A GEOMETRIC MEANING OF THE RANK OF HERMITIAN SYMMETRIC SPACES

Dedicated to Professor I. Mogi on his 60th birthday

By

Koichi Ogiue and Ryoichi Takagi

§ 1. Introduction.

Let \(M \) be a Kaehler manifold and denote by \(H \) the holomorphic sectional curvature of \(M \). We say that \(H \) is \(\delta \)-pinched if there exists a positive constant \(c \) such that

\[\delta c \leq H \leq c. \]

In this paper, we shall prove the following

THEOREM. Let \(M \) be a compact irreducible Hermitian symmetric space of rank \(r \). Then the holomorphic sectional curvature of \(M \) is \(\frac{1}{r} \)-pinched.

Although it is possible to verify the result for each Hermitian symmetric space one by one by using the curvature tensors given by E. Calabi and E. Vesentini [1], we shall given here a systematic proof.

§ 2. Preliminaries.

We begin by constructing a compact Hermitian symmetric space. For details, see e.g. [3].

Let \(\mathfrak{g} \) be a complex simple Lie algebra and \(\mathfrak{h} \) a Cartan subalgebra of \(\mathfrak{g} \). The dual space of the complex vector space \(\mathfrak{h} \) is denoted by \(\mathfrak{h}^* \). An element \(\alpha \) of \(\mathfrak{h}^* \) is called a root of \((\mathfrak{g}, \mathfrak{h})\) if there exists a non-zero vector \(X_\alpha \) in \(\mathfrak{g} \) such that

\[[H, X_\alpha] = \alpha(H) X_\alpha \quad \text{for} \quad H \in \mathfrak{h}. \]

We denote by \(\Delta \) the set of all non-zero roots of \((\mathfrak{g}, \mathfrak{h})\) and put \(\mathfrak{g}_\alpha = CX_\alpha \). Then we have a direct sum decomposition:

\[\mathfrak{g} = \mathfrak{h} + \sum_{\alpha \in \Delta} \mathfrak{g}_\alpha. \]

Since the Killing form \(K \) of \(\mathfrak{g} \) is non-degenerate on \(\mathfrak{h} \times \mathfrak{h} \), for each \(\xi \in \mathfrak{h}^* \) we can

Received July 21, 1980.
define \(H_\xi \in \mathfrak{h} \) by
\[
K(H, H_\xi) = \xi(H) \quad \text{for} \quad H \in \mathfrak{h}.
\]
Put \(\mathfrak{h}_0 = \sum_{\alpha \in \Delta} R\mathfrak{h}_\alpha \). Then the dual space \(\mathfrak{h}_0^* \) of \(\mathfrak{h}_0 \) can be considered as a real subspace of \(\mathfrak{h}_0^* \). Define an inner product \((,) \) on \(\mathfrak{h}_0^* \) by
\[
(\xi, \eta) = K(H_\xi, H_\eta) \quad \text{for} \quad \xi, \eta \in \mathfrak{h}_0^*.
\]
For each \(\alpha \in \Delta \) we choose a basis \(E_\alpha \) so that \(\{H_\alpha \ (j=1, \ldots, 1), E_\alpha \ (\alpha \in \Delta)\} \)
forms Weyl's canonical basis of \(\mathfrak{g} \). Then we have \([E_\alpha, E_{-\alpha}] = H_\alpha\), and a Lie algebra \(\mathfrak{g} \) defined as follows is a compact real form of \(\mathfrak{g}^* \):
\[
\mathfrak{g} = \sum_{\alpha \in \Delta} R\sqrt{-1}H_\alpha + \sum_{\alpha \in \Delta} R(E_\alpha + E_{-\alpha}) + \sum_{\alpha \in \Delta} R\sqrt{-1}(E_\alpha - E_{-\alpha}).
\]
We denote by \(\{\alpha_i, \ldots, \alpha_l\} \) the fundamental root system of \(\mathfrak{g} \) with respect to a linear ordering in \(\mathfrak{g}_0^* \) (so that \(\dim \mathfrak{c}_0 = l \)).

Now we fix a simple root \(\alpha_i \) \((i=1, \ldots, l) \). For simplicity, we put \(A_\alpha = E_\alpha + E_{-\alpha} \) and \(B_\alpha = \sqrt{-1}(E_\alpha - E_{-\alpha}) \). We define a subset \(\Delta_i \) of \(\Delta \), a subalgebra \(\mathfrak{t}_i \) of \(\mathfrak{g} \) and a subspace \(\mathfrak{m}_i \) of \(\mathfrak{g} \) by
\[
\Delta_i = \{\alpha = \sum_{i} m_\alpha \alpha_i; \ m_i \geq 1\},
\]
\[
\mathfrak{t}_i = \sum_{\alpha \in \Delta_i} R\sqrt{-1}H_\alpha + \sum_{\alpha \in \Delta_i} (RA_\alpha + RB_\alpha),
\]
\[
\mathfrak{m}_i = \sum_{\alpha \in \Delta_i} (RA_\alpha + RB_\alpha),
\]
where \(\Delta^+ \) denotes the set of all positive roots.

Let \(G \) be the simply connected Lie group with Lie algebra \(\mathfrak{g} \) and \(K_i \) the connected Lie subgroup of \(G \) with algebra \(\mathfrak{t}_i \). Let \(\pi \) denote the natural projection of \(G \) onto a compact homogeneous space \(M_i = G/K_i \) and put \(o = \pi(K_i) \). Then we can identify the vector space \(\mathfrak{m}_i \) with the tangent space \(T_o(M_i) \) of \(M_i \) at \(o \). It is easily seen that there exists a unique \(G \)-invariant Riemannian metric \(g \) on \(M_i \) such that \(g = -K|m_i| \times m_i \) at \(o \). It is known that a compact Riemannian homogeneous space \(M_i \) obtained as above from a pair \((\mathfrak{g}, \alpha_i) \) of a complex simple Lie algebra \(\mathfrak{g} \) and a simple root \(\alpha_i \) becomes a Hermitian symmetric space if and only if the coefficient \(m_i \) of \(\alpha_i \) in every \(\alpha \in \Delta_i \) is equal to 1 and the center \(\mathfrak{g}(\mathfrak{t}_i) \) of \(\mathfrak{t}_i \) is 1-dimensional, and that every compact irreducible Hermitian symmetric space can be obtained in this way.

Hereafter we assume that \(M_i \) is a Hermitian symmetric space. Then it is known that there exists an element \(Z_o \) in \(\mathbb{g}(\mathfrak{t}_i) \) such that the complex structure of \(M_i \) at \(o \) is given by \(I = \text{ad} Z_o |_{\mathfrak{m}_i} \) and \(IA_\alpha = B_\alpha, IB_\alpha = -A_\alpha \) for \(\alpha \in \Delta_i \). Since \(Z_o \in \mathfrak{g}(\mathfrak{t}_i) \), we have
A geometric meaning of the rank of Hermitian symmetric spaces

(1) \(I \cdot \text{Ad}(k) = \text{Ad}(k) \cdot I \quad \text{for} \quad k \in K_t \).

Let \(\theta^a, \theta^{-a} \) be the dual forms of \(E_a, E_{-a} \). Then we have at \(a \)

(2) \(g = 2 \sum_{a \in d_1} \theta^a \theta^{-a} \),

since \(K(E_a, E_{-a}) = -1 \). The norm of \(X \in \mathfrak{m}_t \) is denoted by \(|X| \).

§ 3. Proof of Theorem.

First we state a fundamental lemma without proof.

Lemma (E. Cartan). Let \(a \) and \(a' \) be two maximal abelian subspaces of \(\mathfrak{m}_t \). Then

(i) there exists an element \(k \) in \(K_t \) such that \(\text{Ad}(k)a = a' \), and

(ii) \(\mathfrak{m}_t = \bigcup_{k \in K_t} \text{Ad}(k)a \).

The rank \(r \) of \(M_t \) as a symmetric space is, by definition, the common dimension of maximal abelian subspaces of \(\mathfrak{m}_t \). By a theorem of Harish-Chandra ([2], Lemma 8), there exist \(r \) roots \(\delta_1, \ldots, \delta_r \) in \(\Delta_t \) such that none of \(\delta_i \pm \delta_j \) belong to \(\Delta \), which are called strongly orthogonal roots. Thus the space \(\mathfrak{a}_a \) spanned by \(A_{\delta_1}, \ldots, A_{\delta_r} \) over \(R \) is a maximal abelian subspace of \(\mathfrak{m}_t \). We denote by \(R \) the curvature tensor of \((M_t, g) \). Then we have the following formula due to E. Cartan:

\[
R(X, Y)Z = -[\lbrack X, Y \rbrack, Z] \quad \text{for} \quad X, Y, Z \in \mathfrak{m}_t.
\]

Put \(S = \{ X \in \mathfrak{m}_t \mid |X| = 1 \} \). Then, for \(X \in S \), the holomorphic sectional curvature \(H(X) \) of the plane section spanned by \(X \) and \(IX \) is given by

(3) \[
H(X) = g(R(X, IX)IX, X)
= -g([\lbrack X, IX \rbrack, IX], X)
= |X, IX|^2.
\]

We assert that the range of the function \(H \) on \(S \) coincides with that of \(H \) on \(S \cap \mathfrak{a}_a \). In fact, Lemma implies that, for every \(H \in S \), there exists an element \(k \) in \(K_t \) such that \(\text{Ad}(k)X \in S \cap \mathfrak{a}_a \). Therefore from (1) and (3) we have

\[
H(\text{Ad}(k)X) = |\lbrack \text{Ad}(k)X, I \text{Ad}(k)X \rbrack|^2
= |\lbrack \text{Ad}(k)X, \text{Ad}(k)IX \rbrack|^2
= |\text{Ad}(k)[X, IX]|^2
= |X, IX|^2.
\]
which proves our assertion.

Let \(X = \sum_{j=1}^{n} x_j A_{\delta_j} \in S \cap a_0 \). Then by (2) we have

\[
1 = |X|^2 = \sum_{j=1}^{n} x_j x_j g(E_{\delta_j} + E_{-\delta_j}, E_{\delta_j} + E_{-\delta_j})
\]

\[
= 2 \sum_{j=1}^{n} x_j^2,
\]

and

\[
[X, IX] = \left[\sum_{j=1}^{n} x_j A_{\delta_j}, \sum_{k=1}^{n} x_k B_{\delta_k} \right]
\]

\[
= \sum x_j^2 [A_{\delta_j}, B_{\delta_j}]
\]

\[
= \sum x_j^2 [E_{\delta_j} + E_{-\delta_j}, \sqrt{-1}(E_{\delta_j} - E_{-\delta_j})]
\]

\[
= -2\sqrt{-1} \sum x_j^2 [E_{\delta_j}, E_{-\delta_j}]
\]

\[
= -2\sqrt{-1} \sum x_j^2 H_{\delta_j}.
\]

Hence

\[
|\{X, IX\}|^2 = 4 \sum x_j^2 |H_{\delta_j}|^2
\]

\[
= 4 \sum x_j^2 \langle \delta_j, \delta_j \rangle.
\]

But by a theorem of C. C. Moore ([3], p. 362) we have \(\langle \delta_1, \delta_1 \rangle = \cdots = \langle \delta_r, \delta_r \rangle \). Thus the range of \(H \) is given by

\[
4r \left(\frac{1}{2r} \right)^2 \langle \delta_1, \delta_1 \rangle \leq H \leq 4 \left(\frac{1}{2} \right)^2 \langle \delta_1, \delta_1 \rangle,
\]

since \(\sum x_j^2 = \frac{1}{2} \). Therefore our theorem is proved.

§ 4. Remark.

Let \((M_1, g_1)\) be a compact irreducible Hermitian symmetric space of rank \(r_1 \) and \(H_1 \) the holomorphic sectional curvature of \((M_1, g_1)\), \(\lambda = 1, \cdots, n \). Assume that \(\max H_1 = \cdots = \max H_n \). Then a compact Hermitian symmetric space \((M_1 \times \cdots \times M_n, g_1 \times \cdots \times g_n)\) of rank \(r_1 + \cdots + r_n \) is \(\frac{1}{r_1 + \cdots + r_n} \)-pinched

References

A geometric meaning of the rank of Hermitian symmetric spaces (1956), 564-628.

Tokyo Metropolitan University
University of Tsukuba