A NOTE ON SPAN UNDER REFINABLE MAPS

By

Akira KOYAMA

1. Introduction.

All spaces considered in this note are metric, and all maps are continuous functions. A compactum is a compact metric space. A continuum is a connected compactum. In [1], Ford and Rogers defined a map \(r: X \to Y \) from a compactum \(X \) onto a compactum \(Y \) to be refinable if for each \(\varepsilon > 0 \), there is an \(\varepsilon \)-map \(f: X \to Y \) from \(X \) onto \(Y \) whose distance from \(r \) is less than \(\varepsilon \). Refinable maps are useful in continuum theory, and many properties in continuum theory are preserved by refinable maps. For example, decomposability [1], aposyndesis [2], property \([k] \), irreducibility, hereditary indecomposability and being the pseudo-arc [6] (see for other properties [4] and [5]).

Lelek [8] defined the surjective span of a continuum \(X \), \(\sigma^+(X) \) (resp. the surjective semi-span, \(\sigma^+(X) \)) to be the least upper bound of all real numbers \(\alpha \) with the following property; there exist a continuum \(C \) and maps \(f_1, f_2: C \to X \) such that \(f_1(C) = X = f_2(C) \) (resp. \(f_1(C) = X \)) and \(\text{dist}(f_1(c), f_2(c)) \leq \alpha \) for every \(c \in C \). The span \(\sigma(X) \) and the semi-span \(\sigma_\alpha(X) \) of \(X \) are defined by the formulas;

\[
\sigma(X) = \sup\{\sigma^+(A) | A \text{ is a subcontinuum of } X\},
\]

\[
\sigma_\alpha(X) = \sup\{\sigma^+(A) | A \text{ is a subcontinuum of } X\}.
\]

Recently, many authors have been investigating span theory and finding interesting properties. Concerning span and special classes of maps, the following problems are raised in the University of Houston Problem Book;

Problem 86. Do confluent maps of continua preserve span zero?

Problem 92. If \(M \) is a continuum with positive span such that each of its proper subcontinua has span zero, does every nondegenerate monotone continuous image of \(M \) have positive span?

Ingram, [3, Theorem 2], showed that monotone maps of continua preserve span zero.

In this note we will show that refinable maps of continua preserve surjective
(semi-) span zero, and refinable preimages of continua with surjective (semi-) span zero have surjective (semi-) span zero. We note that for a refinable map \(r: X \to Y \), if \(Y \) has property \([k]\), then \(r \) is confluent ([6, Theorem (2.3)]), and moreover if \(Y \) is locally connected, \(r \) is monotone ([1, Corollary 1.2]).

The author would like to express his thanks to the referee for his suggestion.

2. Results.

In this note an ANR means an absolute neighborhood retract for the class of metric spaces. For a metric space \(X \) and points \(x, x' \) of \(X \), \(d(x, x') \) is the distance from \(x \) to \(x' \) under a metric of \(X \).

Theorem. Let \(r: X \to Y \) be a refinable map of continua. Then \(\tau(X) = 0 \) if and only if \(\tau(Y) = 0 \), where \(\tau = \sigma*, \sigma^0, \sigma \) or \(\sigma_0 \).

For the proof we need the following lemmas:

Lemma 1 ([10, Lemma 1]). Let \(f: X \to P \) be a map from a compactum \(X \) to a compact ANR \(P \). Then for every \(\varepsilon > 0 \), there is a positive number \(\delta > 0 \) such that if \(g: X \to Y \) is a \(\delta \)-map from \(X \) onto a compactum \(Y \), then there is a map \(h: Y \to P \) such that \(f \) and \(hg \) are \(\varepsilon \)-near.

By a slight modification of the proof of [9, 3.1], we have the following.

Lemma 2. Let \(X \) be a non-empty continuum contained in a compactum \(Z \). If \(\beta \) is a real number and for \(n = 1, 2, 3, \ldots \), there exists a continuum \(Z_n \) in \(Z \) such that \(\beta \leq \tau(Z_n) \) and \(\text{Lim} Z_n = X \), then \(\beta \leq \tau(X) \), where \(\tau = \sigma*, \sigma^0, \sigma \) or \(\sigma_0 \).

Proof of Theorem. Since surjective span zero is a topological invariant in the class of continua, we may assume that both \(X \) and \(Y \) are subsets of the Hilbert cube \(Q \).

Suppose that \(\sigma*(X) = 0 \). Let \(C \) be a continuum, and let \(f_1, f_2: C \to Y \) be maps such that \(f_1(C) = f_2(C) = Y \). Let take a compact ANR neighborhood \(U \) of \(X \) in \(Q \) and a continuous extension \(g: U \to Q \) of \(r \). For each integer \(n \geq 1 \), there is a positive number \(\varepsilon_n > 0 \) such that

\[
\text{(2) if } d(x, x') < \varepsilon_n, \text{ then } d(g(x), g(x')) < \frac{1}{n}.
\]

Since \(r \) is a refinable map, there exists a sequence \(\{r_i\} \) of maps \(r_i: X \to Y \) such that for each \(i \geq 1 \),

\[
\text{(2) } r_i(X) = Y,
\]
A note on span under refinable maps

(3) $d(r(x), r_i(x)) < \frac{1}{i}$ for all $x \in X$, and

(4) $\operatorname{diam} r^{-1}(y) < \frac{1}{i}$ for all $y \in Y$.

Then by (2), (4) and Lemma 1, we have integers $n \leq i(1) < i(2) < \cdots$ and maps $h_j : Y \to U$, $j = 1, 2, \cdots$, such that

(5) $d(h_j r_{i(j)}(x), x) < \frac{1}{j}$ for all $x \in X$, $j = 1, 2, \cdots$.

By (2) and (5), we easily have that $\lim_j h_j(Y) = \lim_j h_j r_{i(j)}(X) = X$. Since $\sigma*(X) = 0$, by Lemma 2, there exists an integer $j_0 \geq 1$ such that

(6) $\sigma*(h_j(Y)) < \epsilon_n$ for all $j \geq j_0$.

Now take an integer $j \geq j_0$ with $1/j < \epsilon_n$, and put the maps

$r' = r_{i(j)} : X \to Y$ and $h = h_j : Y \to h_j(Y) = h(Y)$.

Considering two maps $h f_1$, $h f_2 : C \to h(Y)$, by (6), there exists a point $c_n \in C$ such that

(7) $d(h f_1(c_n), h f_2(c_n)) < \epsilon_n$.

Then by (1),

(8) $d(g h f_1(c_n), g h f_2(c_n)) < \frac{1}{n}$.

By (2), take points x_1, $x_2 \in X$ such that $r'(x_i) = f_i(c_n)$ for $i = 1, 2$. Then by (3), (5) and (1), we have that for $i = 1, 2$,

(9) $d(f_i(c_n), g h f_1(c_n)) = d(r'(x_i), g h r'(x_i))$
\[< d(r'(x_i), r(x_i)) + d(r(x_i), g h r'(x_i))\]
\[< \frac{1}{i(j)} + d(g(x_i), g h r'(x_i))\]
\[< \frac{1}{n} + \frac{1}{n} = \frac{2}{n}\]

Hence by (8) and (9),

(10) $d(f_1(c_n), f_2(c_n)) < \frac{5}{n}$.

Let $c_0 \in C$ be an accumulation point of the sequence $\{c_n\}$. Then by (10), $d(f_1(c_0), f_2(c_0)) = 0$. It follows that $\sigma*(Y) = 0$.

Conversely, we suppose that $\sigma*(Y) = 0$. Let C be a continuum, and let $f_1, f_2 : C \to X$ be maps such that $f_1(C) = X = f_2(C)$. For each $n \geq 1$, there is an $1/n$-map $r_n : X \to Y$ from X onto Y, since r is a refinable map. Since $r_n f_1(C) = Y =$
240

Akira Koyama

$r_n f_2(C)$ and $\sigma^*(Y) = 0$, there exists a point $c_n \in C$ such that $r_n f_1(c_n) = r_n f_2(c_n)$. Then $d(f_1(c_n), f_2(c_n)) < 1/n$. Hence, as in the first part of the proof, we have the point $c_\theta \in C$ such that $f_1(c_\theta) = f_2(c_\theta)$. Therefore $\sigma^*(X) = 0$.

The above proof may be used to prove similar theorems for σ_0^*, σ and σ_α.

Corollary 1. Let $r : X \rightarrow Y$ be a refinable map of continua. Then $\tau(X) > 0$ if and only if $\tau(Y) > 0$, where $\tau = \sigma^*$, σ_0^*, σ or σ_α.

Therefore refinable maps of compacta preserve positive span.

In the latter part of the proof of the Theorem we needed only the fact that there exists an $1/n$-map from X onto Y for each $n \geq 1$. Hence the following is obtained. The case $\tau = \sigma$ is included in [11, Lemma 21].

Corollary 2. Let X and Y be continua. If X is Y-like and $\tau(Y) = 0$, then $\tau(X) = 0$, where $\tau = \sigma^*$, σ_0^*, σ or σ_α.

By [4, Corollary 3.4], every hereditarily decomposable circle-like continuum admits a refinable map onto a circle. Therefore we have

Corollary 3. Every hereditarily decomposable circle-like continuum has positive surjective (semi-) span.

References

Department of Mathematics
Osaka Kyoiku University
Ikeda-city, Osaka, 563
Japan