REFLEXIVE MODULES OVER QF-3' RINGS*

By

José L. GÓMEZ PARDO and Pedro A. GUIL ASENSIO

Abstract. We characterize reflexive modules over QF-3' rings using a linear compactness condition relative to the Lambek torsion theory, and we also give a necessary and sufficient condition for a left QF-3' maximal quotient ring to be right QF-3'.

1. Introduction.

The problem of finding the reflexive modules over generalizations of QF rings (and, in particular, over QF-3 rings) has a long tradition. One of the first contributions is due to Morita [10], who determined the finitely generated reflexive modules over a right artinian QF-3 ring and, some years later, Masaike [8] extended this result by giving a characterization of reflexive modules over QF-3 rings with ACC (or DCC) on left annihilators. On the other hand, Müller [11] proved that if rU_s is a bimodule that induces a Morita duality, then the U-reflexive modules are precisely the linearly compact modules and this applies, in particular, to the case in which $R=U$ is a PF ring. Recently, Masaike [9], extended this to QF-3 rings without chain conditions by showing that the reflexive modules over these rings are the modules of R-dominant dimension ≥ 2 that satisfy a suitable linear compactness condition.

Recall that a ring is left QF-3 when it has a minimal faithful left module and left QF-3' when the injective envelope $E(R)$ is torsionless. When R is left and right QF-3', we will simply say that it is a QF-3' ring (and a similar convention will be used for other classes of rings). QF-3' rings have been studied by a number of authors and their relation with Morita duality and the properties of the double dual functors has been analyzed by Colby and Fuller in a series of papers (see, e.g., [1] and its references). One of the aims of this paper is to show that a characterization of reflexive modules similar to Masaike's one may be given for the much larger class of QF-3' rings. In fact,

* Wark partially supported by the DGICYT (PB93-0515, Spain). The first author was also partially supported by the European Community (Contract CHRX-CT93-0091). Received November 22, 1993. Revised December 7, 1994.
we obtain a more general module-theoretic result that embraces also the theorem of Müller mentioned above. As a further application of the techniques developed here, we study the interplay between R being right QF-3' and linear compactness conditions on the left, that leads to a necessary and sufficient condition for a left QF-3' ring to be right QF-3', and to a new one-sided characterization of QF-3 maximal quotient rings.

Throughout this paper, R denotes an associative ring with identity and R-Mod (resp. Mod-R) the category of left (resp. right) R-modules. If X and M are left R-modules, X is said to be finitely M-generated when it is a quotient of a finite direct sum of copies of M and X has M-dominant dimension \(\geq 2 \) (M-dom. dim $X \geq 2$) when there exists an exact sequence \(0 \to X \to Y \to Z \), whith Y and Z isomorphic to direct products of copies of X.

We will call \mathcal{E}_M to the localizing subcategory of R-Mod cogenerated by the injective envelope $E(M)$ of M. The corresponding quotient category of R-Mod will be denoted by R-Mod/\mathcal{E}_M and its objects are precisely the modules of $E(M)$-dom. dim ≥ 2. The most important case of this construction arises for $M=\Omega R$, and then $\mathcal{E}_M=\mathcal{L}$ is just the Lambek (or dense) localizing subcategory of R-Mod (see [15]).

2. Reflexive modules

We will fix a module $M \in R$-Mod and call $S=\text{End}_R(M)$. The M-dual functors $\text{Hom}_R(_, M)$ and $\text{Hom}_S(_, M)$ will be denoted by $(_)^*$, and their composition in either order by $(_)^{**}$. For each $X \in R$-Mod there is a canonical (evaluation) morphism $\sigma_X : X \to X^{**}$; σ_X is a monomorphism precisely when X is M-cogenerated and when σ_X is an isomorphism, X is said to be M-reflexive (or just reflexive if we take $M=\Omega R$).

We are interested in characterizing reflexive modules and, not surprisingly, a certain form of linear compactness plays a key role in this characterization. Recall from [3] that an object of a Grothendieck category \mathcal{A} is said to be linearly compact when, for each inverse system \(\{ p_i : X_i \to X \} \) in \mathcal{A} such that the p_i are epimorphisms, the induced morphism $\varinjlim p_i : X \to \varinjlim X_i$ is also an epimorphism (this just gives ordinary linear compactness when $\mathcal{A}=R$-Mod). We will also use the following related concept (introduced by Hoshino and Takashima in [5]): An R-module X will be called \mathcal{E}_M-linearly compact when, for each inverse system \(\{ p_i : X_i \to X \} \) in R-Mod such that the X_i are M-cogenerated and $\text{Coker} p_i \in \mathcal{E}_M$, $\text{Coker} (\varinjlim p_i) \in \mathcal{E}_M$. It is not difficult to show that when every finitely M-generated submodule of $E(M)$ is M-cogenerated and M is an object of R-
Reflexive modules over QF-3' rings

Mod/\mathcal{T}_M (M rationally complete), then M is \mathcal{T}_M-linearly compact if and only if it is linearly compact in the category R-Mod/\mathcal{T}_M. When a module is \mathcal{L}-linearly compact, we will also say that it is Lambek linearly compact.

\mathcal{T}_M-linearly compact modules have the following useful property:

PROPOSITION 2.1. Let M be a left R-module such that each finitely M-generated submodule of E(M) is M-cogenerated. Then, for each \mathcal{T}_M-linearly compact R-module X, Coker \sigma_X \in \mathcal{T}_M.

PROOF. The proof is essentially the same of [5, Corollary 2.2], where this is shown in the case M=R. \Box

LEMMA 2.2. Let X \in R-Mod, Y an M-reflexive module, and I a set. If f : X \rightarrow Y^I is a homomorphism, then there exists a homomorphism g : X^{**} \rightarrow Y^I such that g \circ \sigma_X = f.

PROOF. Let, for each i \in I, p_i : Y^I \rightarrow Y be the canonical projection and consider the homomorphism g_i := \sigma_Y^{-1}(p_i \circ f)^{**} : X^{**} \rightarrow Y. Since \sigma_Y^{-1} \circ p_i \circ f = (p_i \circ f)^{**} \circ \sigma_X we see that p_i \circ f = \sigma_Y^{-1}(p_i \circ f)^{**} \circ \sigma_X = g_i \circ \sigma_X for each i \in I and so, calling g : X^{**} \rightarrow Y^I to the unique homomorphism such that p_i \circ g = g_i \forall i \in I, we see that p_i \circ f = p_i \circ g \circ \sigma_X \forall i \in I and hence that f = g \circ \sigma_X. \Box

PROPOSITION 2.3. Let M \in R-Mod be such that every finitely M-generated submodule of E(M) is M-cogenerated and let X \in R-Mod a \mathcal{T}_M-linearly compact module. Then X is M-reflexive if and only if M-dom. dim X \geq 2.

PROOF. The necessity is clear, for if X is M-reflexive and S(c) \rightarrow S(t) \rightarrow X^* \rightarrow 0 is a free presentation of X* in Mod-S, then applying ()^* we get an exact sequence in R-Mod: 0 \rightarrow X \oplus X^{**} \rightarrow M^t \rightarrow M' and so M-dom. dim X \geq 2.

To prove the sufficiency, assume that X is \mathcal{T}_M-linearly compact and that there exists an exact sequence in R-Mod: 0 \rightarrow X \rightarrow X^{**} \rightarrow M^t \rightarrow M'. By Proposition 2.1, Coker \sigma_X \in \mathcal{T}_M and, as X^{**} is \mathcal{T}_M-torsionfree, it is clear that \sigma_X is an essential monomorphism. On the other hand, by Lemma 2.2 we see that there exists a homomorphism g : X^{**} \rightarrow M such that u = g \circ \sigma_X and, as \sigma_X is essential, g is a monomorphism. Therefore, Coker \sigma_X is a \mathcal{T}_M-torsion module which is isomorphic to a submodule of the M-cogenerated module Coker u and so Coker \sigma_X = 0. Thus \sigma_X is an isomorphism and X is M-reflexive. \Box

In the case M=R, the preceding result has been observed by Hoshino and
Jose L. Gomez Pardo and Pedro A. Guil Asensio

Takashima in [5, Remark, p. 9]. In the following proposition we denote by \(\mathcal{D}_M \) the localizing subcategory of Mod-\(S \) cogenerated by \(E(M_S) \).

Proposition 2.4. Let \(M \subseteq R\text{-Mod} \). Then \(E(RM) \) is \(M \)-cogenerated if and only if, for every monomorphism \(g \) of \(R\text{-Mod} \), \(\text{Coker } g^* \subseteq \mathcal{D}_M \).

Proof. The proof can be easily adapted from that of [4, Theorem 1.1], where a similar result is proved in the case \(M = R \). \(\square \)

We can now give our main result characterizing \(M \)-reflexive modules. Recall that a bimodule \(_R M_S \) is called faithfully balanced when \(R = \text{End}(M_S) \) and \(S = \text{End}(_R M) \).

Theorem 2.5. Let \(_R M_S \) be a faithfully balanced bimodule such that both \(E(RM) \) and \(E(M_S) \) are \(M \)-cogenerated, and let \(X \subseteq R\text{-Mod} \). Then \(X \) is \(M \)-reflexive if and only if it is \(\mathcal{D}_M \)-linearly compact and \(M \)-dom. \(\dim X \geq 2 \).

Proof. Applying Proposition 2.3, the only thing that remains to be proved is that any \(M \)-reflexive left \(R \)-module is \(\mathcal{D}_M \)-linearly compact. Assume then that \(X \) is \(M \)-reflexive and let \(\{ p_i : X_i \rightarrow X \}_I \) be an inverse system with \(X_i \) \(M \)-cogenerated and \(\text{Coker } p_i \subseteq \mathcal{D}_M \), for each \(i \in I \). Since \(\sigma_X \) is an isomorphism, we can identify the inverse system \(\{ p_i^* \}_I \) with the inverse system \(\{ \sigma_{X_i}^* p_i \}_I \) and we have:

\[
\lim \sigma_{X_i} \lim p_i = \lim p_i^* = (\lim p_i^*)^*.
\]

Since \(\text{Coker } p_i \subseteq \mathcal{D}_M \), the \(p_i^* \) are monomorphisms and so is \(\lim p_i^* \). Now, since \(E(M_S) \) is \(M \)-cogenerated and \(R = \text{End}(M_S) \), it follows from Proposition 2.4 that \(\text{Coker } (\lim p_i^*) \subseteq \mathcal{D}_M \). But, on the other hand, as \(\lim \) is a left exact functor, we have that \(\lim \sigma_{X_i} \) is a monomorphism and so \(\text{Coker } (\lim p_i) \subseteq \text{Coker } (\lim p_i^*) \). Thus \(\text{Coker } (\lim p_i) \subseteq \mathcal{D}_M \) and so \(X \) is \(\mathcal{D}_M \)-linearly compact. \(\square \)

Specializing Theorem 2.5 to the case \(M = R \), we obtain the promised characterization of reflexive modules over \(QF-3' \) rings.

Corollary 2.6. Let \(R \) be a \(QF-3' \) ring and \(X \subseteq R\text{-Mod} \). Then \(X \) is reflexive if and only if it is Lambek linearly compact and \(R \)-dom. \(\dim X \geq 2 \).

As we have remarked after Proposition 2.3, the "if" part of Corollary 2.6 has been proved by Hoshino and Takashima in [5], assuming only that every finitely generated submodule of \(E(R_R) \) is torsionless. The "only if" part, however, does not hold even in the case that \(R \) has this property on both sides.
An easy example is the following. Let $R = \mathbb{Z}$ be the ring of rational integers and X a countable direct sum of copies of πR. Then it is clear that X is not Lambek linearly compact, but X is reflexive by a theorem of E. Specker [14].

3. Right QF-3' rings.

It is easy to infer from the proof of Theorem 2.5 that a right QF-3' ring is Lambek linearly compact on the left, and now we want to go in the opposite direction and, similarly to what is done in [9, Theorem 5] (see also [4, Theorem 2.2]) to give conditions on the left for a left QF-3' ring to be QF-3' (on both sides). Since the property of being QF-3' does not pass well from the maximal quotient ring of R to R, we will assume that R is, furthermore, a left maximal quotient ring. We will also need a stronger linear compactness condition that appeared in [3]. Assuming that $R \in R$-Mod/\mathcal{L}, let $\sigma_L^\infty[R]$ be the full subcategory of R-Mod/\mathcal{L} consisting of the subobjects of quotients of finite direct sums of copies of R in this category (this is just the smallest finitely closed, i.e., closed under subobjects, quotient objects, and finite direct sums-subcategory of R-Mod/\mathcal{L} containing R). We will say that $\sigma_L^\infty[R]$ is a linearly compact subcategory of R-Mod/\mathcal{L} if, for each inverse system $\{p_t : X_t \to Y_t\}_t$ in R-Mod/\mathcal{L} with the p_t epimorphisms and $X_t \in \sigma_L^\infty[R]$, the morphism $\lim p_t$ is also an epimorphism of R-Mod/\mathcal{L}.

Theorem 3.1. Let R be a left maximal quotient ring. Then the following statements hold:

i) If $\sigma_L^\infty[R]$ is a linearly compact subcategory of R-Mod/\mathcal{L}, then R is right QF-3' if and only if every finitely generated submodule of $E(RR)$ is torsionless.

ii) If every finitely generated submodule of $E(RR)$ is torsionless, then R is right QF-3' if and only if $\sigma_L^\infty[R]$ is a linearly compact subcategory of R-Mod/\mathcal{L}.

Proof. i) Assume that each finitely generated submodule of $E(RR)$ is torsionless. Then, using Proposition 2.4 and [4, Theorem 1.1], it is enough to prove that if $j : X \to Y$ is a monomorphism in Mod-R, then Coker $j^* \in \mathcal{L}$, assuming that the analogous property holds for monomorphisms in Mod-R that have finitely generated codomain. Thus, let $j : X \to Y$ be a monomorphism of Mod-R and write $Y = \lim Y_i$, where $\{Y_i\}_i$ is the direct system of all the finitely generated submodules of Y. For each $i \in I$, set $X_i := X_i \cap Y_i$, with inclusions $j_i : X_i \to Y_i$. Using A5 we see that $j = \lim j_i$ and, taking R-duals, that $j^* = (\lim j_i)^* = \lim j_i^*$. Since the Y_i are finitely generated right R-modules, we have that Coker $j_i^* \in \mathcal{L}$ for each $i \in I$ and, since R is a maximal quotient ring, the

Reflexive modules over QF-3' rings
X^\dagger and Y^\dagger are objects of R-Mod/\mathcal{L}, so that we have an inverse system of epimorphisms $j^\dagger: Y^\dagger \to X^\dagger$ in R-Mod/\mathcal{L}, with $Y^\dagger \in \sigma_{\mathcal{L}}^r[R]$. Now, as $\sigma_{\mathcal{L}}^r[R]$ is a linearly compact subcategory of R-Mod/\mathcal{L}, we see that $j^\dagger = \lim j^\dagger$ is an epimorphism of R-Mod/\mathcal{L} and so $\text{Coker } j^\dagger \in \mathcal{L}$, completing the proof of i).

ii) Assume first that every finitely generated submodule of $E_\lambda(R)$ is torsionless and R is right QF-3'. Since R is, furthermore, a left maximal quotient ring, it follows from [4, Theorem 1.5] that every object of $\sigma_{\mathcal{L}}^r[R]$ is reflexive. Thus if we have an inverse system of epimorphisms $\{p_i: X_1 \to X_i\}$ in R-Mod/\mathcal{L} with $X_i \in \sigma_{\mathcal{L}}^r[R]$, we may identify each p_i with $p_i^\ast\ast$ and we have $\lim p_i = (\lim p_i)^\ast\ast$. Since $\text{Coker } p_i \in \mathcal{L}$, each $p_i^\ast\ast$ is a monomorphism in $\text{Mod}-R$, and hence so is $\lim p_i$. Now, as R is right QF-3', we have by Proposition 2.4 $\text{Coker } (\lim p_i) \in \mathcal{L}$ and so $\sigma_{\mathcal{L}}^r[R]$ is linearly compact. Finally, assume that every finitely generated submodule of $E_\lambda(R)$ is torsionless and $\sigma_{\mathcal{L}}^r[R]$ is linearly compact. Then R is a linearly compact object of R-Mod/\mathcal{L} and by [4, Theorem 2.2], we have that every finitely generated submodule of $E_\lambda(R)$ is torsionless, so that, applying i) we see that R is right QF-3'. □

Recall that a right R-module P_R is called dominant if it is a finitely generated faithful projective module such that if $T = \text{End}(P_R)$, then τP cogenerates all the simple left T-modules [7]. Then, assuming again that R is a left maximal quotient ring, the existence of a dominant right module is equivalent to R-Mod/\mathcal{L} being a module category by [7]. As it is well known, the left minimal faithful module over a left QF-3 ring is dominant [13] and so we may use the preceding theorem to characterize QF-3 maximal quotient rings. This is an important class of rings for, according to the Ringel-Tachikawa theorem [12], they correspond to Morita dualities. We next show that QF-3 maximal quotient rings can be characterized by conditions on the left that are similar to, but weaker than, those given by Masaike [9, Theorem 5] for QF-3 rings that are not necessarily maximal quotient rings.

Corollary 3.2. Let R be a left maximal quotient ring. Then R is QF-3 if and only if the following conditions hold:

i) R is left QF-3'

ii) R is left Lambek linearly compact

iii) R-Mod/\mathcal{L} is a module category (equivalently, R has a dominant right module).

Proof. It is clear from what we have already said that if R is QF-3, then all three conditions above hold. Conversely, if conditions ii) and iii) hold, then
it follows from [6, Theorem 7.1] that \(\sigma L_2(R) \) is a linearly compact subcategory of \(R\text{-Mod}/\mathcal{L} \) and then, if i) also holds, we see from Theorem 3.1 that \(R \) is a \(QF-3' \) ring. Now, using [2, Corollary 6], we see that \(R \) is a \(QF-3 \) ring. □

Remarks.

i) The hypothesis that \(R \) is a left maximal quotient ring cannot be dropped from Theorem 3.1 and Corollary 3.2. Indeed, the ring \(R = \begin{pmatrix} Z & Q \\ 0 & Q \end{pmatrix} \)
satisfies i), ii) and iii) of Corollary 3.2 but is neither \(QF-3 \) nor right \(QF-3' \).

ii) Assume that \(R \) is a left maximal quotient ring which is linearly compact as an object of \(R\text{-Mod}/\mathcal{L} \). Then, a sufficient condition for \(\sigma L_2(R) \) to be a linearly compact subcategory of \(R\text{-Mod}/\mathcal{L} \) is that \(R\text{-Mod}/\mathcal{L} \) has a projective generator, as can be seen in the proof of [3, Corollary 7]. Thus an argument similar to the one used in the proof of Corollary 3.2 gives that if \(R \) is a left maximal quotient ring such that every finitely generated submodule of \(E(pR) \) is torsionless, \(R\text{-Mod}/\mathcal{L} \) has a projective generator, and \(R \) is Lambek linearly compact, then \(R \) is right \(QF-3' \).

Acknowledgements.

We thank the referee for pointing out that the “if” part of Corollary 2.6 was already contained in [5], and also for suggesting the example given after this corollary.

References

José L. Gómez Pardo
Departamento de Algebra
Universidade de Santiago
15771 Santiago de Compostela, Spain

Pedro A. Guil Asensio
Departamento de Matemáticas
Universidad de Murcia
30071 Murcia, Spain