \in Y - \Pi$, then there exists $\alpha_i \in \Pi$ for which $\alpha - \alpha_i \in Y$.

Let L be the (standard) Kac-Moody Lie algebra associated with a generalized Cartan matrix A, and let Δ_+ be the positive root system of L (see §1). Let ϕ_1, \ldots, ϕ_I be elements of Γ^* defined by $\phi_i(\alpha_j) = a_{ij}$ for all $j \in I$. Set $\Psi = \{\phi_1, \ldots, \phi_I\}$ and $P(A) = (\Psi, \Delta)$. We call $P(A)$ the special positive root system of A or of L. For each $\alpha = \sum_{i \in I} k_i \alpha_i \in \Gamma$, let $ht(\alpha) = k_1 + \cdots + k_I$, the height of α.

Proposition 1. Let A be a generalized Cartan matrix. Then the special positive root system $P(A)$ is an abstract positive root system.

Proof. By Lemma 1 and Lemma 2, we see that (Y2) and (Y3) hold. The other conditions are easily verified. q.e.d.

For each abstract positive root system Φ, set $C_\Phi = (e_{ij})$, where $e_{ij} = \phi_i(\alpha_j)$ for all $i, j \in I$.

Theorem 1. Let Φ be an abstract positive root system. Then:

1. C_Φ is a generalized Cartan matrix,
2. $\Phi = P(C_\Phi)$.

Proof. (1) By the definition, $\phi_i(\alpha_i) \in \mathbb{Z}$. The axiom (X2) says $\phi_i(\alpha_i) = 2$. For distinct $i, j \in I$, we see $\alpha_j - \alpha_i \in Y$ by (Y1), so $\phi(i, \alpha_i) = 0$ and $\phi(i, \alpha_j) = -\phi(i, \alpha_i) \leq 0$ by (Y2). Furthermore, for distinct $i, j \in I$, the condition $\phi_i(\alpha_j) = 0$ means $\alpha_i + \alpha_j \notin Y$. Therefore $\phi_i(\alpha_i) = 0$ if and only if $\phi_j(\alpha_i) = 0$.

(2) This follows from Proposition 2 below.

Proposition 2. Let $\Phi = (X, Y)$ and $\Phi' = (X', Y')$ be abstract positive root systems in the lattices Γ and Γ' respectively. Suppose $C_\Phi = C_{\Phi'}$. Then there is an isomorphism $\lambda : \Gamma \to \Gamma'$ such that $\lambda(\Phi) = \Phi'$.

Proof. Let $l = \text{rank } \Gamma = \text{rank } \Gamma'$. Since $C_\Phi = C_{\Phi'}$, we have $\phi_i(\alpha_j) = \phi'_i(\alpha'_j)$ for all $i, j \in I$, where $\phi_i \in X$, $\phi'_i \in X'$, $\alpha_j \in \Pi$, and $\alpha'_j \in \Pi'$. Let λ be the isomorphism of Γ to Γ' defined by $\lambda(\alpha_i) = \alpha'_i$. Then $\phi'_i = \phi_i \cdot \lambda^{-1}$. Put $Y_n = \{\alpha \in Y | \text{ht}(\alpha) \leq n\}$.

and \(Y'_n = \{ \alpha \in Y' \mid \text{ht}(\alpha) \leq n \} \), where \(n \in \mathbb{Z}_{\geq 0} \). If \(n=1 \), then \(\lambda(Y'_1) = Y'_1 = Y' \) by (Y1).
Assume \(n > 1 \) and \(\lambda(Y'_{n-1}) = Y'_{n-1} \). Let \(\alpha \in Y_n \). By (Y3), there exists \(\alpha_i \in \Pi \) for which \(\alpha - \alpha_i \in Y'_{n-1} \). Since \(\lambda(Y'_{n-1}) = Y'_{n-1} \), we have \(\lambda(\alpha) \in Y'_{n} \) by (Y2). Hence \(\lambda(Y_n) \subseteq Y'_n \). Similarly \(\lambda^{-1}(Y'_n) \subseteq Y_n \). Therefore \(\lambda(Y_n) = Y'_n \) for all \(n \in \mathbb{Z}_{>0} \), which implies \(\lambda(Y) = Y' \).

q.e.d.

Moreover we will prove the following two results without recourse to the theory of Lie algebras.

Proposition 3. Let \(\Phi=(X, Y) \) be an abstract positive root system. Then \(Z\alpha_i \cap Y = \{ \alpha_i \} \) for any \(\alpha_i \in \Pi \).

Proof. Let \(\alpha_i \in \Pi \). Clearly \(m\alpha_i \in Y \) if \(m \leq 0 \). Suppose \(m\alpha_i \in Y \) for some \(m \in \mathbb{Z}_{>1} \). By (Y2), we see \(\alpha_i, 2\alpha_i, \ldots, m\alpha_i \in Y \). Thus \(p(i, m\alpha_i) = m-1 \) by (Y1) and (Y2). Then \(m-1 \geq p(i, m\alpha_i) - q(i, m\alpha_i) = \phi(p(m\alpha_i)) = 2m \) by (Y2), so \(m \leq -1 \), which is a contradiction.

q.e.d.

For each \(i \in I \), let \(w_i \) be an involutive endomorphism of \(\Gamma' \) defined by \(w_i(\alpha) = \alpha - \phi_+(\alpha)\alpha_i \) for all \(\alpha \in \Gamma' \).

Proposition 4. Let \(\Phi=(X, Y) \) be an abstract positive root system. Then \(Y \setminus \{ \alpha_i \} \) is \(w_i \)-stable for any \(i \in I \).

Proof. Let \(\beta \in Y \setminus \{ \alpha_i \} \). Then \(w_i(\beta) = \beta - \phi_+(\beta)\alpha_i = \beta + (q - p)\alpha_i \). By (Y2), we see \(w_i(\beta) \in Y \) since \(-p \leq q - p \leq q \). Suppose \(w_i(\beta) = \alpha_i \), then \(\beta = \phi_+(\beta) + 1)\alpha_i \in Z\alpha_i \cap Y = \{ \alpha_i \} \), which is a contradiction. Therefore \(w_i(\beta) \in Y \setminus \{ \alpha_i \} \).

q.e.d.

3. Imaginary roots.

Let \(W \) be the subgroup of \(GL(\Gamma') \) generated by \(w_i \) for all \(i \in I \). The group \(W \) is called the Weyl group. Set \(\Delta^r = W(\Pi) \), real roots, and set \(\Delta^i = \Delta - \Delta^r \), imaginary roots. Put \(\Delta^p = \Delta^r \cap \Delta^i \). For each \(\alpha = \sum_{i \in I} k_i \alpha_i \in \Gamma' \), let \(S_\alpha \) be the diagram, called the support of \(\alpha \), with vertices \(v_i \) for all \(i \) satisfying \(k_i \neq 0 \) such that \(v_i \) and \(v_j \) are joined whenever \(\phi_+(\alpha) \neq 0 \) for distinct \(i, j \). Let \(J \) be the set consisting of all elements \(\alpha \) of \(\Gamma' \) such that the support \(S_\alpha \) is connected, and let \(J^p = \bigcap_{w \in W} (wJ) \). We call a generalized Cartan matrix indecomposable if the corresponding Dynkin diagram is connected (cf. Kac [2], Lepowsky [3], Moody [4]).
THEOREM 2. Let A be an indecomposable generalized Cartan matrix. Then $D^\mu = J^\mu$.

PROOF. We note that the support S_α of a root $\alpha \in A$ is connected. Therefore $D^\mu \subseteq J$, and $D^\mu \subseteq J^\mu$ since D^μ is W-invariant. Conversely let $\alpha \in J^\mu$. Then choose an element $\omega \alpha$ in the orbit $W(\alpha)$ of minimal height. Then $\omega \alpha \in J$ and in fact in the fundamental set M, where $M = \{ \alpha \in J | \phi_i(\alpha) \leq 0 \text{ for all } i \in I \}$. We know $M \subseteq D^\mu$ (see Kac [2], or Remark (3) below). Hence $\omega \alpha \in D^\mu$ and $\alpha \in D^\mu$.

q.e.d.

Let A be a generalized Cartan matrix. For each $\alpha \in \Gamma_+$, it is difficult to determine whether α is in Δ_+ or not, since in general the Weyl group is infinite. Here we will give an actual method of constructing the positive roots inductively from Π. Let $P(A)=(X, Y)$ be the special positive root system of A. Let $Y_n = \{ \alpha \in Y | \text{ht}(\alpha) \leq n \}$ for each $n \in \mathbb{Z}_{\geq 0}$.

PROPOSITION 5. Suppose $n \geq 1$. Let $\phi_i \in X$ and $\alpha_i \in \Pi$ for each $i \in I$, and let $\alpha \in Y_n$.

1. If $\phi_i(\alpha) < 0$, then $\alpha + \alpha_i \in Y_{n+1}$.
2. If $\phi_i(\alpha) \geq 0$, then $\alpha + \alpha_i \in Y_{n+1}$ if and only if $\alpha - (\phi_i(\alpha) + 1) \alpha_i \in Y_n$.

Therefore we can construct the set of roots recursively. (That an inductive construction is possible is already known—cf. Moody [4, Proposition 1].)

REMARKS.

1. We can prove Propositions 2 and 3 without the condition (Y3).
2. Let

$$A = \begin{pmatrix}
2 & -2 & 0 & 0 & 0 \\
-2 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -2 \\
0 & 0 & 0 & -2 & 2
\end{pmatrix}$$

and $S = \cap_{w \in \mathbb{W}(w \Gamma_+)}$. Set $Y = \Delta_+ \cup S$. Then we see that Y satisfies the conditions (Y1) and (Y2). Take a minimal height element α in $Y - \Delta_+$. This is possible since $\delta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 \in Y - \Delta_+$. For such an element α, there is no element $\alpha_i \in \Pi$ such that $\alpha - \alpha_i \in Y$. (This example appears in a letter from Mr. M. Kaneda to Prof. N. Iwahori.)
(3) (Kac [2]). Let Δ^m, W and M be the positive imaginary roots, the Weyl group and the fundamental set respectively. Then $\Delta^m = W(M)$.

(4) In Moody and Yokonuma [5], a geometric axiomatic foundation for real root systems of Kac-Moody Lie algebras has been developed.

References

Institute of Mathematics
University of Tsukuba
Sakura-mura, Niihari-gun
Ibaraki, 305 Japan