ON A RELATION BETWEEN THE TOTAL CURVATURE AND THE MEASURE OF RAYS

Dedicated to Professor I. Mogi on his 60th birthday

By

Koichi SHIGA

§ 0. Introduction.

Let X be a 2-dimensional manifold, then we say that X is finitely connected if the fundamental group $\pi_1(X)$ is finitely generated. If X is noncompact and finitely connected, then it is homeomorphic to a compact surface with a finite number of points removed. Let M be a 2-dimensional finitely connected complete noncompact Riemannian manifold without boundary. The Euler characteristic of M, $\chi(M)$, equals the Euler characteristic of the associated compact surface minus the number of points removed. A geodesic $\gamma:[0, \infty) \to M$ is called a ray when any subarc of γ is the shortest connection between its end points. And all geodesics are assumed to be parametrized by arc length. Let T_pM be the tangent space of M at p and S_pM be the unit circle of T_pM centered at the origin. S_pM may be regarded as a standard unit circle S^1 from the Euclidean metric on T_pM. Hence we can consider the Riemannian measure on S_pM. Let $A(p)$ be the subset of S_pM consisting of vectors v in S_pM such that the geodesic $\gamma_v: [0, \infty) \to M, \gamma_v(t) = \exp_p tv$, is a ray, where \exp_p is the exponential map of M.

Recently, Maeda has proved in [4] the following theorem with interest in a problem whether less curvedness of a Riemannian manifold in some sense implies the existence of rays on it in large quantities or not when the manifold is non-negatively curved:

Theorem ([4]). Let M be a 2-dimensional complete Riemannian manifold with nonnegative Gaussian curvature $K \equiv 0$ diffeomorphic to a Euclidean plane. If $\int_M K dv < 2\pi$, then for any point p in M such that $\#A(p) \equiv 2$, we have

$$\text{measure } A(p) \equiv 2\pi - \int_M K dv.$$

Here the total curvature $\int_M K dv$ of a noncompact Riemannian manifold M is by

Received April 28, 1981. Revised September 4, 1981.
definition the limit of a sequence \(\left\{ \int_{V_n} G \, dv \right\}_{n \in \mathbb{N}} \) which does not depend on the choice of a sequence of compact domains \(\{V_n\}_{n \in \mathbb{N}} \) such that \(V_n \subset V_{n+1} \) and \(\bigcup_{n} V_n = \mathcal{M} \). And we admit \(+\infty \) and \(-\infty \) to be the value of a total curvature. Hence the total curvature always exists if the Gaussian curvature is nonpositive or nonnegative. Moreover, we know that if there exists the total curvature of a complete finitely connected surface \(\mathcal{M} \), the following well know inequality of Cohn-Vossen holds ([3]):

\[
\int_\mathcal{M} G \, dv \leq 2\pi \chi(\mathcal{M}).
\]

The aim of this note is to give a relation between the total curvature and the measure of rays, the abundance of rays, on a 2-dimensional complete finitely connected Riemannian manifold \(\mathcal{M} \). We shall prove the following theorem:

Theorem 1. Let \(\mathcal{M} \) be a 2-dimensional finitely connected complete noncompact Riemannian manifold with nonpositive Gaussian curvature \(G \). If \(\int_\mathcal{M} G \, dv > 2\pi(\chi(\mathcal{M}) - 1) \), then we have

\[
\text{measure } A(p) \leq 2\pi \chi(\mathcal{M}) - \int_\mathcal{M} G \, dv \quad \text{for any point } p \in \mathcal{M}.
\]

And from the proof we can get the following theorem which includes Maeda's result:

Theorem 2. Let \(\mathcal{M} \) be a 2-dimensional complete Riemannian manifold homeomorphic to a Euclidean plane. If \(\int_\mathcal{M} G^+ \, dv < 2\pi \), then we have

\[
\text{measure } A(p) \geq 2\pi - \int_\mathcal{M} G^+ \, dv \quad \text{for any point } p \in \mathcal{M},
\]

where \(G^+ = (|G| + G)/2 \).

We remark that the right quantity of the inequality in Theorem 1 is not guaranteed to be bounded above by \(2\pi \). The assumption, \(\int_\mathcal{M} G \, dv > 2\pi(\chi(\mathcal{M}) - 1) \), is put for the inequality to have geometric meaning. The assumption, \(\int_\mathcal{M} G^+ \, dv < 2\pi \), in Theorem 2 is put by the same reason.

The author would like to express his thanks to Professor K. Shiohama and Professor H. Nakagawa for their valuable suggestions and Mr. Innami for his useful conversation during the preparation of this paper.

§ 1. **Preliminaries.**

In this section, we shall introduce the various terminologies which follow [2], [3] and modifications of Shiohama [5]. Hereafter \(\mathcal{M} \) always denotes a 2-dimensional
On a relation the total curvature

43

finately connected complete noncompact Riemannian manifold without boundary
unless otherwise mentioned. Now let M be homeomorphic to $M_0\setminus\{p_1, p_2, \ldots, p_n\}$
under a homeomorphism f, where M_0 is a compact surface and p_1, p_2, \ldots, p_n are
points of M.

Definition 1. An open set U in M is called an open tube if U is homeomorphic
to $S^1 \times (0, \infty)$ and the boundary of $U(:=\partial U)$ is homeomorphic to S^1. And a closed
set of M is called a tube or an R_0-tube if it is homeomorphic to $S^0 \times [0, \infty)$ and its
boundary is a noncontractible simply closed geodesic polygon R_0. It is written as
$U(R_0)$.

Now, for each point $p_j, j=1, 2, \ldots, n$, we can choose mutually disjoint open neighbour-
hood U_j of p_j in M_0 such that $U_j := f^{-1}(\bar{U}_j \setminus \{p_j\})$ is a tube.

Let $U(R_0)$ be a given tube of M and let $\rho_{U(R_0)}$ be the distance function on
$U(R_0)$, that is, for any points $p, q \in U(R_0), \rho_{U(R_0)}(p, q)$ is defined to be the infimum
of the lengths of all piecewise smooth curves joining p and q in $U(R_0)$. Then the
function $X_{U(R_0)} : [0, \infty) \to \mathbb{R}$ is defined as follows; $X_{U(R_0)}(t)$ is the infimum
of the lengths of all piecewise smooth noncontractible closed curves R in $U(R_0)$ which
satisfies $\rho_{U(R_0)}(R, R_0) \leq t$. It is easily seen that the function $X_{U(R_0)}$ is Lipschitz
continuous. We shall classify tubes by making use of $X_{U(R_0)}$ in accordance with
[2]. The following three cases may occur for R_0-tubes;

Case 1. $X_{U(R_0)}$ does not attain $\inf \{X_{U(R_0)}(s) : s \geq 0\},$
Case 2. $X_{U(R_0)}$ attains $\inf \{X_{U(R_0)}(s) : s \geq 0\}$ for any subtube $U(R)$ in $U(R_0)$,
Case 3. $X_{U(R_0)}$ attains $\inf \{X_{U(R_0)}(s) : s \geq 0\}$ but $X_{U(R_0)}$ does not attain $\inf \{X_{U(R_0)}(s) : s \geq 0\}$ for some subtube $U(R)$ in $U(R_0)$.

Definition 2. An R_0-tube $U(R_0)$ is said to be contracting, expanding or bulging
if the function $X_{U(R_0)}$ satisfies Case 1, Case 2 or Case 3, respectively.

According to this definition, a bulging tube is essentially a contracting tube. Hence
we have only to consider the contracting or expanding tubes. And note that subtubes of a contracting (expanding) tubes are also contracting (expanding).

Definition 3. Let $U(R_0)$ be a given tube and R be a noncontractible simply
closed geodesic polygon in $U(R_0)$. If all vertical angles of R which are measured
in $U(R)$ are less (more) than π, then the geodesic polygon R is said to be convex
(concave).

Definition 4. Let an R_0-tube $U(R_0)$ and a nonnegative number t be arbitrarily
given. If a noncontractible closed curve $R(t)$ in $U(R_0)$ satisfies following two con-
ditions, then $R(t)$ is called the solution of Minimal Problem (or simply M.P.) for
Definition 5. Let the following objects be arbitrarily given; a nonnegative number \(t \), a tube \(U(R_0) \) and a ray \(\gamma : [0, \infty) \to M \) such that \(\gamma((a, \infty)) \subset U(R_0) \) and \(\gamma(a) \in R_0 (a > 0) \). If a noncontractible closed curve \(R(t) \) in \(U(R_0) \) which passes through \(\gamma(a + t) \) satisfies \(L(R(t)) = Y_{U(R_0)}(t) \), then \(R(t) \) is called the solution of Minimal Problem along \(\gamma \) (or simply \(\gamma \)-M.P.) for \(U(R_0) \) and \(t \). Here the function \(Y_{U(R_0)} : [0, \infty) \to R \) is defined as follows; \(Y_{U(R_0)} \) is the infimum of the lengths of piecewise smooth noncontractible closed curves \(R \) in \(U(R_0) \) which pass through \(\gamma(a + t) \).

As is seen in [2] and [3], two kinds of solutions surely exist and they satisfy the following facts;

Fact 1. Let \(U(R_0) \) be a contracting tube. Then the solution of M.P. \(R(t) \) for \(U(R_0) \) and \(t \geq 0 \) is either a closed geodesic or a convex geodesic loop. Hence the distance between \(R(t) \) and \(R_0 \) is equal to the distance between the vertex of \(R(t) \) and \(R_0 \) if \(R(t) \) is a convex geodesic loop. The solution of \(\gamma \)-M.P. for \(U(R_0) \) and \(t \geq 0 \) is either a closed geodesic or a geodesic loop.

Fact 2. Let \(U(R_0) \) be an expanding tube. Then the solution of M.P. \(R(t) \) for \(U(R_0) \) and \(t \geq 0 \) is either a closed geodesic or a concave geodesic polygon. And for some \(t_0 \geq 0 \), \(R(t_0) \) is the shortest noncontractible closed curve in \(U(R(t_0)) \). The solution of \(\gamma \)-M.P. for \(U(R_0) \) and \(t \) is either a closed geodesic or a geodesic polygon whose vertical angles except for the vertical angle at \(\gamma \cap R_0 \) measured in \(U(R_0) \) are more than \(\pi \).

For the solution of \(\gamma \)-M.P. we can not get the general information about the vertical angle which is on \(\gamma \). See Cohn-Vossen ([3]), Busemann ([2]) and Bleecker ([1]) for more details of the properties on the solution of M.P.

§ 2. Construction of an expanding filtration.

Throughout this section, let \(p \) be an arbitrarily fixed point of \(M \). And let \(\mathbb{N} \) denote the set of natural numbers. It is our purpose in this section to construct a family of compact domains \(\{ V_j \}_{j \in \mathbb{N}} \) with properties (1), (2) and (3);

1. \(V_j \ni p \).
2. \(V_j \subset V_{j+1} \) and \(\bigcup_{j=1}^{\infty} V_j = M \).
3. \(\partial V_j \) is a closed geodesic or a geodesic polygon which intersects any ray emanating from \(p \) at most once.

Lemma 1. If \(U(R_0) \) is a contracting tube which does not contain the point \(p \),
then there exist noncontractible closed curves $R_j, j \in \mathcal{N}$, in $U(R_0)$ such that

1. R_j is either a closed geodesic or a convex geodesic loop whose vertex lies on a fixed ray,
2. $\lim_{j \to \infty} \rho_{U(R_0)}(R_0, R_j) = \infty$,
3. R_j intersects any ray with at most one point.

Proof. Let C_0 be the length of R_0 and let γ be a ray emanating from p and diverging in $U(R_0)$. Set $X(t) := X_{U(R_0)}(t)$ and $Y(t) := Y_{U(R_0)}(t)$. Then we know the existence of a number $t_j \in (C_0 + j, \infty)$ with $Y(t_j) < Y(0) \leq C_0$. In fact, the contracting condition implies the existence of a number $s_j \in (C_0 + j, \infty)$ with $X(s_j) < X(0) \leq C_0$, $X(s_j) = L(\bar{R}(s_j))$, and $\rho_{U(R_0)}(R_0, \bar{R}(s_j)) = s_j$, where $\bar{R}(s_j)$ is the solution of M.P. for $U(R_0)$ and s_j. Let t_j be the number with $y(t_j) := \bar{R}(s_j) \cap \gamma$. Then we can get the following relations: $t_j > C_0 + j$ and $Y(t_j) \leq X(s_j) < X(0) \leq Y(0) \leq C_0$. Hence t_j is a required number.

Now let $R_j := R(t_j)$ be the solution of γ-M.P. for $U(R_0)$ and t_j, then R_j satisfies $\rho_{U(R_0)}(R_0, R_j) > j$. This implies $R_j \cap R_0 = \emptyset$. Hence R_j is either a closed geodesic or a geodesic loop. Let $s_j' \in (t_j, \infty)$ be the number such that $X(s_j') < X(t_j)$. Such a number surely exists from the contracting condition. And putting $y(t_j') := \bar{R}(s_j') \cap \gamma$, we have $X(t_j') \leq X(s_j') < X(t_j) \leq Y(t_j)$. Therefore there exists a number $u_j \in (t_j, t_j')$ such that Y is decreasing at u_j, $R(u_j)$ must not be a concave geodesic loop. Set newly $R_j := R(u_j)$, then R_j satisfies (1) and (2). Moreover it can be easily proved that any ray which is divergent in $U(R_0)$ never intersects R_j twice because of their minimality.

Lemna 2. If $U(R_0)$ is an expanding tube which does not contain the point p, then there exist noncontractible closed curves $R_j, j \in \mathcal{N}$, in $U(R_0)$ such that

1. R_j is either a closed geodesic or a concave geodesic polygon,
2. $\lim_{j \to \infty} \rho_{U(R_0)}(R_0, R_j) = \infty$,
3. R_j intersects any ray with at most one point.

Proof. From Fact 2, we know the existence of the shortest noncontractible closed curve R_t in $U(R_t)$ which is either a closed geodesic or a convex geodesic polygon in $U(R_t)$. Let σ be any ray emanating from p and diverging in $U(R_t)$. Then σ does not meet R_t at more than one point. In fact if R_t is a closed geodesic, then our assertion is trivial because of the minimality of R_t and σ. Hence we may assume that R_t is a concave geodesic polygon. Let $q_1 := \sigma(t_1)$ and $q_2 := \sigma(t_2)$, $t_1 < t_2$, be the first point of intersection and the second point of intersection of σ and R_t, respectively. Then $\sigma([t_1, t_2])$ is contained in $U(R_t)$ because of the concavity of R_t. Let R_t' be a new noncontractible geodesic polygon which is gotten by exchanging
the subarc of \(R \) between \(q_1 \) and \(q_2 \) for \(\sigma \mid [t_1, t_2] \). The \(R'_i \) is contained in \(U(R_i) \) and has the same length as that of \(R \) because of the minimality of \(\sigma \) and \(R_i \). Since \(R'_i \) has a vertex at \(q_i \), we can get a shorter noncontractible curve in \(U(R_i) \) by exchanging a subarc of \(R'_i \) for a minimal geodesic in a neighbourhood of \(q_i \). This contradicts the shortness of \(R \) in \(U(R_i) \). Consequently, \(\sigma \) does not meet \(R_i \) at more than one point. For \(j \geq 2 \), let \(R'_j \) be a noncontractible geodesic polygon such that \(\rho_{U(R_i)}(R_i, R'_j) > j \) and let \(R_j \) be the shortest noncontractible closed curve in \(U(R'_j) \). Then we can see that \(R_j \) satisfies (1), (2) and (3).

Since \(M \) is finitely connected, \(M \setminus K \) can be represented to a union of \(n \) tubes \(U_{\alpha}, \alpha = 1, 2, \ldots, n \), for a large compact set \(K \) whose boundary consists of \(n \) geodesic polygons each of which may be considered such as an \(R_\alpha \) in the preceding Lemmas. Thus Lemma 1 and Lemma 2 imply the existence of noncontractible closed curves \(R_{j\alpha}, j \in \mathbb{N} \), in each \(U_{\alpha} \). Let \(V_j \) be the compact domains in \(M \) bounded by \(\bigcup_{\alpha} R_{j\alpha} \). Then we have

1. \(V_i \ni p, V_j \subset V_{j+1} \) and \(\bigcup_{j=1}^{\infty} V_j = M \).
2. \(\partial V_j \cap U_{\alpha} (= R_{j\alpha}) \) is a noncontractible geodesic polygon in \(U_{\alpha} \) which does not intersect any ray at more than one point.

The proof of our theorem is achieved by constructing such a special family of compact domains that are chosen by taking into account of the position of rays emanating from \(p \). \(F(p) \) is by definition the set of all points on rays emanating from \(p \). And set \(D(p) := M \setminus F(p) \). \(F(p) \) is a closed set which is homeomorphic to a closed set of \(T_p M \) under \(\exp_p \). Hence \(F(p) \) contains no handles on it. To compute the total curvature of \(M \), we must compute that of \(V_j \). And it is a sum of those of \(F(p) \cap V_j \) and \(\text{cl} \ D(p) \cap V_j \), where \(\text{cl} \ D(p) \) denotes the closure of \(D(p) \). It is difficult to compute the total curvature of \(\text{cl} \ D(p) \cap V_j \) because of the existence of handles. However, we can get an information about the total curvature of \(\text{cl} \ D(p) \). Hence we must take into account of the position of rays emanating from \(p \) to relate the total curvature of \(F(p) \cap V_j \) and that of \(D(p) \setminus \text{int} V_j \). Namely we need the following lemma.

Lemma 3. There exists a family of compact domains \(\{V_j\}_{j \in \mathbb{N}} \) in \(M \) which satisfies the above properties (1), (2) and the following properties; For each \(\alpha \)

(a) if \(U_{\alpha} \) is expanding, then there is no vertices of \(\partial V_j \cap U_{\alpha} \) on the rays which are boundaries of \(D(p) \),
(b) if \(U_{\alpha} \) is contracting and if \(\text{int}(F(p) \cap U_{\alpha}) \) is not empty, then there is no vertices of \(\partial V_j \cap U_{\alpha} \) on the rays which are boundaries of \(D(p) \),
(c) if \(U_{\alpha} \) is contracting and if \(\text{int}(F(p) \cap U_{\alpha}) \) is empty, then the vertex of \(\partial V_j \cap U_{\alpha} \) lies on a ray which is a boundary of \(D(p) \) if the vertex exists.
On a relation the total curvature

Proof. (a) In the case of U_a being expanding, the construction follows from Lemma 2. Take R_o and R'_j in the proof of Lemma 2 so that their vertices do not lie on the rays which are boundaries of $D(p)$. This is possible because the rays which are boundaries of $D(p)$ are measure zero. Since R_j is a solution of M.P. for $U(R'_j), R_j$ is either a closed geodesic or a concave geodesic polygon whose vertices are on those of R'_j. In this way, we can get a family $(R_j)_{j \in \mathbb{N}}$ of closed geodesics or concave geodesic polygons without their vertices on the rays which are boundaries of $D(p)$.

(b) and (c). In the case of U_a being contracting, the construction follows from Lemma 1. Take a ray y which passes through the interior of $F(p) \cap U_a$ if it is not empty and take a ray which is a boundary of $D(p) \cap U_a$ if int $(F(p) \cap U_a)$ is empty. And applying Lemma 1, we get a family $(R_j)_{j \in \mathbb{N}}$ of closed geodesics or convex geodesic loops which has the desired properties.

§ 3. Proof of Theorems.

Let $(V_j)_{j \in \mathbb{N}}$ be the family of compact domains obtained in Lemma 3. Let \bar{D} be one of the connected components of $D(p) \setminus V_i$. And let σ and τ be the rays which are boundaries of \bar{D}. Let D be one of the connected components of $D(p) \cap V_i$, and set $F : = F' \cup \{p\}$ and $F' : = F \cap V_i$, where F' is one of the connected components $F(p) \setminus \{p\}$. Let ψ^+ and ψ^- be the vertical angles of $\partial \bar{D}$ at $\partial V_i \cap \sigma$ and $\partial V_i \cap \tau$, respectively. And let ψ^0 be a vertical angle of $\partial V_i \cap \partial \bar{D}$ measured in $\partial \bar{D}$.

Under these notations, we can prove the following Lemma by following Maeda [4].

Lemma 4. The following inequality holds good:

$$\int_D G \, dv \geq \psi^+ + \psi^- - \sum_{\partial V_i \cap \partial \bar{D}} (\pi - \psi^0),$$

where the summation is taken over all vertices of $\partial V_i \cap \partial \bar{D}$. And the equality holds if the Gaussian curvature G is nonpositive.

Proof. Let $E_j : = \partial V_j \cap \partial D$. $A^+_{j\theta}$ and $A^-_{j\theta}$ are by definition the set of all initial tangent vectors $\xi(0)$ of the shortest geodesic γ connecting between p and q of E_j which satisfy $\xi(\gamma(0), \theta(0)) \leq \theta$ and $\xi(\gamma(t), \theta(t)) \leq \theta$, respectively. And let $A^+_{j\tau}$ and $A^-_{j\tau}$ be the set of all unit vectors v which satisfy $\xi(v, \theta(0)) \leq \theta$ and $\xi(v, \theta(t)) \leq \theta$, respectively. Moreover define the number $\theta(j)$ for each natural number j by

$$\theta(j) : = \inf \{ \theta \in \mathbb{R} : \text{there exists a geodesic } \gamma \text{ in } G(p,q)$$

such that $\gamma(0) \in A^+_{j\theta} \cup A^-_{j\theta}$ for any $q \in E_j \}$.

Here $G(p,q)$ denotes the set of all the shortest geodesic connections from p to q. We assert that $\theta(j)$ tends to zero as j goes to infinity. In fact, if $\theta(j)$ does not tend to zero, then there is a constant $C_o>0$ and a subsequence $\{j_i\} \subset \{j\}$ such that $\theta(j_i) \geq C_o$ for any $j_i \in \{j\}$. Hence for any j_i there is a point q_{j_i} in E_{j_i} and $\overline{y}_{j_i} \in G(p,q_{j_i})$ such that $\overline{y}_{j_i}(0)$ does not belong to $A_{\delta_y,1/2}\cup A_{\delta_y,1/2}$. From the sequence $\{\overline{y}_{j_i}(0)\}$, we can choose a convergent subsequence $\{\overline{y}_{j_i}(0)\}$. Let $v_o \in S_p M$ be the limit vector of $\{\overline{y}_{j_i}(0)\}$, then from the construction v_o is not contained in $A_{\delta_y,1/2}\cup A_{\delta_y,1/2}$ and the geodesic $\gamma_o : [0, \infty) \to M$ defined by $\gamma_o(t) : = \exp_p tv_o$ is a ray. This contradicts the fact that γ_o belongs to the domain which no ray passes through. Let the set E_1 and E_2 be defined as follows:

$$E_1 : = \{q \in E_f ; \text{ there exists a geodesic } \gamma \in G(p,q) \text{ such that } \gamma(0) \in A_{\delta_y,1/2}\}.$$

$$E_2 : = \{q \in E_f ; \text{ there exists a geodesic } \gamma \in G(p,q) \text{ such that } \gamma(0) \in A_{\delta_y,1/2}.\}$$

Then it is easily seen that $E_1 \cup E_2$ and $E_1 \setminus E_2$ are non-empty closed sets in E_f from the connectivity of the cut point. The connectivity of E_f implies the existence of a point $q \in E_1 \cap E_2$ such that the initial vectors $\overline{y}_1(0)$ and $\overline{y}_2(0)$ of minimal geodesics between p and q which belong to $A_{\delta_y,1}$ and $A_{\delta_y,1}$ respectively. Therefore γ_1 tends to σ and γ_2 tends to τ as j goes to infinity. Let \overline{D}_f be the subset of \overline{D} bounded by γ_1, γ_2 and ∂V_i. Then we can get the following inequality from Theorem of Gauss-Bonnet,

$$\int_{\partial \overline{D}_f} G \, dv = \lim_{j \to \infty} \int_{\partial \overline{D}_f} G \, dv$$

$$= \lim_{j \to \infty} [2\pi \chi(\overline{D}_f) - (\pi - \Psi_j) - (\pi - \Psi_j) - (\pi - \Psi_j) - \sum_{\overline{D}_f} (\pi - \theta^{\partial \overline{D}_f})$$

$$\geq \Psi_j^+ + \Psi_j^- - \pi - \sum_{\overline{D}_f} (\pi - \theta^{\partial \overline{D}_f}),$$

where Ψ_j and Ψ_j are the vertical angles of $\partial \overline{D}_f$ at $\partial V_1 \cap \gamma_1$ and $\partial V_i \cap \gamma_2$, respectively. And $\theta^{\partial \overline{D}_f}$ is a vertical angle of $\partial V_i \cap \partial \overline{D}_f$ measured in $\partial \overline{D}_f$ and $\varphi_j = \theta^i(\gamma_j(t_j), \gamma_j(t_j))$, where t_j is the distance from p to q_j. Thus the inequality is verified.

Next, consider the case that the Gaussian curvature of M is nonpositive. Let $p_j : = \partial V_i \cap \gamma_j$ and $r_j : = \partial V_i \cap \gamma_j$. And let (p_j, q_j, r_j) be the geodesic triangle determined by the three shortest geodesic segments. Let $c : [0,1] \to M$ be the shortest geodesic segment with $c(0) = p_j$ and $c(1) = r_j$. Since (p_j, q_j, r_j) is contractible, we can consider the homotopy $H : [0,1] \times [0,1] \to M$ such that for any $s \in [0,1], \ H(0,s) = c(s), \ H(1,s) = q_j$ and $H([0,1],s) = \text{the shortest geodesic segment between } c(s) \text{ and } q_j$. Let $(\tilde{p}_j, \tilde{q}_j, \tilde{r}_j)$ be a lift of (p_j, q_j, r_j) in the universal Riemannian covering space \tilde{M} of M which is gotten by making use of the homotopy H and let $\tilde{\gamma}_j$ be the vertical angle of $(\tilde{p}_j, \tilde{q}_j, \tilde{r}_j)$ at \tilde{q}_j. Then from the construction we have $\varphi_j = \tilde{\gamma}_j$ and it is seen that $\varphi_j(\tilde{p}_j, \tilde{q}_j) \to \infty, \varphi_j(\tilde{r}_j, \tilde{q}_j) \to \infty$ and $\varphi_j(\tilde{p}_j, \tilde{r}_j) = C$ as $j \to \infty$, where C is a constant.
Hence making use of the law of cosines, we can see that \(\varphi_j \to 0 \) as \(j \to \infty \). Therefore the equality holds when Gaussian curvature of \(M \) is nonpositive.

Hereafter let \(D^1 \) and \(D^2 \) be connected components of \(D(p) \setminus V \) and \(D(p) \cap V \), respectively. And let \(F^{1*} \) be a connected component of \((F(p) \cap V) \setminus \{p\} \) and set \(F^2 := F^{1*} \cup \{p\} \). Then we can get the following Proposition which implies our theorem.

Proposition 5. The following inequality holds good;

\[
\text{measure } A(p) \geq 2\pi \chi(M) - \int_{\partial V \setminus \{p\}} G \, dv
\]

at any point \(p \) of \(M \). And the equality holds when Gaussian curvature of \(M \) is nonpositive.

Proof. Let \(F^1 \) be the one such that \(\text{int} \, F^1 \neq \emptyset \). Since \(E^1 \) is diffeomorphic to a polygon in \(T_p M \), we have

\[
\int_{E^1} G \, dv = a^* + (\Psi^1)^* + (\Psi^1)^{-} - \pi + \sum_{a \in \partial E^1} (\pi - \theta^a) \quad \cdots (\ast)
\]

where \(a^* \) is a vertical of \(E^1 \) at \(p \), \((\Psi^1)^* \) and \((\Psi^1)^{-} \) are the vertical angles of \(E^1 \) formed with \(\partial V \), and the rays which are the boundaries of \(F^1 \) and \(\theta^a \) is a vertical angle of \(\partial V \cap F^1 \) measured in \(M \setminus V \). From our construction, there is no vertex of \(\partial V \) on the rays which are the boundaries of \(F^2 \)'s. Hence we can get the following inequality by using (\ast), Lemma 4 and the fact that vertically opposite angles are identical;

\[
\int_{V^1} G \, dv = \sum_{a \in \partial E^1} \int_{E^1} G \, dv + \sum_{a \in \partial E^2} \int_{E^2} G \, dv
\]

\[
= \sum_{a \in \partial E^1} \left[a^* + (\Psi^1)^* + (\Psi^1)^{-} - \pi + \sum_{a \in \partial E^1} (\pi - \theta^a) \right] + \sum_{a \in \partial E^2} \int_{E^2} G \, dv
\]

\[
\leq \text{measure } A(p) + \sum_{a \in \partial V \setminus \{p\}} (\pi - \theta^a) + \int_{\partial V \setminus \{p\}} G \, dv.
\]

On the other hand, we have

\[
\int_{V^1} G \, dv = 2\pi \chi(M) + \sum_{a \in \partial V} (\pi - \theta^a).
\]

Hence we get the desired inequality and the equality holds when Gaussian curvature of \(M \) is nonpositive.

Now Theorem 1 and 2 are the direct consequences of Proposition 5.
References

Institute of Mathematics
University of Tsukuba
Ibaraki, 305 Japan