A QUADRIC REPRESENTATION OF PSEUDO-RIEMANNIAN PRODUCT IMMERSIONS

By
Angel FERRÁNDEZ, Pasqual LUCAS and Miguel A. MERONÓ

Abstract. In this paper we introduce a quadric representation \(\varphi \) of the product of two pseudo-Riemannian isometric immersions. We characterize the product of submanifolds whose quadric representation satisfies \(\Delta H_\varphi = \lambda H_\varphi \), for a real constant \(\lambda \), where \(H_\varphi \) is the mean curvature vector field of \(\varphi \). As for hypersurfaces, we prove that the only ones satisfying that equation are minimal products as well as products of a minimal hypersurface and another one which has constant mean and constant scalar curvatures with an appropriate relation between them. In particular, the family of these surfaces consists of \(H^3(-1) \) and \(S^4(2/3) \times H^1(-2) \) in \(S^4(1) \) and \(S^7(1), H^1(-2/3) \times S^1(2), S^1(2) \times H^1(-2/3) \) and a \(B \)-scroll over a null Frenet curve with torsion \(\pm \sqrt{2} \) in \(H^3(-1) \).

0. Introduction

Let \(R^{m+1}_t \) be the pseudo-Euclidean space endowed with the standard inner product of index \(t \) given by \(\langle a, b \rangle = a'Gb \), where \(G = \text{diag} \{ [-1, \ldots, -1, 1, \ldots, 1] \} \) stands for the matrix of the metric with respect to the usual rectangular coordinates. Let us now denote by \(\overline{M}_\mu^m(k) \) a pseudo-Riemannian manifold of dimension \(m \), index \(\mu \) and constant curvature \(k \) and \(SA(m+1,t) \) the set of selfadjoint endomorphisms of \(R^{m+1}_t \) equipped with the metric \(g(A,B) = (k/2) \text{trace}(AB) \). Let \(f : \overline{M}_\mu^m(k) \to SA(m+1,t) \) be the map defined by \(f(p) = pp'G \). Then given an isometric immersion \(x : M^i_c \to \overline{M}_\mu^m(k) \) the map \(\varphi : M^i_c \to SA(m+1,t) \) defined by \(\varphi = f \circ x \) is also an isometric immersion which will be called the quadric representation of \(M^i_c \). Then in [16] we have classified pseudo-Riemannian surfaces whose quadric
representation satisfies a characteristic differential equation involving the Laplacian. Since that Laplacian equation yields isoparametric surfaces, we showed that family is made up by pseudo-Riemannian standard products and totally geodesic surfaces. We were able to distinguish the products $H^1(2k) \times H^1(2k) \subset H^1(k), k < 0,$ and $S^1(2k) \times S^1(2k) \subset S^1(k), k > 0,$ as the only minimal not totally geodesic surfaces into $H^1(k)$ and $S^1(k),$ respectively, whose quadric representation satisfies that Laplacian equation. Then we extended the characterization of the Clifford torus given by Barros and Garay ([4], [5]).

As standard products play a chief role in that classification problem, we are going to find a quadric representation for pseudo-Riemannian product submanifolds into indefinite space forms.

Let $S^m_\mu(k)(k > 0)$ and $H^m_\nu(k)(k < 0)$ be the pseudo-Euclidean hypersurfaces of constant curvature k given by

$$S^m_\mu(k) = \left\{ x \in R^{m+1}_\mu : \langle x, x \rangle = \frac{1}{k} \right\}$$

and

$$H^m_\nu(k) = \left\{ x \in R^{m+1}_\nu : \langle x, x \rangle = \frac{1}{k} \right\},$$

respectively. We will refer them as the hyperquadrics of constant curvature k. We consider a map f from the pseudo-Riemannian product $M^m_\mu(k) \times N^m_\nu(k)$ of two hyperquadrics of constant curvature k into the space of real $(m+1) \times (n+1)$ matrices \mathcal{M} which is an isometric immersion. General properties of this map are obtained, for instance, f is an isometric immersion of 1-type (in the sense of B.Y. Chen) and the associated eigenvalue is $k(m+n)$ (see Section 1).

Let us recall Chen’s definition of type (see [7]). Let M^j_ϵ be a pseudo-Riemannian submanifold of R^{m+1} and Δ the Laplacian on M^j_ϵ. Then M^j_ϵ is said to be of finite type if the position vector X of M^j_ϵ in R^{m+1}_ϵ has the following form

$$X = X_0 + \sum_{i=1}^r X_i, \quad \Delta X_i = \lambda_i X_i,$$

where X_0 is a constant map and λ_i is an eigenvalue of Δ. If all eigenvalues are mutually different M^j_ϵ is said to be of r-type. If M^j_ϵ is of r-type and one of the λ_i is zero, M^j_ϵ will be said of null r-type. M^j_ϵ is said to be of infinite type if it is not of finite type.

Given isometric immersions $x : M^j_\epsilon \rightarrow M^m_\mu(k)$ and $y : N^j_\delta \rightarrow N^m_\nu(k),$ we define a new isometric immersion $\varphi : M^j_\epsilon \times N^j_\delta \rightarrow \mathcal{M}$ by $\varphi = f(x, y).$ Throughout this paper the immersion φ will be called the quadric representation of the product immersion (x, y).
A quadric representation of pseudo-Riemannian product immersions

In a series of early papers ([2], [3], [14], [15]) we have pointed out substantial differences between definite and indefinite Riemannian submanifolds with regard to the spectral behaviour of the mean curvature vector field. We have shown indeed many examples of submanifolds into indefinite space forms without counterparts into definite space forms. The key point concerns to the diagonalizability of the shape operator. Now, in dealing with φ, we state the following problem:

Could you determine the shape of M^t_\ast and N^t_\ast into the corresponding hyperquadrics via the quadric representation of the product $M^t_\ast \times N^t_\ast$?

In trying to solve this question, we will study the spectral behaviour of the mean curvature vector field H_φ of φ. Actually we wish to know what kind of geometric information about M^t_\ast and N^t_\ast could arise from the Laplacian equation $\Delta H_\varphi = \lambda H_\varphi$. We guess this condition will play a chief role in solving that problem, because we already know the characterization of hypersurfaces satisfying that equation into indefinite space forms (see [14], [15]). As for the Chen-type of a submanifold, it is well known that a equation like $\Delta H = \lambda H$ allows to reach only up to submanifolds of 2-type with a zero eigenvalue (the so called null 2-type) (see [2]). However, for our quadric representation φ, the corresponding equation $\Delta H_\varphi = \lambda H_\varphi$ yields 2-type immersions (see Theorem 5).

Some interesting consequences can be mentioned. Let (x, y) be a pseudo-Riemannian product of hypersurfaces. Then $\Delta H_\varphi = \lambda H_\varphi$ if and only if one of them is minimal and the other one has constant mean and constant scalar curvature with an appropriate relation between them. However the case $\lambda = 0$ deserves a special attention. In fact, from the Beltrami equation $\Delta x = -nH$, we get $\Delta^2 x = -n\Delta H$, so that the mean curvature vector field is harmonic, that is, $\Delta H = 0$ if and only if $\Delta x^2 = 0$. Then B.Y. Chen called such submanifolds biharmonic submanifolds and stated the following conjecture [8]: The only biharmonic submanifolds in Euclidean spaces are the minimal ones. In early papers [3, 14, 15] we have found that, among others, the flat totally umbilic hypersurfaces are counterexamples to that conjecture into indefinite ambient spaces. However, the products of two flat totally umbilic hypersurfaces via the quadric representation are not biharmonic. In fact, we have shown that those products are the only ones satisfying the equation $\Delta H_\varphi = C$, C being a nonzero constant vector in the normal bundle. Finally, by using the quadric representation of a pseudo-Riemannian product, we are able to give a new non-existence result: There is no pseudo-Riemannian product of surfaces with biharmonic quadric representation.
1. General properties of a product immersion

Let \(\tilde{M}_\mu^m(k) \) and \(\tilde{N}_\nu^n(k) \) be two hyperquadrics of non-zero constant curvature \(k \) standardly embedded in \(R^{m+1}_\mu \) and \(R^{n+1}_\nu \), respectively. We can define an immersion \(f \) from the pseudo-Riemannian product \(\tilde{M}_\mu^m(k) \times \tilde{N}_\nu^n(k) \) into the space of real \((m+1)\times(n+1)\) matrices \(\mathcal{M} \) by

\[
f : \tilde{M}_\mu^m(k) \times \tilde{N}_\nu^n(k) \to \mathcal{M}
\]

\[
(p, q) \to p \otimes q
\]

where \(\otimes : R^{m+1}_\mu \times R^{n+1}_\nu \to \mathcal{M} \) is given by \(u \otimes v = G_1uv'G_2, G_1 \) and \(G_2 \) standing for the matrices of the standard metrics on \(R^{m+1}_\mu \) and \(R^{n+1}_\nu \), respectively. We abbreviate \(\tilde{M}_\mu^m(k) \) and \(\tilde{N}_\nu^n(k) \) as \(\tilde{M} \) and \(\tilde{N} \).

To study general properties of \(f \), we proceed as follows. Given \((p, q) \in \tilde{M} \times \tilde{N} \) and \((X_p, Y_q) \in T_{(p,q)}(\tilde{M} \times \tilde{N}) \), there are curves \(\alpha : I \subset R \to \tilde{M} \) and \(\beta : J \subset R \to \tilde{N} \) such that \(\alpha(0) = p, \alpha'(0) = X_p, \beta(0) = q \) and \(\beta'(0) = Y_q \). To compute the differential of \(f \) we have

\[
df_{(p,q)}(X_p, Y_q) = \frac{d}{dt} \bigg|_{t=0} f(\alpha(t), \beta(t)) = \frac{d}{dt} \bigg|_{t=0} \alpha(t) \otimes \beta(t)
\]

\[
= \frac{d}{dt} \bigg|_{t=0} \alpha(t) \otimes \beta(0) + \alpha(0) \otimes \frac{d}{dt} \bigg|_{t=0} \beta(t)
\]

\[
= X_p \otimes q + p \otimes Y_q
\]

Therefore, for short, we write down

\[
df(X,Y) = X \otimes q + p \otimes Y.
\]

Let \(\tilde{V} \) be the usual flat connection on \(\mathcal{M} \). Let \((V, W)\) be a vector field on \(\tilde{M} \times \tilde{N} \) and take a point \((p, q) \in \tilde{M} \times \tilde{N} \), a tangent vector \((X_p, Y_q)\) and curves \(\alpha(t) \) and \(\beta(t) \) as before. Then for the covariant derivative we have

\[
\tilde{V}_{df(X_p, Y_q)}df(V, W) = \frac{d}{dt} \bigg|_{t=0} df_{(\alpha(t), \beta(t))}(V(\alpha(t)), W(\beta(t)))
\]

\[
= \frac{d}{dt} \bigg|_{t=0} (V(\alpha(t)) \otimes \beta(t) + \alpha(t) \otimes W(\alpha(t))
\]

\[
= \frac{d}{dt} \bigg|_{t=0} V(\alpha(t)) \otimes \beta(0) + V(\alpha(0)) \otimes \frac{d}{dt} \bigg|_{t=0} \beta(t)
\]

\[
+ \frac{d}{dt} \bigg|_{t=0} \alpha(t) \otimes W(\beta(0)) + \alpha(0) \otimes \frac{d}{dt} \bigg|_{t=0} W(\beta(t))
\]

\[
= \tilde{V}_{X_p} V \otimes q + V_p \otimes Y_q + X_p \otimes W_q + p \otimes \tilde{V}_{Y_q} W,
\]
A quadric representation of pseudo-Riemannian product immersions

where ∇^1 and ∇^2 are the usual flat connections on R^{m+1}_n and R^{s+1}_r, respectively. By using now the Gauss equation

$$
\nabla^1_{X_p} V = \nabla^1_{X_p} V - k\langle X_p, V_p \rangle p,
$$
$$
\nabla^2_{y_q} W = \nabla^2_{y_q} W - k\langle y_q, W_q \rangle q,
$$

∇^1 and ∇^2 being the Levi-Civita connections on \overline{M}^m_μ and \overline{N}^n_ν, respectively, we have

$$
\hat{d}_f(x, y, d(f(V, W)) = df(\nabla^1_x V, \nabla^2_y W) + V \otimes Y + X \otimes W
- k\langle (X, V) + (Y, W) \rangle f,
$$

where, as usually, \langle , \rangle denotes the metric.

Let \hat{g} be the metric in \mathcal{M} defined by $\hat{g}(A, B) = k \text{ tr}(G_{ij}A_iB_j)$, for $A, B \in \mathcal{M}$, then f becomes an isometric immersion. Notice that \mathcal{M}, endowed with \hat{g}, is isometric to a pseudo-Euclidean space of index $t(n+1-s) + s(m+1-t)$ or $(m+1)$ $(n+1) - s(m+1) - t(n+1) + 2st$, provided that $k > 0$ or $k < 0$, respectively. Then it is easy to see that

$$
\hat{g}(X \otimes V, Y \otimes W) = k\langle X, Y \rangle(V, W).
$$

Now, a straightforward computation from (1.1) allows us to obtain the second fundamental form $\hat{\sigma}$ of f

$$
\hat{\sigma}((X, Y), (V, W)) = V \otimes Y + X \otimes W - k\langle (X, V) + (Y, W) \rangle f.
$$

We are going to get the mean curvature vector field H_f of f. To do that, let $\{E_1, ..., E_m\}$ and $\{F_1, ..., F_n\}$ be local orthonormal frames of \overline{M}^m_μ and \overline{N}^n_ν, respectively. Then $\{(E_1, 0), ..., (E_m, 0), (0, F_1), ..., (0, F_n)\}$ is a local orthonormal frame of $\overline{M}^m_\mu \times \overline{N}^n_\nu$. From (1.3) we find

$$
\hat{\sigma}((E_i, 0), (E_i, 0)) = -ke_i f,
$$
$$
\hat{\sigma}((0, F_j), (0, F_j)) = -k\eta_j f,
$$

where $e_i = \langle E_i, E_i \rangle$ and $\eta_j = \langle F_j, F_j \rangle$. Therefore

$$
H_f = \frac{1}{m+n} \left(\sum_{i=1}^m e_i \hat{\sigma}((E_i, 0), (E_i, 0)) + \sum_{j=1}^n \eta_j \hat{\sigma}((0, F_j), (0, F_j)) \right)
$$
$$
= -kf.
$$

From here and the Beltrami equation $\Delta f = -(m+n)H_f$ we obtain the following interesting result.
PROPOSITION 1. The isometric immersion \(f: \mathcal{M}^m \times \overline{N}^n \to \mathfrak{M} \) is of 1-type with associated eigenvalue \(k(m+n) \), that is, \(\Delta f = k(m+n)f \).

As a consequence of pseudo-Riemannian version of Takahashi's theorem ([7] and [20]) we have the following.

COROLLARY 2. The isometric immersion \(f \) is minimal in the hyperquadric of \(\mathfrak{M} \) given by \(\{ A \in \mathfrak{M} : \tilde{g}(A, A) = k^{-1} \} \).

2. The quadric representation

Let \(x: M^j \to M^m \subset \mathcal{R}^{m+l} \) and \(y: N^l \to N^n \subset \mathcal{R}^{n+l} \) be two isometric immersions and let \(\varphi: M^j \times N^l \to \mathfrak{M} \) be the isometric immersion defined by \(\varphi(p, q) = f(x(p), y(q)) \). From now on, \(\varphi \) will be called the quadric representation of the pseudo-Riemannian product immersion \((x, y) \).

We are going to get properties of \(x \) and \(y \) coming from those of \(\varphi \). To do that, let \(H_x \) and \(H_y \) be the mean curvature vector fields of \(x \) and \(y \), respectively. Let \(\overline{H}_x \) and \(\overline{H}_y \) be the mean curvature vector fields in the corresponding pseudo-Euclidean ambient spaces. Since the hyperquadrics are totally umbilic we have

\[
\overline{H}_x = H_x - kx, \quad \overline{H}_y = H_y - ky.
\]

Let \(\sigma_x \) and \(\sigma_y \) be the second fundamental forms associated to \(x \) and \(y \), respectively. Then the second fundamental form of \(\varphi \) can be written as

\[
\sigma_\varphi = df(\sigma_x, \sigma_y) + \tilde{\sigma}.
\]

Our first goal is to characterize the product immersions \((x, y) \) whose quadric representation \(\varphi \) is of 1-type. Bearing in mind the above relation among the second fundamental forms, we have

\[
\text{tr} (\sigma_\varphi) = df(\text{tr} (\sigma_x), 0) - k\varphi + df(0, \text{tr} (\sigma_y)) - k\ell \varphi
\]

\[
= df(\text{tr} (\sigma_x), \text{tr} (\sigma_y)) - k(j + \ell)\varphi.
\]

Then by letting \(H_\varphi \) the mean curvature vector field associated to \(\varphi \) we obtain

\[
(j + \ell)H_\varphi = df(jH_x, \ell H_y) - k(j + \ell)\varphi. \quad (2.1)
\]

PROPOSITION 3. The quadric representation \(\varphi \) of a pseudo-Riemannian product immersion \((x, y) \) is of 1-type if and only if \(x \) and \(y \) are minimal immersions. Moreover, the associated eigenvalue is given by \(k(j + \ell) \).
A quadric representation of pseudo-Riemannian product immersions

PROOF. First, if \(x \) and \(y \) are minimal, from (2.1) and the Beltrami equation \(\Delta \varphi = -(j + \ell)H_\varphi \) we easily deduce that \(\Delta \varphi = k(j + \ell)\varphi \).
Assume now that \(\varphi \) satisfies the equation
\[
\Delta \varphi = \lambda(\varphi - \varphi_0), \quad \lambda \in \mathbb{R},
\]
where \(\varphi_0 \in \mathcal{M} \) is a constant matrix. By using again Beltrami equation and (2.1) we find
\[
\lambda \varphi_0 = df(jH_\varphi, \ell H_\varphi) + [\lambda - k(j + \ell)]\varphi. \quad (2.2)
\]
Now, let \(V \in \mathfrak{X}(M_i') \), take covariant derivative in (2.2) and use (1.1) to obtain
\[
0 = \nabla_{df(V,0)}df(jH_\varphi, \ell H_\varphi) + \{ \lambda - k(j + \ell) \} \nabla_{df(V,0)} \varphi \quad (2.3)
= df(j \nabla^i_V H_\varphi, 0) + \ell V \otimes H_\varphi + \{ \lambda - k(j + \ell) \} V \otimes y
= j \nabla^i_V H_\varphi \otimes y + \ell V \otimes H_\varphi + \{ \lambda - k(j + \ell) \} V \otimes y.
\]
Since this can be viewed as an endomorphism on \(\mathbb{R}^{n+1} \), we apply it to \(y \) to get
\[
0 = k^{-1} j G_i(\nabla^i_V H_\varphi) + k^{-1} \{ \lambda - k(j + \ell) \} G_i V
\]
and then
\[
\nabla^i_V H_\varphi = \frac{k(j + \ell) - \lambda}{j} V,
\]
because \(G_i \) is invertible. Bringing this to (2.3) we deduce that \(\ell V \otimes H_\varphi = 0 \),
which implies that \(H_\varphi = 0 \). A similar reasoning, by taking in (2.2) covariant derivative with respect to a vector field \(W \in \mathfrak{X}(N'_j) \), leads to \(H_\varphi = 0 \) and the proof finishes.

From now on, we will pay attention to the equation
\[
\Delta H_\varphi = \lambda H_\varphi, \quad \lambda \in \mathbb{R}. \quad (2.4)
\]
Let \((p, q) \) be a point in \(M'_i \times N'_j \) and choose local orthonormal frames \(\{ E_1, \ldots, E_j \} \) and \(\{ F_1, \ldots, F_l \} \) on \(M_i' \) and \(N'_j \), respectively, such that \(\nabla^i_{E_\alpha} E_\alpha(p) = 0 \), for all \(\alpha = 1, \ldots, j \), and \(\nabla^i_{F_\beta} F_\beta(q) = 0 \), for all \(\beta = 1, \ldots, l \), where \(\nabla^i \) and \(\nabla^s \) are the Levi-Civita connections on \(M'_i \) and \(N'_j \), respectively. From (2.1) we easily get
\[
(j + \ell)H_\varphi = j \overline{H}_\varphi \otimes y + \ell x \otimes \overline{H}_\varphi,
\]
Taking covariant derivative here we obtain at \((p, q) \)
\[
\nabla_{df(E_\alpha,0)} \nabla_{df(E_\alpha,0)}(j + \ell)H_\varphi = j \nabla^i_{E_\alpha} \nabla^i_{E_\alpha} \overline{H}_\varphi \otimes y + \ell \nabla^i_{E_\alpha} \overline{H}_\varphi
= j \nabla^i_{E_\alpha} \nabla^i_{E_\alpha} \overline{H}_\varphi \otimes y + \ell \overline{H}_\varphi(E_\alpha, E_\alpha) \otimes \overline{H}_\varphi,
\]
and
\[\nabla_{\hat{d}(0,F_x)} \nabla_{\hat{d}(0,F_y)} (j + \ell) H_\varphi = j \bar{H} \otimes \hat{\sigma}_x (F_x, F_y) + \ell x \otimes \nabla_{F_x}^2 \nabla_{F_y}^2 \bar{H}, \]

where \(\hat{\sigma}_x \) and \(\hat{\sigma}_y \) are the second fundamental forms of \(M^i_\varphi \) and \(N^j_\varphi \) in \(R^{n+1}_m \) and \(R^{m+1}_n \), respectively. Therefore we have

\[(j + \ell) \Delta H_\varphi = j \bar{H}_x \otimes y + \ell x \otimes \Delta \bar{H}_y - 2 j \ell \bar{H}_x \otimes \bar{H}_y. \]
\((2.5)\)

By assuming that \(\Delta H_\varphi = \lambda H_\varphi \), we obtain from \((2.5)\) that

\[j \Delta \bar{H}_x \otimes y + \ell x \otimes \Delta \bar{H}_y = \lambda (j \bar{H}_x \otimes y + \ell x \otimes \bar{H}_y), \]
\((2.6)\)

which we apply to \(y \) to get

\[jk^{-1} G_i \Delta \bar{H}_x + \ell \langle \Delta \bar{H}_x, y \rangle G_i x - 2 j \ell \langle \bar{H}_y, y \rangle G_i \bar{H}_x = \lambda jk^{-1} G_i \bar{H}_x + \lambda \ell \langle \bar{H}_y, y \rangle G_i x. \]

As \(\langle \bar{H}_y, y \rangle = -1 \) and \(G_i \) is invertible, the above equation writes as

\[jk^{-1} \Delta \bar{H}_x + j(2 \ell - \lambda k^{-1}) \bar{H}_x + \ell (\lambda + \langle \Delta \bar{H}_x, y \rangle) x = 0. \]
\((2.7)\)

A similar reasoning by applying to \(x \)' leads to

\[\ell k^{-1} \Delta \bar{H}_y + \ell (2 j - \lambda k^{-1}) \bar{H}_y + j (\lambda + \langle \Delta \bar{H}_x, x \rangle) y = 0. \]
\((2.8)\)

By multiplying now the above equation by \(y \) we find

\[k^{-1} \left(j \langle \Delta \bar{H}_x, x \rangle + \ell \langle \Delta \bar{H}_x, y \rangle \right) + \lambda k^{-1} (-j + \ell) - 2 \ell j = 0. \]
\((2.9)\)

From \((2.9)\), the following useful lemma can be easily obtained.

Lemma 4. If the quadric representation \(\varphi \) of a pseudo-Riemannian product immersion \((x, y)\) satisfies the equation \(\Delta H_\varphi = \lambda H_\varphi \), then the functions \(c_x = \langle \Delta \bar{H}_x, x \rangle \) and \(c_y = \langle \Delta \bar{H}_y, y \rangle \) are both constant and related by \((2.9)\).

Now next theorem can be proved.

Theorem 5. Let \(\varphi: M^i_\varphi \times N^j_\varphi \to \mathcal{M} \) be the quadric representation of a pseudo-Riemannian product \((x, y)\), where \(x: M^i_\varphi \to M^m_\varphi \) and \(y: N^j_\varphi \to N^n_\varphi \) are isometric immersions. Then \(\Delta H_\varphi = \lambda H_\varphi \) for nonzero constant real number \(\lambda \) if and only if one of the following statements holds:

1. Both \(x \) and \(y \) are minimal and \(\lambda = k(j + \ell) \);
2. \(x \) is minimal and \(y \) is of 1-type with associate eigenvalue \(-kj\) or 2-type with associated eigenvalues \(\lambda - kj \) and \(-kj\), that is, \(y = y_1 + y_2 (y_1, y_2 \neq 0) \) such that \(\Delta y_1 = -kj y_1 \) and \(\Delta y_2 = (\lambda - kj) y_2 \);
3. \(y \) is minimal and \(x \) is of 1-type with associate eigenvalue \(-k\ell\) or 2-type
A quadrac representation of pseudo-Riemannian product immersions

with associated eigenvalues $\lambda - k\ell$ and $-k\ell$, that is, $x = x_1 + x_2(x_1, x_2 \neq 0)$ such that $\Delta x_1 = -k\ell x_1$ and $\Delta x_2 = (\lambda - k\ell)x_2$.

Proof. If $H_x = 0$ and $H_y = 0$ then we have $\Delta H_x = -j^2(\lambda + \ell) x \otimes y$ and $H_y = -kx \otimes y$. Therefore we get $\Delta H_x = \lambda H_x$, with $\lambda = k(j + \ell)$.

If $M^l \times N^r$ is minimal in $\overline{M}^\prime \times \overline{N}^\prime$, and $y = y_1 + y_2(y_1, y_2 \neq 0)$ such that $\Delta y_1 = -kjy_1$ and $\Delta y_2 = (\lambda - kj)y_2$, then

$$\Delta^2 y + (2kj - \lambda)\Delta y - kj(\lambda - kj)y = 0,$$

which is the same as (2.8). Then (2.5) implies that $\Delta H_x = \lambda H_x$.

A similar reasoning applies if N^r is minimal in \overline{N}^\prime, and M^l is of 1-type with associate eigenvalue $-k\ell$ or 2-type with associated eigenvalues $-k\ell$ and $\lambda - k\ell$.

To prove the converse, bring (2.7) and (2.8) to $\Delta H_x = \lambda H_x$. Bearing in mind Lemma 4 and $jc_2 + \ell c_2 = 2kj\ell - \lambda(j + \ell)$ we obtain $H_x \otimes H_y = 0$. This equation yields $H_x = 0$ or $H_y = 0$ or both simultaneously. Now if, for instance, $H_y \neq 0$ then $\Delta H_y = -k\ell x$ and $\Delta H_y = -kj$. Therefore, (2.7) can be rewritten as

$$\Delta^2 x + (2k\ell - \lambda)\Delta x - k\ell(\lambda - k\ell)x = 0.$$

Let $p(t)$ be the polynomial $p(t) = t^2 + (2k\ell - \lambda)t - k\ell(\lambda - k\ell)$, whose discriminant is $\lambda^2 \neq 0$. Then $p(\Delta)x = 0$ and using [11, Proposition 4.3] we have x is of finite type less than or equal to two. If x is of 1-type, then it is totally umbilical and so with associated eigenvalue $-k\ell$. If x is of 2-type, then the associated eigenvalues are the roots of $p(t)$, that is, $\lambda - k\ell$ and $-k\ell$. That completes the proof.

Now we are going to analyze when the quadrac representation is biharmonic, that is, $\Delta H_x = 0$. Then we also have that $H_x = 0$ or $H_y = 0$, but not simultaneously according to Theorem 5. Suppose N^r is minimal in \overline{N}^\prime, then $p(\Delta)x = 0$ where $p(t) = (t + k\ell)^2$. Hence x should be, according to [11, Proposition 4.2], of infinite type or of 1-type with associated eigenvalue $-k\ell$. But Theorem 5 implies that x should be of infinite type. So the following result has been shown.

Proposition 6. Let $\varphi : M^l \times N^r \to \mathbb{R}$ be the quadrac representation of a pseudo-Riemannian product (x, y), where $x : M^l \to \overline{M}^\prime$ and $y : N^r \to \overline{N}^\prime$ are isometric immersions. Then φ is biharmonic if and only if one of the following statements holds:

1. x is minimal and y is of infinite type with $\Delta^2 y + 2kj\Delta y + k^2j^2y = 0$;
2. y is minimal and x is of infinite type with $\Delta^2 x + 2k\ell\Delta x + k^2\ell^2x = 0$.
3. The quadric representation of a product of hypersurfaces

This section is devoted to prove the following major result.

THEOREM 7. Let \(x : \mathcal{M}^{m-1}_\nu \to \mathcal{M}^m_\mu \) and \(y : \mathcal{N}^{n-1}_{\alpha} \to \mathcal{N}^{n}_{\beta} \) be hypersurfaces. The quadric representation \(\varphi \) of the pseudo-Riemannian product \((x,y)\) satisfies the equation \(\Delta H_\varphi = \lambda H_\varphi \) if and only if one of the following statements holds:

1. Both \(x \) and \(y \) are minimal and \(\lambda = k(m+n-2) \).
2. \(x \) is minimal and \(y \) has nonzero constant mean curvature \(\alpha_y \) and constant scalar curvature \(\tau_y \) such that
 \[
 \tau_y = \frac{1}{m+n-2} \{ (n-1)^2(m+n-3)(k+\varepsilon \alpha_y^2) + k(m-1)^2 \}
 \]
 \[
 \lambda = k(m+n-2) + \frac{(n-1)^2}{m+n-2} \varepsilon \alpha_y^2
 \]
3. \(y \) is minimal and \(x \) has nonzero constant mean curvature \(\alpha_x \) and constant scalar curvature \(\tau_x \) such that
 \[
 \tau_x = \frac{1}{m+n-2} \{ (m-1)^2(m+n-3)(k+\varepsilon \alpha_x^2) + k(n-1)^2 \}
 \]
 \[
 \lambda = k(m+n-2) + \frac{(m-1)^2}{m+n-2} \varepsilon \alpha_x^2
 \]

PROOF. From [7, Lemma 3] we can easily compute the constants \(c_x \) and \(c_y \) given in Lemma 4 as
\[
c_x = -(m-1)(k+\varepsilon \alpha_x^2), \quad c_y = -(n-1)(k+\varepsilon \alpha_y^2),
\]
where \(\varepsilon \) and \(\alpha_x \) (resp. \(\varepsilon \) and \(\alpha_y \)) are the sign and mean curvature of \(\mathcal{M}^{m-1}_\nu \) in \(\mathcal{M}^m_\mu \) (resp. \(\mathcal{N}^{n-1}_{\alpha} \) in \(\mathcal{N}^{n}_{\beta} \)). It follows the constancy of the mean curvatures, and one of them vanishes according to Theorem 5 and Proposition 6. Assume now that \(\alpha_x \) is a non vanishing constant, then from (2.7) we have
\[
(m-1)\Delta \overline{H}_x + k(m-1)(2(n-1) - \lambda k^{-1}) \overline{H}_x + k(n-1)(\lambda - k(n-1))x = 0.
\]
By using again [7, Lemma 3] we get
\[
\text{tr} (S_x^2) = \lambda - k(m-1) - 2k(n-1),
\]
where \(S_x \) stands for the shape operator of \(\mathcal{M}^{m-1}_\nu \) in \(\mathcal{M}^m_\mu \). Equating the \(x \)-component we obtain
\[
0 = -k(m-1)^2(k+\varepsilon \alpha_x^2) - 2k^2(m-1)(n-1) - k^2(n-1)^2 + \lambda k(m+n-2),
\]
A quadric representation of pseudo-Riemannian product immersions

and then
\[\lambda = k(m + n - 2) + \frac{(m-1)^2}{m+n-2} \varepsilon \alpha_s^2. \]

Now the Gauss equation implies that
\[\tau_s = (m-1)^2 \langle \mathcal{H}_s, \mathcal{H}_s \rangle - k(m-1) - \text{tr} (S_s) \]
\[= (m-1)^2 (k + \varepsilon \alpha_s^2) + 2k(n-1) - \lambda, \]

and so \(\tau_s \) is also constant. Moreover, by substituting \(\lambda \) in the above equation we deduce
\[(m+n-2) \tau_s = (m-1)^2 (m+n-3) (k + \varepsilon \alpha_s^2) + k(n-1)^2. \]

The same computation works if we assume that \(\alpha_s \) is a nonzero constant.

To prove the converse, it suffices to consider case (2) or (3). Let us assume that \(y: N^{n-1}_d \to \overline{N}^n(k) \) is minimal and \(x: M^{m-1}_c \to \overline{M}^m_\mu(k) \) has nonzero constant mean curvature \(\alpha_s \) and constant scalar curvature \(\tau_s \) such that
\[\lambda = \frac{k(m+n-2)}{m+n-2} + \frac{(m-1)^2}{m+n-2} \varepsilon \alpha_s^2, \]

By using [7, Lemma 3] we deduce
\[\Delta \mathcal{H}_s = (\text{tr} (S_s^2) + k(m-1)) H_s - k(m-1)(\varepsilon \alpha_s^2 + k)x. \]

From the Gauss equation jointly with the formulae for \(\lambda \) and \(\tau_s \) we get
\[k(m-1)(\varepsilon \alpha_s^2 + k) = \frac{k}{m-1}((m+n-2)\lambda - k(n-1)^2 - 2k(m-1)(n-1)) \]
\[\text{tr} (S_s^2) + k(m-1) = \lambda - 2k(n-1). \]

The last three equations lead to
\[\Delta^2 x + (2k(n-1) - \lambda) \Delta x - k(n-1)(\lambda - k(n-1))x = 0, \]

and reasoning as in Theorem 5 we obtain \(\Delta H_\varphi = \lambda H_\varphi \).

The above theorem contains the characterization of products of hypersurfaces whose quadric representation is biharmonic \((\lambda = 0)\). In the following result we extend the harmonicity condition and study the equation \(\Delta H_\varphi = C \), where \(C \) is a constant vector in the normal bundle. First of all, we will show a class of hypersurfaces whose products satisfy the asked equation with \(C \neq 0 \). The classification of totally umbilic hypersurfaces \(x: M^{m-1}_c \to \overline{M}^m_\mu(k) \) is given in [18,
Theorem 1.4], and we know that such a hypersurface is an open piece of either a pseudo-sphere $S_{m}^{-1}(1/r^2)$, or a pseudo-hyperbolic space $H_{c}^{-1}(-1/r^2)$ or R_{c}^{-1}, according to $(\overline{H}_s,\overline{H}_s)$ is positive, negative or zero, respectively. In the last case, the isometric immersion $x: R_{c}^{-1} \rightarrow \overline{M}_{\mu}^{-1} \subset R_{c}^{m+1}$ is given by $x = f - x_0$, x_0 being a fixed vector in R_{c}^{m+1} and $f: R_{c}^{-1} \rightarrow R_{c}^{m+1}$ the function defined by $f(u_1, \ldots, u_{m+1}) = (q(u),u_1,\ldots,u_{m+1},q(u))$, where $q(u) = a(u,u) + \langle u,v \rangle + c$, where a and c are constant real numbers, especially $a \neq 0$ and v is a vector in R_{c}^{m+1}. We will refer this example as a flat totally umbilic hypersurface. It is not difficult to see that $\Delta x = -2a(m-1)(1,0,\ldots,0,1)$ and so $\Delta \overline{H}_s = 0$. Therefore, if $x: M_{c}^{-1} \rightarrow \overline{M}_{\mu}^{-1}(k)$ and $y: N_{d}^{-1} \rightarrow \overline{N}_{v}^{-1}(k)$ are two flat totally umbilic hypersurfaces, there exist two non-zero constants a and b such that $\Delta H_\varphi = RA\Lambda$, Λ being the following nonzero matrix in \mathfrak{M}:

$$
\begin{bmatrix}
1 & 0 & \cdots & 0 & -1 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 \\
-1 & 0 & \cdots & 0 & 1 \\
\end{bmatrix},
$$

where $R = -8ab(m-1)(n-1)/(m+n-2)$.

THEOREM 8. Let $x: M_{c}^{-1} \rightarrow \overline{M}_{\mu}^{-1}$ and $y: N_{d}^{-1} \rightarrow \overline{N}_{v}^{-1}$ be hypersurfaces. The quadric representation φ of the pseudo-Riemannian product (x,y) satisfies the equation $\Delta H_\varphi = C \varphi$, φ being a constant vector in the normal bundle, if and only if one of the following statements holds:

1. x is minimal and y has nonzero constant mean curvature α_x and constant scalar curvature τ_x such that

$$
\begin{align*}
\alpha_x^2 &= -\varepsilon_x k \frac{(m+n-2)^2}{(m-1)^2}, \varepsilon_x k < 0, \\
\tau_x &= k(m-1)(5 - 2n - m),
\end{align*}
$$

and $C = 0$.

2. y is minimal and x has nonzero constant mean curvature α_x and constant scalar curvature τ_x such that

$$
\begin{align*}
\alpha_x^2 &= -\varepsilon_x k \frac{(m+n-2)^2}{(m-1)^2}, \varepsilon_x k < 0, \\
\tau_x &= k(n-1)(5 - 2m - n),
\end{align*}
$$

and $C = 0$.

A quadric representation of pseudo-Riemannian product immersions 447

(3) Both x and y are flat totally umbilic hypersurfaces and $C = RA$, for any $R \neq 0$, where A is the matrix given in the above.

PROOF. The sufficiency is a consequence of Theorem 7 and example exhibited before this theorem.

By using (2.5), $\Delta H_x = C$ can be rewritten as

$$\frac{m+n-2}{m+1} \Delta H_x \otimes y + (n-1)x \otimes \Delta H_x - 2(m-1)(n-1)H_x \otimes H_x.$$ (3.2)

Then apply (3.2) to y and $W \in \mathcal{E}(N_d)$ to obtain

$$\frac{m+n-2}{m+1} C_y = k^{-1} \langle m-1 \rangle G_i \Delta H_x + (n-1) \langle \Delta H_x, y \rangle G_i x$$ (3.3)

$$+ 2(m-1)(n-1)G_i H_x,$$

$$\frac{m+n-2}{m+1} C_W = (n-1) \langle \Delta H_x, W \rangle G_i x.$$ (3.4)

From here, as $g(C, x \otimes W) = 0$, we deduce that ΔH_x is normal to N_d. Therefore, from (3.4), we get $G_i C_y = A$, A being a constant. Then (3.3) writes as follows

$$\frac{m+n-2}{m+1} \Delta H_x = k \langle m+n-2 \rangle A - k(n-1)c_y x - 2k(m-1)(n-1)H_x,$$ (3.5)

where c_y is the function on N_d given in Lemma 4, from which we get c_y is constant.

A similar reasoning with x' and $V \in \mathcal{E}(M_{d-1})$, leads ΔH_y to be normal to M_{d-1} and then

$$\frac{(m+n-2)(n-1)}{m+n-2} \Delta H_y = k \langle m+n-2 \rangle B - k(n-1)c_y y - 2k(m-1)(n-1)H_y.$$ (3.6)

where $B = G_i C' x$ and c_y is constant.

From the above equations the following relation between c_x and c_y can be easily obtained

$$\frac{(m+n-2)}{m+n-2} (A, x) = k^{-1} \langle m-1 \rangle c_x + k^{-1} \langle n-1 \rangle c_y - 2k(m-1)(n-1) = (m+n-2)(B, y).$$

From here, jointly with (3.5) and (3.6), we can rewrite (3.2) as follows

$$C = k(A \otimes y + x \otimes B) - k^2 \langle A, x \rangle x \otimes y - 2 \frac{(m-1)(n-1)}{m+n-2} H_x \otimes H_y.$$ (3.7)

Taking the covariant derivative along $x \otimes W$ here we deduce that

$$0 = kA \otimes W - k^2 \langle A, x \rangle x \otimes W - 2 \frac{(m-1)(n-1)}{m+n-2} H_x \otimes \nabla^2_W H_y.$$ (3.8)

If $H_x = 0$, an easy argument from (3.7) and the above equation yields $C = 0$, then from Theorem 7 we get (1). If $H_x = 0$, then as above we obtain (2). So we can
assume that \(H_x \neq 0 \) and \(H_y \neq 0 \).

Let \(\xi \) be a vector field normal to \(M^m \) in \(\overline{M}^m \mu \) such that \(\langle \xi, H_x \rangle \neq 0 \). From (3.8) we have \(\langle \xi, H_x \rangle \overline{\nabla}_y^2 H_y = k(m + n - 2)/2(m - 1)(n - 1)\langle A, \xi \rangle W \), and so

\[
\langle \xi, H_x \rangle \Delta H_y = -k \frac{m + n - 2}{2(m - 1)} \langle A, \xi \rangle \overline{H}_y. \tag{3.9}
\]

Now, multiplying the above equation by \(y \) we get \(k(m + n - 2)/(2(m - 1))\langle A, \xi \rangle = \langle \xi, H_x \rangle (c_y + k(n - 1)) \), (3.9) brings us

\[
\Delta \overline{H}_y = -c_y \overline{H}_y. \tag{3.10}
\]

A similar reasoning yields to

\[
\Delta \overline{H}_x = -c_x \overline{H}_x. \tag{3.11}
\]

By combining these two equations with (3.5) and (3.6) we deduce

\[
(c_x - 2k(n - 1))\Delta x + k(n - 1)c_x x - k(m + n - 2)A = 0,
\]

\[
(c_y - 2k(m - 1))\Delta y + k(m - 1)c_y y - k(m + n - 2)B = 0.
\]

If \(c_x = 2k(m - 1) \), then \(c_x = 0 \) and \(B = 0 \). Therefore we obtain that \(\Delta \overline{H}_x = k(m - 1)\overline{H}_x \), which is a contradiction. Assume now that \(c_x \neq 2k(n - 1) \) and \(c_y \neq 2k(m - 1) \), then \(x \) and \(y \) satisfy \(\Delta x = ax + b \) and \(\Delta y = cy + d \), where \(a, c \in \mathbb{R}, b \in \mathbb{R}^{n+1} \) and \(d \in \mathbb{R}^{n+1} \) are constant. From (3.10) and (3.11) we easily get \(a = -c_x \) and \(c = -c_y \).

From (3.2)

\[
(m + n - 2)C = (m - 1)\Delta \overline{H}_x \otimes y + (n - 1)x \otimes \Delta \overline{H}_y - 2(m - 1)(n - 1)\overline{H}_x \otimes \overline{H}_y
\]

\[
= -(m - 1)c_x \overline{H}_x \otimes y - (n - 1)c_x x \otimes \overline{H}_y - 2(m - 1)(n - 1)\overline{H}_x \otimes \overline{H}_y
\]

\[
= c_x \Delta x \otimes y + c_x x \otimes \Delta y - 2\Delta x \otimes \Delta y
\]

\[
= (a c_x + c c_x - 2ac)x \otimes y + (c_x - 2c)b \otimes y + (c_y - 2a)x \otimes d - 2b \otimes d.
\]

Take the covariant derivative of \(C \)

\[
0 = (m + n - 2)\nabla_{x \otimes W} C = (a c_x + c c_x - 2ac)x \otimes W + (c_x - 2c)b \otimes W,
\]

then we get

\[
(c_x - 2c)b = -(a + 2c)b = 0. \tag{3.12}
\]

Similarly

\[
(c_y - 2a)d = -(2a + c)d = 0. \tag{3.13}
\]

So
A quadric representation of pseudo-Riemannian product immersions

\[(m + n - 2)C = -2b \otimes d.\]

Since \(H_x \neq 0\) and \(H_v \neq 0\), \(C \neq 0\) and hence \(b \neq 0\) and \(d \neq 0\). From (3.12) and (3.13), \(a = 0\) and \(c = 0\). Therefore the mean curvature vector fields of \(M^{m-1}\) and \(N^{n-1}_d\) in the corresponding pseudo-Euclidean spaces are constant.

On the other hand, by using the Beltrami equation we find \(\langle \Delta x, x \rangle = -(m - 1)\langle H_x, x \rangle = -2H_x\circ \partial d\). This shows that \(M^{m-1}\) is contained in a hyperplane and therefore \(M^{m-1}\) is totally umbilic in \(\overline{M}^{m}_p(k)\). The same is valid for \(N^{n-1}_d\). Now from [18, Theorem 1.4] we know that \(M^{m-1}\) is an open piece of a pseudo-sphere \(S^{m-1}(1/r^2)\), a pseudo-hyperbolic space \(H^{m-1}(-1/r^2)\) or a flat totally umbilic hypersurface, but only the latter has constant mean curvature vector field. The same occurs for \(N^{n-1}_d\) and so we get (3).

It is worth noticing that this theorem gives a characterization of the products of two flat totally umbilic hypersurfaces as the only ones satisfying the equation \(\Delta H_\varphi = C\), where \(C \neq 0\).

4. The quadric representation of a product of surfaces

We start this section by providing some examples of surfaces, in the De Sitter space \(S^3(l)\) and in the anti-De Sitter space \(H^{3}(-l)\), such that the quadric representation of their product with a minimal surface satisfies the equation \(\Delta H_\varphi = \lambda H_\varphi\).

Example 9. Let \(N^2_2\) be a minimal surface in \(\overline{M}_1^3(k)\). Let \(M^2_2\) be a non flat totally umbilic surface in \(\overline{M}_1^3(k), k^2 = 1\), such that \(\epsilon k = -1\), \(\epsilon\) being the sign of \(M^2_2\) in \(\overline{M}_1^3(k)\). Then \(M^2_2\) is an open piece of \(H^{3}(-1/r^2) \subset H^{3}_1(-1), S^3_1(1/r^2) \subset H^3_1(-1), H^3_2(-1/r^2) \subset S^3_1(1), \) or \(S^3_2(1/r^2) \subset S^3_1(1)\). Then \(\Delta H_\varphi = \lambda H_\varphi\) if and only if \(M^2_2\) is an open piece of \(H^3_1(-1) \subset H^3_1(-1), S^3_2(1) \subset S^3_1(1), S^3_2(1) \subset H^3_1(-1)\) or \(H^3_2(-1) \subset S^3_1(1)\), where the constant \(\lambda\) is given by \(-4, 4, -2, 2\), respectively.

Example 10. The families of standard products in \(\overline{M}_1^3(k)\) are given by

(i) \(S^3(1/r^2) \times S^3_1(1/(1-r^2)) \subset S^3_1(1), -1-r^2 > 0,\)
(ii) \(H^3_2(-1/r^2) \times H^3_2(-1/(1+r^2)) \subset H^3_1(-1), -1 + r^2 > 0,\)
(iii) \(S^3_2(1/r^2) \times H^3_2(1/(1-r^2)) \subset S^3_1(1), -1 - r^2 < 0,\)
(iv) \(S^3_2(1/r^2) \times H^3_2(-1/(1+r^2)) \subset H^3_1(-1).\)

Unless \(r^2 = 1/2\) in the families (i) and (ii), those surfaces are of 2-type with eigenvalues \(\{1/r^2, 1/(1-r^2)\}, \{-1/r^2, -1/(1-r^2)\}, \{1/r^2, 1/(1-r^2)\}\) and \(\{1/r^2, -1/(1+r^2)\}\), respectively. Let \(N^2_3\) be a minimal surface in \(\overline{M}_1^3(k)\) and \(M^3_2\) a standard product. Then the quadric representation \(\varphi\) satisfies the equation \(\Delta H_\varphi = \lambda H_\varphi\) if
and only if M^2_ε is $S^1(2) \times S^3(2) \subseteq S^3(1)$, $H^1(-2) \times H^1(-2) \subseteq H^1_\varepsilon(-1)$, $S^1(2/3) \times H^1(-2) \subseteq S^3(1)$, $S^1(2) \times H^1(-2/3) \subseteq H^1_\varepsilon(-1)$ or $S^1(2) \times H^1(-2/3) \subseteq H^1_\varepsilon(-1)$, where the constant λ is given by 4, -4, $8/3$, $-8/3$ and $-8/3$, respectively.

Example 11. B-scroll over a null curve. Let $c(s)$ be a null curve in $H^1_\varepsilon(-1) \subset R^4_\varepsilon$ with an associated Cartan frame $\{A,B,C\}$, i.e., $\{A,B,C\}$ is a pseudo-orthonormal frame of vector fields along $c(s)$,

$$
(A,A) = \langle B,B \rangle = 0, \quad \langle A,B \rangle = -1, \\
(A,C) = \langle B,C \rangle = 0, \quad \langle C,C \rangle = 1,
$$

satisfying $\dot{c}(s) = A(s)$ and $\dot{C}(s) = -aA(s) - \kappa(s)B(s)$, where a is a nonzero constant and $\kappa(s) \neq 0$ for all s. Then the map $x:(s,u) \rightarrow c(s) + uB(s)$ parametrizes a Lorentzian surface M^2_ε in $H^1_\varepsilon(-1)$ called a B-scroll. The B-scroll has non-diagonalizable shape operator with minimal polynomial $q(t) = (t-a)^2$ and so it has constant mean curvature $\alpha = a$ and constant Gauss curvature $G = a^2$. Therefore if N^2_ε is a minimal surface in $H^1_\varepsilon(-1)$ and φ is qua quadric representation of $M^2_\varepsilon \times N^2_\varepsilon$, the equation $\Delta H_\varphi = \lambda H_\varphi$ holds if and only if $a^2 = 2$ and $\lambda = -2$.

Theorem 12. Let M^2_ε and N^2_ε be two surfaces in the De Sitter space $S^3_\lambda = \bar{M}^3_\lambda(1)$, and $\varphi: M^2_\varepsilon \times N^2_\varepsilon \rightarrow \mathbb{M} \equiv R^6_{16}$ the quadric representation of their product. Then φ satisfies the equation $\Delta H_\varphi = \lambda H_\varphi$ if and only if one of the following statements holds:

1. Both M^2_ε and N^2_ε are minimal in S^3_λ, where $\lambda = 4$;
2. One surface is minimal in S^3_λ and the other one is an open piece of the totally umbilic surface $H^2(-1)$, where $\lambda = 2$;
3. One surface is minimal in S^3_λ and the other one is an open piece of the standard product surface $S^1(2/3) \times H^1(-2)$, where $\lambda = 8/3$.

Theorem 13. Let M^2_ε and N^2_ε be two surfaces in the anti-De Sitter space $H^1_\lambda = \overline{M}^1_\lambda(-1)$, and $\varphi: M^2_\varepsilon \times N^2_\varepsilon \rightarrow \mathbb{M} \equiv R^6_{16}$ the quadric representation of their product. Then φ satisfies the equation $\Delta H_\varphi = \lambda H_\varphi$ if and only if one of the following statements holds:

1. Both M^2_ε and N^2_ε are minimal in H^1_λ, where $\lambda = -4$;
2. One surface is minimal in H^1_λ and the other one is an open piece of the totally umbilic surface $S^3_\lambda(1)$, where $\lambda = -2$;
3. One surface is minimal in H^1_λ and the other one is an open piece of the standard product surface $H^1(-2/3) \times S^1(2)$ or $S^1(2) \times H^1(-2/3)$, where $\lambda = -8/3$;
4. One surface is minimal in H^1_λ and the other one is an open piece of a B-
scroll over a null-Frenet curve with torsion $\pm \sqrt{2}$, where $\lambda = -2$.

Proof of Theorems 12 and 13. In view of Theorem 7, we can assume that $M^2 \times N^2_d$ is not minimal. Then either M^2 or N^2_d has to be minimal, so we can suppose N^2_d is minimal. Therefore Theorem 7 yields M^2 is an isoparametric surface. Hence M^2 is totally umbilical, a B-scroll, a pseudo-Riemannian product or a complex circle (see the Appendix for the complete description of isoparametric surfaces in Lorentzian 3-space forms). From the above examples we see that M^2 is an open piece of one the products given in this theorem. Finally, we are going to show that the last case that M^2 is a complex circle can not be given. In fact, since α_s and τ_s are related by $\tau_s = -4 + 3\varepsilon \alpha_s^2$, which can be rewritten by using the shape operator S_s as

$$(\text{tr}(S_s))^2 - 4\text{tr}(S_s^2) + 8\varepsilon = 0,$$

a straightforward computation shows that a complex circle can not satisfy that equation.

As a consequence of that theorems we obtain the following.

Corollary 14. There is no pseudo-Riemannian product of surfaces with biharmonic quadric representation.

5. A few more examples

This section is devoted to show a few more examples of hypersurfaces such that the quadric representation satisfies the equation $\Delta H_\varphi = \lambda H_\varphi$.

Example 15. Let $x: M^{m-1} \rightarrow \overline{M}_\mu^m(k) \subset R^{m-1}_\mu$ be a hypersurface whose shape operator has a characteristic polynomial given by $q(t) = (t - a)^{m-1}, a \in \mathbb{R}$, and let $y: N^{n-1}_d \rightarrow \overline{N}_\nu^n(k) \subset R^{n-1}_\nu$ be a minimal hypersurface. Then by the Jordan normal form we get $\text{tr}(S_z) = (m-1)a$ and $\text{tr}(S_z^2) = (m-1)a^2$. Since the mean curvature $\alpha_s = a$ and the scalar curvature $\tau_s = (m-1)(n-1)(k + \varepsilon, a^2)$, it follows from Theorem 8 that $\Delta H_\varphi = \lambda H_\varphi$ if and only if $a^2 = -\varepsilon, k(m+n-2)/(m-1), \varepsilon, k < 0$, and in this case $\lambda = k(n-1)$.

Let M^{m-1} be non-flat totally umbilic in $\overline{M}_\mu^m(k)$ and N^{n-1}_d minimal in $\overline{N}_\nu^n(k)$. Since $\varepsilon, k < 0$, we only have the following possibilities for M^{m-1} and $\overline{M}_\mu^m(k)$: $H_\mu^{m-1}(-1/r^2) \subset H_\mu^m(k), S_\mu^{-1}(1/r^2) \subset H_\mu^m(k), H_\mu^{m-1}(-1/r^2) \subset S_\mu^m(k), S_\mu^{-1}(1/r^2) \subset S_\mu^m(k)$. In all cases the shape operator is $S_s = \text{al},$ where a^2 is given
by \((-1 - kr^2) / r^2, (1 - kr^2) / r^2, (1 + kr^2) / r^2, (-1 - kr^2) / r^2\), respectively. Then \(\Delta H_\nu = \lambda H_\nu\) if and only if \(M_{m-1}^m\) is \(H_\mu^{-m} \subset H_\mu^m(k), S_{\mu}^{m-1} \subset S_\mu^m(k), S_{\mu}^{m-1}(-k(n-1)/(m-1)) \subset H_\mu^m(k), H_\mu^{-m}(-k(n-1)/(m-1)) \subset S_\mu^m(k)\). Note that the two first ones are minimal hypersurfaces, in fact, they are totally geodesic.

To find new examples, we recall the construction of some hypersurfaces we have used in early papers.

Generalized umbilic hypersurface of degree 2 ([3, 19]). Let \(c : I \subset \mathbb{R} \to H_\nu^m(k) \subset \mathbb{R}^{m+1}_2\) be a null curve with an associated pseudo-orthonormal frame \(\{A, B, Z, \cdots, Z_4, C\}\) along \(c(s)\) such that \(\hat{c} = A(s)\) and \(\hat{C} = -aA(s) - \kappa(s)B(s)\), where \(\kappa(s) \neq 0\) and \(a\) is a nonzero constant. Then the map \(x : I \times \mathbb{R} \times \mathbb{R}^{m-1} \to H_\nu^m(k) \subset \mathbb{R}^{m+1}_2\) defined by

\[
x(s, u, z) = (1 + f(z))c(s) + uB(s) + \sum_{j=1}^{m-3} z_j Z_j(s) + \left(\frac{1}{a} + g(z)\right)C(s),
\]

where \(f(z)\) and \(g(z)\) are solutions of

\[
kg + af = -\frac{k}{a},
\]

\[
kg^2 + f^2 = k\left(\frac{1}{a} - |z|^2\right),
\]

parametrizes, in a neighborhood of the origin, a Lorentzian hypersurface \(M_{m-1}^m\) of \(H_\nu^m(k)\). The mean curvature \(\alpha\) is the nonzero constant \(a\) and the minimal polynomial of its shape operator is given by \(q(t) = (t - a)^2\).

Generalized umbilic hypersurface of degree 3 ([3, 19]). Let \(c : I \subset \mathbb{R} \to H_\nu^m(k) \subset \mathbb{R}^{m+1}_2\) be a null curve with an associated pseudo-orthonormal frame \(\{A, B, Y, Z_4, \cdots, Z_{m-3}, C\}\) such that \(\hat{c} = A(s)\) and \(\hat{C} = -aA(s) + \kappa(s)Y(s)\), with \(\kappa(s) \neq 0\) and \(a\) a nonzero constant. Then the map \(x : I \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{m-4} \to H_\nu^m(k) \subset \mathbb{R}^{m+1}_2\) defined by

\[
x(s, u, y, z) = (1 + f(z))c(s) + uB(s) + yY(s) + \sum_{j=1}^{m-4} z_j Z_j(s) + \left(\frac{1}{a} + g(z)\right)C(s),
\]

where \(f(z)\) and \(g(z)\) are solutions of

\[
kg + af = -\frac{k}{a},
\]

\[
kg^2 + f^2 = k\left(\frac{1}{a} - |z|^2 - y^2\right),
\]

parametrizes, in a neighborhood of the origin, a Lorentzian hypersurface \(M_{m-1}^m\) in \(H_\nu^m(k)\). Then \(M_{m-1}^m\) has constant mean curvature \(\alpha = a \neq 0\) and the minimal polynomial of its shape operator is given by \(q(t) = (t - a)^3\).
Then by taking \(M_{\ell}^{n-1} \subset \overline{M}_\ell^m \) as a generalized umbilic hypersurface of degree two or three and \(N^{n-1}_d \) minimal in \(\overline{N}_d^n(k) \), the quadric representation of the product \(M_{\ell}^{n-1} \times N^{n-1}_d \) satisfies \(\Delta H_\varphi = \lambda H_\varphi \) if and only if \(a^2 = -(\varepsilon,k)(m+n-2)/(m-1) \).

Example 16. Let \(N^{n-1}_d \) be minimal in \(\overline{N}_d^n(k) \) and \(M_{\ell}^{n-1} = S^n/(1/r^2) \times H^{m-\ell-1}_\ell(k/l(1-kr^2)) \) into \(S^n/(1/r^2) \), \(k > 0 \) and \(1-kr^2 < 0 \), with \(r^2 = (m+n-p-2)/k(n-1) \). Then it is well known (see [7]) that \(M_{\ell}^{n-1} \) is of 2-type with associated eigenvalues \(\lambda_1 = p/r^2 = kp(n-1)/(m+n-p-2) \) and \(\lambda_2 = k(m-p-1)/(1-kr^2) = -k(n-1) \). It is easy to see that \(\lambda_1 = \lambda = k(n-1) \), where \(\lambda = k(n-1)(m+n-2)/(m+n-p-2) \). Therefore, by applying Theorem 5, \(\Delta H_\varphi = \lambda H_\varphi \).

Now, let \(N^{n-1}_d \) be minimal in \(\overline{N}_d^n(k) \) and \(M_{\ell}^{n-1} = S^n/(1/r^2) \times H^{m-\ell-1}_\ell(k/l(1-kr^2)) \subset H^m/k \), \(k < 0 \) and \(1-kr^2 > 0 \), with \(r^2 = -p/k(n-1) \). Then as \(M_{\ell}^{n-1} \) is of 2-type with associated eigenvalues \(\lambda_1 = p/r^2 = k(n-1) \) and \(\lambda_2 = k(m-p-1)/(1-kr^2) \), it is easy to see that \(\lambda_2 = \lambda = k(n-1) \), where \(\lambda = k(n-1)(m+n-2)/(m+n-p-1) \). Therefore, by applying Theorem 5, \(\Delta H_\varphi = \lambda H_\varphi \).

Any other choices of radii \(r \) produce examples of hypersurfaces \(M_{\ell}^{n-1} \) with both constant mean and scalar curvatures such that, for any minimal hypersurface \(N^{n-1}_d \), the quadric representation does not satisfy the condition \(\Delta H_\varphi = \lambda H_\varphi \).

As for remaining products \(M_{\ell}^{n-1} = S^n/(1/r^2) \times S^{m-\ell-1}_\ell(k/l(1-kr^2)) \subset S^m(k), k > 0 \) and \(1-kr^2 > 0 \), and \(M_{\ell}^{n-1} = H^m/k/l(1+kr^2) \subset H^m/k \), \(k < 0 \) and \(1+kr^2 > 0 \), they are minimal when \(r^2 = p/k(m-1) \) and so the equation \(\Delta H_\varphi = \lambda H_\varphi \) holds. Otherwise, they are of 2-type with associated eigenvalues \(\{p/r^2, k(m-p-1)/(1-kr^2)\} \) and \(\{-p/r^2, k(m-p-1)/(1+kr^2)\} \), respectively. Therefore there is no \(r \) accomplishing Theorem 5. Indeed, in the former case both eigenvalues are positive and, in order to apply Theorem 5, one of them should be negative; in the latter, just the contrary occurs.

Note that in this example the minimal hypersurface \(N^{n-1}_d \) in \(\overline{N}_d^n(k) \) can be replaced by a minimal submanifold \(N^r_d \) and everything works fine. We must only change \((n-1)\) by \(\ell \).

6. Appendix: Isoparametric surfaces in Lorentzian 3-space forms

Let \(\overline{M}_\ell^3(k) \) be a 3-space form of constant curvature \(k \in \mathbb{R} \). A model for \(\overline{M}_\ell^3(k) \) is the Lorentz-Minkowski space \(L^3 \) if \(k = 0 \), the De Sitter space \(S^3_\ell(k) \) if \(k > 0 \) and the anti De Sitter space \(H^3_\ell(k) \) if \(k < 0 \). Let \(M^3_\ell \) be a (spacelike or Lorentzian) surface in \(\overline{M}_\ell^3(k) \) and denote by \(S \) the Weingarten endomorphism
associated to a unit normal vector field. If the minimal polynomial of the shape operator is independent of each point of \(M^2_1, M^2_2 \) is said to be isoparametric. The possibly complex roots of that polynomial are called the principal curvatures.

The selfadjoint endomorphism \(S \) on a tangent space of \(M^2_1 \) has a matrix of exactly one of the following three types:

\[
\begin{align*}
\text{I. } & S \sim \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} & \begin{align*}
\text{II. } & S \sim \begin{pmatrix} \lambda & 0 \\ -1 & \lambda \end{pmatrix} & \begin{align*}
\text{III. } & S \sim \begin{pmatrix} \lambda & -\mu \\ \mu & \lambda \end{pmatrix}
\end{align*}
\end{align*}
\]

In types I and III, \(S \) is relative to an orthonormal basis while in case II the basis is pseudo-orthonormal, that is, a basis \(\{ X, Y \} \) such that \(\langle X, X \rangle = 0 = \langle Y, Y \rangle \) and \(\langle X, Y \rangle = -1 \). Thus the classification of isoparametric surfaces in \(\overline{M}^1_1(k) \) should be done by distinguishing three cases, according to the canonical form of the shape operator \(S \).

Type I: \(S \) is diagonalizable. If \(\lambda = \mu \) then \(M^2_1 \) is nothing but an open piece of a totally umbilical surface. Otherwise, following K. Nomizu, [22], and N. Abe-N. Koike-S. Yamaguchi, [1], we get that \(M^2_1 \) is an open piece of one of the following products:

(i) \(H^1(-1/r^2) \times R, S^1_1(1/r^2) \times R \) or \(L \times S^1_0(1/r^2) \) if \(k = 0 \).

(ii) \(H^1(-1/r^2) \times S^1_1(k/l + kr^2) \) or \(S^1_1(1/r^2) \times S^1_1(k/l - kr^2) \), \(1 - kr^2 > 0 \), if \(k > 0 \).

(iii) \(H^1(-1/r^2) \times S^1_1(k/l + kr^2) \), \(1 + kr^2 < 0 \), or \(H^1(-1/r^2) \times H^1(k/l + kr^2), 1 + kr^2 > 0 \), if \(k < 0 \).

Type II: \(S \) has a double real eigenvalue. In this case, following L. Graves, [17], and M. Magid, [19], if \(k = 0 \), and L.J. Alías-A. Ferrández-P. Lucas, [2], and M. Dajczer-K. Nomizu, [12], if \(k \neq 0 \), we deduce that \(M^2_1 \) is locally an open piece of a \(B \)-scroll. This surface has been described in Example 11.

Type III: \(S \) has complex eigenvalues. Then from Codazzi’s equations we can easily deduce that \(X \) and \(Y \) induce parallel vector fields on \(M^2_1 \) and therefore \(M^2_1 \) is a flat Lorentzian surface with parallel second fundamental form in the pseudo-Euclidean space where \(\overline{M}^1_1(k) \) is lying. Then by using [18, Theorem 1.15 and 1.17] we obtain \(M^2_1 \) is congruent to a complex circle in \(H^1_1(k) \). Let \(a + bi \) be a non-zero complex number such that \(a^2 - b^2 = 1/k \). The following map \(x = (x^1, x^2, x^3, x^4): R^2_1 \rightarrow H^1_1(k) \subset R^4_1 \) describes a Lorentzian surface:

\[
\begin{align*}
x^1(u_1, u_2) &= b \cosh u_2 \cos u_1 - a \sinh u_2 \sin u_1, \\
x^2(u_1, u_2) &= a \sinh u_2 \cos u_1 + b \cosh u_2 \sin u_1,
\end{align*}
\]
A quadric representation of pseudo-Riemannian product immersions

\[x^3(u_1, u_2) = a \cosh u_2 \cos u_1 + b \sinh u_2 \sin u_1, \]

\[x^4(u_1, u_2) = a \cosh u_2 \sin u_1 - b \sinh u_2 \cos u_1, \]

where \((u_1, u_2)\) is the usual coordinate system in \(R^2\) with the Lorentz metric \(ds^2 = -(du_1)^2 + (du_2)^2\) and \(R^4\) is equipped with the metric \(ds^2 = -(dx^1)^2 - (dx^2)^2 + (dx^3)^2 + (dx^4)^2\). The shape operator \(S\) is given by

\[S = \begin{pmatrix} \lambda & -\mu \\ \mu & \lambda \end{pmatrix}, \quad \lambda = \frac{2ab}{k(a^2 + b^2)}, \quad \mu = \frac{-1}{a^2 + b^2}, \]

with respect to the usual frame \(\{\partial x/\partial u_1, \partial x/\partial u_2\}\). This surface is called a complex circle of radius \(a + bi\) by Magid, [18].

Note added. We would like to point out that some time after this paper was written we have met a series of papers by B.Y. Chen ([6], [9], [10]) where a quadric representation for Riemannian product immersions is considered as a tensor product immersions (see also [13], [21]).

Acknowledgements.

We wish to thank to the referee for their careful suggestions in order to improve this article.

References