NON-NEGATIVELY CURVED C-TOTALLY REAL SUBMANIFOLDS IN A SASAKIAN MANIFOLD

By

Masumi KAMEDA

Dedicated to Professor Y. Tashiro on his 60th birthday

§ 0. Introduction.

Several authors have investigated minimal totally real submanifolds in a complex space form and obtained many interesting results. Recently F. Urbano [6] and Y. Ohnita [4] have studied pinching problems on their curvatures and stated some theorems.

On the other hand, in a $(2n+1)$-dimensional Sasakian space form of constant ϕ-sectional curvature $c(>3)$, if a submanifold M is perpendicular to the structure vector field, then M is said to be C-totally real. For such a submanifold M, it is well-known that if the mean curvature vector field of M is parallel, then M is minimal. S. Yamaguchi, M. Kon and T. Ikawa [8] obtained that if the squared length of the second fundamental form of M is less than $n(n+1)(c+3)/4(2n-1)$, then M is totally geodesic. Furthermore, D. E. Blair and K. Ogiue [2] proved that if the sectional curvature of M is a greater than $(n-2)(c+3)/4(2n-1)$, then M is totally geodesic.

In this paper, we consider a curvature-invariant C-totally real submanifold M in a Sasakian manifold with γ-parallel mean curvature vector field. Then M is not necessary minimal. Making use of methods of [3] and [4], we prove that if the sectional curvature of M is positive, then M is totally geodesic.

In Sec. 1, we recall the differential operators on the unit sphere bundle of a Riemannian manifold. Sec. 2 is devoted to stating about fundamental formulas on a C-totally real submanifold in a Sasakian manifold. In Sec. 3, we prove Theorems and Corollaries. Throughout this paper all manifolds are always C^∞, oriented, connected and complete. The author wishes to thank Professor S. Yamaguchi for his help.

§ 1. A differential operator defined by A. Gray.

Let M be an n-dimensional Riemannian manifold and $\Gamma(M)$ the Lie algebra
of vector fields on \(M\). Denote by \(\langle \cdot, \cdot \rangle, \mathcal{F}, \text{and } R_x^y := [\mathcal{F}_x, \mathcal{F}_y] - \mathcal{F}[x, y] = X, Y \in \Gamma(M)\) the metric tensor of \(M\), the Riemannian connection on \(M\) and the curvature tensor of \(M\), respectively. The Ricci tensor \(\rho\) of \(M\) is given by

\[
\rho_{xy} := \sum_{a=1}^n \langle R_{ea}xy, e_a \rangle \quad \text{for } X, Y \in \Gamma(M),
\]

where \(\{e_1, \ldots, e_n\}\) is an arbitrary local orthonormal frame field. For \(m \in M\) we denote by \(M_m\) the tangent space to \(M\) at \(m\). Then we write \(R_{wxyz}\) in place of \(\langle R_{wxy}, z \rangle\) for \(w, x, y, z \in M_m\) and shall sometimes use such expressions as \(R_{xay}^z\) instead of \(R_{xay}^z\).

Now we define the unit sphere bundle \(S(M)\) of \(M\) by

\[
S(M) = \{(m, x) : m \in M, x \in M_m, \langle x, x \rangle = 1\}.
\]

For any unit vector \(x\) in a fibre \(S_m\) we take an orthonormal basis \(\{e_1, \ldots, e_n\}\) of \(M_m\) such that \(x = e_1\). Denote by \(\{y_2, \ldots, y_n\}\) the corresponding system of normal coordinates defined on a neighborhood of \((m, x)\) in \(S_m\).

Lemma A [3]. Let \(F : S_m \to \mathbb{R}\) be a function. Then we have

\[
\frac{\partial^{a_2 + \cdots + a_n} F}{\partial y_2^{a_2} \cdots \partial y_n^{a_n}}(m, x) = \frac{\partial^{a_2 + \cdots + a_n}}{\partial u_2^{a_2} \cdots \partial u_n^{a_n}} F((\cos r)x + (\sin r)\sum_{i=2}^n u_i e_i)(0),
\]

where we have set \(r^2 = \sum_{i=2}^n u_i^2\).

Next we lift the frame \(\{e_1, \ldots, e_n\}\) to an orthonormal basis \(\{f_1, \ldots, f_n; g_2, \ldots, g_n\}\) of the tangent space \(S(M)_{(m, x)}\), where we require that \(f_1, \ldots, f_n\) are horizontal and \(g_2, \ldots, g_n\) are vertical. Denote by \(\{x_1, \ldots, x_n; y_2, \ldots, y_n\}\) the corresponding normal coordinate system on a neighborhood of \((m, x)\) in \(S(M)\). We define a second-order linear differential operator \(L(\lambda, \mu)\) by

\[
L(\lambda, \mu)(m, x) := \sum_{a=1}^n \frac{\partial^2}{\partial x_a^2} - \lambda \sum_{a,b=2}^n p_{a\beta} \frac{\partial^2}{\partial y_a \partial y_\beta} \mu \sum_{a=2}^n q_a \frac{\partial}{\partial y_a},
\]

where \(p_{a\beta}(m, x) := R_{a2\beta}, q_a(m, x) := \rho_{a2}\) and \(\lambda, \mu\) are constants to be chosen later. This definition is independent of the choice of normal coordinates at \((m, x)\). Hence \(L(\lambda, \mu)(m, x)\) is well-defined. Here we note that the sign of the second term in the right hand side is minus because of the definition on curvature tensor.

For a compact Riemannian manifold \(M\), we define an inner product \(\langle \cdot, \cdot \rangle\) on the space of functions by \(\langle f, g \rangle := \int_M fg \, d\mu\). Then the differential operator \(L(\lambda, \mu)\) is self-adjoint with respect to \(\langle \cdot, \cdot \rangle\) provided that \(\lambda = -\mu\) (cf. [3]).

If \(f\) is a real-valued function on \(S(M)\), we denote by \(\text{grad}^m f\) and \(\text{grad}^n f\) the
vertical and horizontal components of grad f respectively.

LEMMA B [3]. In a compact Riemannian manifold M, we have

$$\int_{S(M)} [f L(\lambda, -\lambda)(f)(m, x) + |\text{grad}^h f|^2(m, x) + \lambda K_e(\text{grad}^h f)(x)] e^1 = 0,$$

where the letter K indicates the sectional curvature of M.

§ 2. Fundamental formulas.

Let M be a submanifold of a Riemannian manifold N. We denote by the same $\langle \, , \rangle$ the Riemannian metrics of M and N, and by $\overline{\nabla}$ (resp. ∇) the Riemannian connection of N (resp. M) respectively. In the sequel the letters W, X, Y and Z (resp. V) will always denote any vector fields tangent (resp. normal) to M. Then the Gauss and Weingarten formulas are respectively given by

(2.1) \[\overline{\nabla}_X Y = \nabla_X Y + B(X, Y), \]

(2.2) \[\overline{\nabla}_X V = -A_X + D_X V, \]

where B (resp. A) and D are the second fundamental form (resp. shape operator) and the normal connection of M respectively. Then first and second covariant derivatives of B are respectively defined by

(2.3) \[(\overline{\nabla}_X B)(Y, Z) = D_X B(Y, Z) - B(\nabla_X Y, Z) - B(Y, \nabla_X Z), \]

(2.4) \[(\overline{\nabla}_W B)(Y, Z) = D_W (\overline{\nabla}_X B)(Y, Z) - (\overline{\nabla}_{W X} B)(Y, Z) \]

\[- (\overline{\nabla}_X B)(\nabla_W Y, Z) - (\overline{\nabla}_X B)(Y, \nabla_W Z) \]

Denoting by $\overline{\mathbf{R}}$ the Riemannian curvature tensor of N and putting as $(\overline{\mathbf{R}}_{W X} Y)^n$ the normal part of $\overline{\mathbf{R}}_{W X} Y$, we have the equation of Codazzi:

(2.5) \[(\overline{\mathbf{R}}_{W X} Y)^n = (\overline{\nabla}_W B)(X, Y) - (\overline{\nabla}_X B)(W, Y). \]

If $(\overline{\mathbf{R}}_{W X} Y)^n$ vanishes identically, then we call such a submanifold M curvature-invariant.

From (2.4), the formula of Ricci with respect to the second covariant derivative of B is given by

(2.6) \[(\overline{\nabla}_W^2 B)(Y, Z) - (\overline{\nabla}_W^2 B)(Y, Z) \]

\[= R^0_{W X} B(X, Z) - B(\overline{\mathbf{R}}_{W X} Y, Z) - B(Y, \overline{\mathbf{R}}_{W X} Z), \]
where \(R_{wX}^w := [D_w, D_X] + D_{[w, x]} \) indicates the normal curvature tensor of \(M \).

From now on let \(M \) be an \(n \)-dimensional C-totally real submanifold in a \((2n+1)\)-dimensional Sasakian manifold \(N \) with structure \((\phi, \xi, \eta)\). Then it is shown that ([7], [8], [9], [11])

\[
\langle B(Y, Z), \xi \rangle = 0,
\]

\[
D_X\phi Y = -\langle X, Y \rangle \xi + \phi p_X Y,
\]

\[
\langle R_{wX}^w \phi Y, \phi Z \rangle = \langle R_{wx}^w Y, Z \rangle - \langle W, Z \rangle \langle X, Y \rangle + \langle W, Y \rangle \langle X, Z \rangle,
\]

\[
\langle (\tilde{r} X B)(Y, Z), \xi \rangle = -\langle B(Y, Z), \phi X \rangle.
\]

For such a C-totally real submanifold \(M \), we state the definitions as follows:

DEFINITION [11]. We say that the mean curvature vector field of \(M \) is \(\eta \)-parallel if

\[
\sum_{a=1}^{n} \langle (\tilde{r} w B)(e_a, e_a), \phi X \rangle = 0.
\]

We say that the second fundamental form of \(M \) is \(\eta \)-parallel if

\[
\langle \tilde{r} w B(Y, Z), \phi X \rangle = 0.
\]

If \(M \) has \(\eta \)-parallel mean curvature vector field, then the equations (2.8) and (2.10) yield

\[
\sum_{a=1}^{n} \langle (\tilde{r} w X B)^2(e_a, e_a), \phi Y \rangle = -\sum_{a=1}^{n} \left[\langle (\tilde{r} X B)(e_a, e_a), DWY \rangle + 2\langle (\tilde{r} X B)(\tilde{r} we_a, e_a), \phi Y \rangle \right]
\]

\[
= -\sum_{a=1}^{n} \left[-\langle W, Y \rangle \langle B(e_a, e_a), \phi X \rangle + 2\langle \tilde{r} X B(\tilde{r} we_a, e_a), \phi Y \rangle \right].
\]

Taking the normal coordinate system, we can state the following.

LEMMA 2.1. If \(M \) has \(\eta \)-parallel mean curvature vector field, then we have

\[
\sum_{a=1}^{n} \langle (\tilde{r} w X B)(e_a, e_a), \phi Y \rangle = -\sum_{a=1}^{n} \langle W, Y \rangle \langle B(e_a, e_a), \phi X \rangle.
\]

§ 3. C-totally real submanifolds.

Throughout this section let \(M \) be an \(n \)-dimensional curvature-invariant C-totally real submanifold in a \((2n+1)\)-dimensional Sasakian manifold. We denote the components of the second fundamental form \(B \) by
Non-negatively curved C-totally real submanifolds

\[h_{\alpha\beta} = \langle B(e_{\alpha}, e_{\beta}), \phi e_{\gamma} \rangle \quad \text{for} \quad 1 \leq \alpha, \beta, \gamma \leq n. \]

As \(M \) is C-totally real, we find that \(h \) is symmetric, i.e.,

\[h_{\alpha\beta} = h_{\beta\alpha} = h_{\alpha\beta} \quad \text{for} \quad 1 \leq \alpha, \beta, \gamma \leq n. \]

The components of first and second covariant derivatives of \(B \) with respect to \(\phi \Gamma(M) \) are respectively expressed as

\[(\nabla_{\alpha} h)_{\beta\gamma} = \langle \nabla_{\alpha} B(e_{\beta}, e_{\gamma}), \phi e_{\delta} \rangle \quad \text{for} \quad 1 \leq \alpha, \beta, \gamma, \delta \leq n, \]

\[(\nabla_{\alpha}^{2} h)_{\beta\gamma} = \langle \nabla_{\alpha} \nabla_{\beta} B(e_{\gamma}, e_{\delta}), \phi e_{\epsilon} \rangle \quad \text{for} \quad 1 \leq \alpha, \beta, \gamma, \delta, \epsilon \leq n. \]

Since \(M \) is curvature-invariant, then, from (2.5) and (3.3), we find that \(\nabla h \) is symmetric with respect to \(\phi \Gamma(M) \), i.e.,

\[(\nabla_{\alpha} h)_{\beta\gamma} = (\nabla_{\beta} h)_{\alpha\gamma} \quad \text{for} \quad 1 \leq \alpha, \beta, \gamma \leq n. \]

We consider a function \(f \) on \(S(M) \) defined by \(f(m, x) = h_{xxx} \) for any point \((m, x) \in S(M) \) and then prove the following Lemma to use later.

Lemma 3.1. Let \(M \) be an \(n \)-dimensional curvature-invariant C-totally real submanifold in a \((2n+1)\)-dimensional Sasakian manifold \(N \). If \(M \) has \(\eta \)-parallel mean curvature vector field, then we have \(L(1/3, -1/3)(f) = 0. \)

Proof. We take any point \((m, x) \) of \(S(M) \). For each \(\alpha, 1 \leq \alpha \leq n \), let \(\gamma_{a}(s) \) be a geodesic in \(M \) such that \(\gamma_{a}(0) = m \) and \(\gamma_{a}'(0) = e_{\alpha} \). Then we denote a vector field by parallel translating of \(x \) along \(\gamma_{a} \) as the same letter \(x \). By virtue of (2.7) — (2.10), we obtain

\[\left(\frac{\partial^{2} f}{\partial x_{\alpha}^{2}} \right)(m, x) = \langle \phi x, D_{\alpha} \nabla_{\alpha} B(x, x) \rangle + \langle D_{\alpha} \phi x, (\nabla_{\alpha} B)(x, x) \rangle \quad \text{at} \quad m \]

\[= \langle \phi x, (\nabla_{\alpha} B)(x, x) \rangle + x_{\alpha} \langle \phi e_{\alpha}, B(x, x) \rangle \quad \text{at} \quad m \]

\[= (\nabla_{\alpha}^{2} h)_{xxx} + x_{\alpha} h_{xxx}, \]

where we have put \(x_{\alpha} := \langle e_{\alpha}, x \rangle \), which implies

\[\sum_{a=1}^{n} \left(\frac{\partial^{2} f}{\partial x_{a}^{2}} \right)(m, x) = \sum_{a=1}^{n} (\nabla_{\alpha}^{2} h)_{xxx} + h_{xxx}. \]

From (2.6), (2.9), (3.2) and (3.5), we can verify
\[(p_{xx}^2 h)_{zzz} = (p_{xx}^2 h)_{zzz} \]
\[= \langle \phi x, (p_{xx}^2 B)(x, e_a) \rangle + \langle \phi x, R_{xx}^B(x, e_a) \rangle \]
\[\quad - \langle \phi x, B(R_{xx}x, e_a) \rangle - \langle \phi x, B(x, R_{xx}e_a) \rangle \quad \text{at } m \]
\[= \langle \phi x, (p_{xx}^2 B)(e_a, e_a) \rangle - \langle B(x, e_a), R_{xx}^B \rangle \]
\[\quad - \langle B(x, e_a), R_{xx}x \rangle - \langle B(x, x), R_{xx}e_a \rangle \quad \text{at } m \]
\[= (p_{xx}^2 h)_{zzz} + \sum_{j=1}^{n} \left[-2 h_{\beta z} R_{zzz} - h_{\beta z} R_{zzz} \right. \]
\[\quad + \left. \phi \right|_{\beta z} \] from which follows that
\[(3.7) \quad \sum_{j=1}^{n} (p_{xx}^2 h)_{zzz} = \sum_{j=1}^{n} \left[(p_{xx}^2 h)_{zzz} - 2 \sum_{j=1}^{n} h_{\beta z} R_{zzz} + h_{xx} \rho_{xx} + h_{aoz} \right] - h_{zzz}.
Thus it is shown from (3.6) and (3.7) that
\[(3.8) \quad \sum_{\alpha=1}^{n} \left(\frac{\partial^2 f}{\partial x_{\alpha}^2} \right)(m, x) = \sum_{\alpha=1}^{n} \left[(p_{xx}^2 h)_{\alpha z} - 2 \sum_{j=1}^{n} R_{\alpha z} h_{\alpha z} + \rho_{z} h_{\alpha z} + h_{aoz} \right].
From the definition of \(f \), we have
\[(3.9) \quad f ((\cos r)x + (\sin r)y)_{\alpha} = (\cos r)^{2} h_{xx} + 3(\cos r)^{3} (\sin r) \sum_{j=1}^{n} u_{i, h_{ij}} \]
\[\quad + 3(\cos r) (\sin r) \sum_{j=1}^{n} u_{i, h_{ij}} + (\sin r)^{2} \sum_{j=1}^{n} u_{i, h_{ij}} + (\sin r)^{3} \sum_{j=1}^{n} u_{i, h_{ij}} \]
\[= (\cos r)^{3} h_{xx} + 3(\cos r)^{2} (\sin r) \sum_{j=1}^{n} u_{i, h_{ij}} \]
\[\quad + (\cos r) (\sin r)^{2} \sum_{j=1}^{n} (3 h_{ij} - h_{zzz}) u_{i} \]
\[\quad + 6(\cos r) (\sin r)^{2} \sum_{j=1}^{n} u_{i, h_{ij}} + (\sin r)^{3} \sum_{j=1}^{n} u_{i, h_{ij}} \]
because of \(r^2 = \sum_{j=1}^{n} u_{i}^{2} \). Applying Lemma A to (3.9), we find
\[(3.10) \quad \frac{\partial f}{\partial y_{\alpha}}(m, x) = 3 h_{aoz} \quad \text{for } 2 \leq \alpha \leq n, \]
\[(3.11) \quad \frac{\partial^2 f}{\partial y_{\alpha} \partial y_{\beta}}(m, x) = -3 h_{zzz} + 6 h_{aoz} \quad \text{for } 2 \leq \alpha, \beta \leq n. \]
We see from (3.8), (3.10) and (3.11) that
Non-negatively curved C-totally real submanifolds \[L(1/3, -1/3) (f) (m, x) = \sum_{a=1}^{n} \left[(p_{a2}^2 h)_{a22} + h_{a22} \right]. \]

On the other hand, the equation (2.13) is rewritten as
\[\sum_{\alpha=1}^{n} (p_{\beta \gamma}^2 h)_{\alpha \gamma} = - \sum_{\alpha=1}^{n} \delta_{\beta \gamma} h_{a22} \quad \text{for } 1 \leq \beta, \gamma, \delta \leq n. \]

Combining (3.12) with (3.13), we have \[L(1/3, -1/3) (f) (m, x) = 0. \]

THEOREM 3.1. Let \(M \) be an \(n \)-dimensional compact curvature-invariant C-totally real submanifold in a \((2n+1)\)-dimensional Sasakian manifold with \(\eta \)-parallel mean curvature vector field. If the sectional curvature of \(M \) is positive, then \(M \) is totally geodesic.

PROOF. As \(M \) has positive sectional curvature, \(L(1/3, -1/3) \) is elliptic. From the above hypothesis we have \(L(1/3, -1/3) (f) = 0 \). By maximum principle [10], \(f \) is constant on \(S(M) \). Since \(f \) is an odd function, it must be zero. Thus \(M \) is totally geodesic.

COROLLARY 3.2. Let \(M \) be an \(n \)-dimensional compact C-totally real submanifold in a \((2n+1)\)-dimensional Sasakian space form with \(\eta \)-parallel mean curvature vector field. If the sectional curvature of \(M \) is positive, then \(M \) is totally geodesic.

PROOF. If the \(\phi \)-sectional curvature of Sasakian space form \(N \) is denoted by \(c \), then the Riemannian curvature tensor \(R \) of \(N \) restricted to \(M \) is given by
\[R_{\phi \gamma} = \frac{c+3}{3} [\langle Y, X \rangle W - \langle Y, W \rangle X], \]
which means clearly that \(M \) is curvature-invariant. By Theorem 3.1, \(M \) is totally geodesic.

REMARK 1. If the normal connection of \(M \) is flat, then, from (2.9), \(M \) is of constant curvature 1, so that we have the same result as those in Theorem 3.1 or Corollary 3.2.

REMARK 2. As a Corollary of Theorem 3.1, we can state the Blair-Ogiue's Theorem in the introduction of this paper.

THEOREM 3.3. Let \(M \) be an \(n \)-dimensional compact curvature-invariant C-totally real submanifold in a \((2n+1)\)-dimensional Sasakian manifold with \(\eta \)-parallel mean curvature vector field. If the sectional curvature of \(M \) is non-negative, then \(M \) has \(\eta \)-parallel second fundamental form.
PROOF. By use of Lemma 3.1, we have \(L(1/3, -1/3)(f) = 0 \). Applying Lemma B, we find that \(\text{grad}^\kappa f \) must be identically zero. From (3.2) and (3.5), the fact that \(\text{grad}^\kappa f = 0 \) is equivalent to saying that the second fundamental form is \(\eta \)-parallel.

COROLLARY 3.4. Let \(M \) be an \(n \)-dimensional compact \(C \)-totally real submanifold in a \((2n+1)\)-dimensional Sasakian space form with \(\eta \)-parallel mean curvature vector field. If the sectional curvature of \(M \) is non-negative, then \(M \) has \(\eta \)-parallel second fundamental form.

References