HYPERELLIPTIC MODULAR CURVES

By

N. Ishii and F. Momose

Let $N \geq 1$ be an integer, and Δ be a subgroup of $(\mathbb{Z}/N\mathbb{Z})^*$. Let $X_\Delta = X_\Delta(N)$ be the modular curve defined over \mathbb{Q} associating to the modular group $\Gamma_\Delta = \Gamma_\Delta(N)$:

$$\Gamma_\Delta(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \mid c \equiv 0 \mod N, (a \mod N) \equiv \Delta \right\}.$$

Since $X_\Delta = X_{(\pm 1, \Delta)}$ [2], we always assume that -1 belongs to Δ. For $\Delta = \{ \pm 1 \}$ (resp. $\Delta = (\mathbb{Z}/N\mathbb{Z})^*$), we denote $X_\Delta(N)$ by $X_\Delta(N)$ (resp. $X_\Delta(\mathbb{Q})$). Ogg [18] determined all the hyperelliptic modular curves of type $X_\Delta(N)$. This work aids the determination of the rational points on the modular curves $X_{sptet}(N)$ etc. [15, 16, 17] and that of the automorphism groups of $X_\Delta(N)$ [8], [19]. In this paper, we determine all the hyperelliptic modular curves of type $X_\Delta(N)$. There are nineteen hyperelliptic modular curves $X_\Delta(N)$ for $N = 22, 23, 26, 28, 29, 30, 31, 33, 35, 37, 39, 40, 41, 46, 47, 48, 50, 59$ and 71 [18]. The modular curves $X_\Delta(N)$ are subcoverings of $X_\Delta(N) \rightarrow X_\Delta(N)$. Therefore it suffices to discuss the cases for the above nineteen integers N and for the integers N with genus of $X_\Delta(N)$ are 0 or 1 (i.e. $N = 17, 19, 20, 24, 27, 32, 36, 49; 13, 16, 18$ and 25). Our result is as follows.

Theorem. The hyperelliptic modular curves of type $X_\Delta(N)$ are the curves $X_\Delta(N)$ for the above nineteen integers N, and $X_\Delta(13), X_\Delta(16)$ and $X_\Delta(18)$.

By the above result and [18], we see that the hyperelliptic involutions of $X_\Delta(N)$ as above are represented by matrices belonging to $GL_2(\mathbb{Q})$, except for $X_\Delta(37)$ (see also [12]). Our result is used to determine the torsion points on elliptic curves defined over quadratic fields [17].

The automorphism groups Aut $X_\Delta(N)$ are determined for $X_\Delta(N)$, [3], [8], [19], and for all Δ with square free integers N [13]. Except for $N = 37$ and 63 the automorphisms of $X_\Delta(N)$ with genera ≥ 2 are represented by matrices belonging to $GL_2(\mathbb{Q})$ loc. cit.. In the final section, we determine the automorphism

Received October 31, 1990.
groups of the hyperelliptic modular curves as above.

Notation. Let \(Q_{p} \) denote the maximal unramified extension of \(Q_{p} \). For a positive integer \(n \), \(\zeta_{n} \) is a primitive \(n \)-th root of unity, and \(\mu_{n} \) is the group consisting of all the \(n \)-th roots of unity.

§ 1. Preliminaries

In this section, we give a review on modular curves and add the list of the hyperelliptic modular curves of type \(X_{0}(N) \) [18]. Let \(N \geq 1 \) be an integer, and \(\Delta \) be a subgroup of \((Z/NZ)^{\times} \) containing \(-1\). Let \(X_{0}(N) \) be the modular curve defined over \(Q \) associating to the modular group \((Z/NZ)^{\times} \)

\[
\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_{2}(Z) \mid c \equiv 0 \mod N, \; (a \mod N) \equiv \Delta \right\}
\]

Then \(X_{0}(N) \) is the coarse moduli space (over \(Q \)) of the isomorphism classes of the generalized elliptic curves \(E \) with a point \(P \mod \Delta \). We have the Galois covering

\[
X_{0}(N) \rightarrow X_{0}(N) \rightarrow X_{0}(N), \\
\langle E, \pm P \rangle \rightarrow \langle E, \Delta P \rangle \rightarrow \langle E, \langle P \rangle \rangle
\]

where \(\langle P \rangle \) is the cyclic subgroup generated by \(P \). Let \(g_{0}(N) \), \(g_{1}(N) \) and \(g_{d}(N) \) denote the genera of \(X_{0}(N) \), \(X_{1}(N) \) and \(X_{d}(N) \), respectively. Let \(Y_{0}(N) \), \(Y_{1}(N) \) and \(Y_{d}(N) \) be the open affine subschemes \(X_{0}(N) \setminus \{ \text{cusps} \} \), \(X_{1}(N) \setminus \{ \text{cusps} \} \), and \(X_{d}(N) \setminus \{ \text{cusps} \} \), respectively [2] VI (6.5). Then the covering \(Y_{1}(N) \rightarrow Y_{d}(N) \) ramifies at the points represented by the pairs \((E, \langle P \rangle) \) with \(\text{Aut}(E, \langle P \rangle) \neq \{ \pm 1 \} \) and \(\text{Aut}(E, \pm P) = \{ \pm 1 \} \). The modular invariants of the ramification points on \(Y_{0}(N) \) are 0 or 1728.

(1.1) Let \(O = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) and \(\infty = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) be the \(Q \)-rational cusps on \(X_{0}(N) \) which are represented by the pairs \((G_{m} \times Z/NZ, Z/NZ) \) and \(\{ G_{m}, \mu_{N} \} \), respectively [2] II. For a positive divisor \(d \) of \(N \) and for an integer \(i \) prime to \(d \), let \(\begin{pmatrix} i \\ d \end{pmatrix} \) denote the cusp on \(X_{0}(N) \) which is represented by \((G_{m} \times Z/(N/d)Z, \langle \zeta_{K}, 1 \rangle) \). Then \(\begin{pmatrix} i \\ d \end{pmatrix} \) is defined over \(Q(\zeta_{n}) \) for \(n = \text{G.C.D. of } d \) and \(N/d \), and \(\begin{pmatrix} i \\ d \end{pmatrix} = \begin{pmatrix} j \\ d \end{pmatrix} \) if and only if \(i \equiv j \mod n \). The ramification index of the covering \(X_{0}(N) \rightarrow X_{0}(N) \) at the cusp \(\begin{pmatrix} i \\ d \end{pmatrix} \) is \(\text{G.C.D. of } d \) and \(N/d \). Let \(O_{i} \) (\(1 \leq i \leq \#((Z/NZ)^{\times}/\Delta) \)) be the cusps on \(X_{0}(N) \) lying over the cusp \(O \) on \(X_{0}(N) \). Then \(O_{i} \) are all \(Q \)-rational.
We call them O-cusps.

Let $C_\infty = \left(\begin{smallmatrix} i \\ d \end{smallmatrix} \right)$ be a cusp on $X_d(N)$, and C be a cusp on $X_{\Delta}(N)$ lying over C_∞. We here discuss the field of definition of the cusp C. Put $N=d_1N_d$ for coprime divisors d_1 and N_d such that d and d_1 have same prime divisors. Put $\Delta_d = \{ a \mod d_1 | a \equiv 1 \mod N/d \}$, $\Delta_d' = \{ a \in (Z/d_1Z)\ast | a \equiv 1 \mod d \}$, and let Δ_d be the subgroup generated by Δ_d' and Δ_d'.

Lemma 1.2. With the notation as above, let $k(\Delta, d)$ be the field associating to the subgroup Δ_d of $(Z/d_1Z)\ast$. Then $k(\Delta, d)$ is the field of definition of the cusp C. For $C = \infty$, we know $\Delta_d = \Delta$.

Proof. The cusp C is represented by the pair

$$(G_m \times Z/(N/d)Z, (\zeta, 1) \mod \Delta)$$

for a primitive d-th root $\zeta = \zeta_d$ of unity (1.1). The subgroup Δ acts by $(\zeta, 1) \mapsto (\zeta^a, a)$ for $a \in \Delta$. Further, as a generalized elliptic curve, $\text{Aut}(G_m \times Z/(N/d)Z)$ is generated by $(x, i) \mapsto (\zeta x, x, i)$ and $(x, i) \mapsto (x^{-1}, -i)$ (see [2] 1).

Let $M \neq 1$ be a positive divisor of N prime to N/M. The matrix

$$\begin{pmatrix} M & b \\ N & M \end{pmatrix}$$

for integers a, b, c, d with $adM^2 - cdN = M$ defines an automorphism w_M of $X_d(N)$. For a choice of a primitive M-th root ζ_M of unity, w_M is defined by

$$(E, \pm P) \mapsto (E/P_M, \pm (P+Q_M) \mod P_M),$$

where $P_M = (N/M)P$ and Q_M is a point of order M such that $e_M(P_M, Q_M) = \zeta_M$ and $e_M : E_M \times E_M \to \mu_M$ is the e_M (Weil)-pairing. Then w_M induces the involution of $X_d(N)$ defined by

$$(E, A) \mapsto (E/A_M, (A+E_M)/A_M),$$

where A_M is the cyclic subgroup of order M of A. For an integer i prime to N, let $[i]$ denote the automorphism of $X_d(N)$ represented by $g \in \Gamma_d(N)$ such that $g \equiv (i \ 0 \ \ast \ 0 \ 1) \mod N$, then $[i]$ acts as $(E, \pm P) \mapsto (E, \pm iP)$. We denote also by w_M and $[i]$ the automorphisms of a subcovering $X_d(N)$ which are induced by w_M and $[i]$, respectively.

(1.4) There are exactly nineteen values of N for which $X_d(N)$ are hyperelliptic curves and they are listed in the table below [18]:
<table>
<thead>
<tr>
<th>N</th>
<th>genus</th>
<th>hyperelliptic involution</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>2</td>
<td>w_{11}</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>w_{23}</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>w_{26}</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>w_7</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>w_{29}</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>w_{15}</td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td>w_{31}</td>
</tr>
<tr>
<td>33</td>
<td>3</td>
<td>w_{11}</td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>w_{25}</td>
</tr>
<tr>
<td>37</td>
<td>2</td>
<td>$s \cdots (\ast)$</td>
</tr>
<tr>
<td>39</td>
<td>3</td>
<td>w_{39}</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>$\begin{pmatrix} -10 & 1 \ -120 & 10 \end{pmatrix}$</td>
</tr>
<tr>
<td>41</td>
<td>3</td>
<td>w_{41}</td>
</tr>
<tr>
<td>46</td>
<td>5</td>
<td>w_{23}</td>
</tr>
<tr>
<td>47</td>
<td>4</td>
<td>w_{47}</td>
</tr>
<tr>
<td>48</td>
<td>3</td>
<td>$\begin{pmatrix} -6 & 1 \ -48 & 6 \end{pmatrix}$</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>w_{50}</td>
</tr>
<tr>
<td>59</td>
<td>5</td>
<td>w_{59}</td>
</tr>
<tr>
<td>71</td>
<td>6</td>
<td>w_{71}</td>
</tr>
</tbody>
</table>

(\ast) s is not represented by any 2×2 matrix [12] § 5, [18].

§ 2. **Hyperelliptic modular curves $X_\ell(N)$**

In this section, we determine the hyperelliptic modular curves of type $X_\ell(N)$. To determine the hyperelliptic modular curve $X_\ell(N)$ (of genus $g_\ell(N) \geq 2$), it suffices to discuss the following three cases (1), (2) and (3):

- **Case (1)** $g_\ell(N) \geq 2$ (see (1.4)).
- **Case (2)** $g_\ell(N) = 1$ ($N=17, 19, 20, 24, 27, 32, 36$ and 49)
- **Case (3)** $g_\ell(N) = 0$ ($N=13, 16, 18$ and 25)

Theorem 2.1. All the hyperelliptic modular curves $X_\ell(N)$ are the following twenty-two modular curves:

$$X_\ell(N) \quad \text{for the nineteen integers } N \text{ in (1.4),}$$

and
Hyperelliptic modular curves

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
\text{genus} & \text{hyperelliptic involution } v \\
\hline
\text{X}_0(13) & 2 & [5] = [2]^3 \\
\text{X}_0(16) & 2 & [7] = [5]^2 \\
\text{X}_0(18) & 2 & w_2 \cdot [7] \\
\hline
\end{tabular}
\end{center}

\textbf{Proof.} Suppose that \(X_0 = X_0(N) \) has the hyperelliptic involution \(w \). Then \(w \) is defined over \(\mathbb{Q} \) and belongs to the center of \(\text{Aut} \ X_0(N) \). If moreover \(g_\delta(N) \geq 2 \), then \(w \) induces the hyperelliptic involution \(v \) of \(X_0(N) \).

\textbf{Case (1)} \(g_\delta(N) \geq 2 \): At first, we discuss the case when the hyperelliptic involutions \(v \) of \(X_0(N) \) are of type \(w_M \) (1.4). For \(N = 23, 26, 29, 31, 35, 39, 41, 47, 50, 59 \) and \(71 \), \(v(O) = \infty \) and the cusps lying over \(\infty \) are defined over the fields associated with the subgroup \(\Delta \) of \((\mathbb{Z}/N\mathbb{Z})^* \) by lemma 1.2. For \(N = 22, 28, 30, 33 \) and \(46 \), by Lemma 1.2, we see that the cusps on \(X_0(N) \) lying over \(v(O) \) are not defined over \(\mathbb{Q} \) for \(\Delta \geq (\mathbb{Z}/N\mathbb{Z})^* \). Now we discuss the remaining case for \(N = 40, 48 \) and \(37 \).

Case \(N = 40 \): The maximal subgroup of \((\mathbb{Z}/40\mathbb{Z})^* = (\mathbb{Z}/8\mathbb{Z})^* \times (\mathbb{Z}/5\mathbb{Z})^* \) containing \(\pm 1 \) are \(\Delta_1 = \langle \pm 1, (3, 1), (-1, 1) \rangle \), \(\Delta_2 = \langle \pm 1, (3, 2) \rangle \) and \(\Delta_3 = \langle \pm 1, (1, 2) \rangle \). The hyperelliptic involution \(v \) of \(X_0(40) \) sends the cusp \(\infty \) to \(\left(\begin{smallmatrix} 1 \\ 4 \end{smallmatrix} \right) \) (1.4). The cusp \(C \) on \(X_0(40) \) lying over \(\left(\begin{smallmatrix} 1 \\ 4 \end{smallmatrix} \right) \) are all \(\mathbb{Q} \)-rational, and those lying over \(\infty \) are defined over the fields associated with the subgroups \(\Delta_i \) of \((\mathbb{Z}/40\mathbb{Z})^* \), cf. Lemma 1.2.

Case \(N = 48 \): The maximal subgroups of \((\mathbb{Z}/48\mathbb{Z})^* = (\mathbb{Z}/16\mathbb{Z})^* \times (\mathbb{Z}/3\mathbb{Z})^* \) are \(\Delta_1 = \langle \pm 1, (3, 1) \rangle \), \(\Delta_2 = \langle \pm 1, (9, 1), (1, -1) \rangle \) and \(\Delta_3 = \langle \pm 1, (3, -1) \rangle \). The hyperelliptic involution \(v \) of \(X_0(48) \) sends the cusp \(\infty \) to \(\left(\begin{smallmatrix} 1 \\ 8 \end{smallmatrix} \right) \) (1.4). Let \(P_t \) and \(Q_t \) be the cusps on \(X_0(48) \) lying over the cusp \(\infty \) and \(\left(\begin{smallmatrix} 1 \\ 8 \end{smallmatrix} \right) \), respectively. Then \(P_t \) are defined over real quadratic fields, cf. Lemma 1.2. But the cusp \(Q_t \) is defined over \(\mathbb{Q}(\sqrt{-2}) \), and the cusp \(Q_3 \) is defined over \(\mathbb{Q}(\sqrt{-1}) \). For \(\Delta_2 \), suppose that \(X_0(48) \) has the hyperelliptic involution \(v \), which induces the hyperelliptic involution \(w \) of \(X_0(48) \) represented by \(\left(\begin{smallmatrix} -6 & 1 \\ -48 & 6 \end{smallmatrix} \right) \) cf. (1.4). The matrix \(\left(\begin{smallmatrix} 1/0 & 1/2 \\ 0 & 1 \end{smallmatrix} \right) \) represents an automorphism \(u \) of \(X_0(48) \), and \(u \) does not commute with \(v \).

Case \(N = 37 \): The hyperelliptic involution \(s \) of \(X_0(37) \) sends the cusps to non cuspidal \(\mathbb{Q} \)-rational points, [12] §5, [18] Theorem 2. Further by [13], any automorphism of \(X_0(N) \) is represented by a matrix belonging to \(\text{GL}_3(\mathbb{R}) \) for
\[\Delta = (\mathbb{Z}/37\mathbb{Z})^* \].

Case (2) \(g_\Delta(N) = 1 \): Let \(\Gamma_\Delta^*(N)/Q^* \) be the normalizer of \(\Gamma_\Delta(N)/\pm 1 \) in \(\text{PGL}_2(Q) \), and put \(B_\Delta = B_\Delta(N) = \Gamma_\Delta^*(N)/\Gamma_\Delta(N)Q^* \), which is a subgroup of \(\text{Aut} X_\Delta(N) \). For square free integers \(N \) with \(g_\Delta(N) \geq 2 \), \(B_\Delta(N) = \text{Aut} X_\Delta(N) \) except for \(X_\Delta(37) \) \[13\].

Case \(N = 17, 19 \) and \(20 \): For \(\Delta = 1 \), \(g_\Delta(N) = 1 \). For \(N = 17 \) and \(19 \), \(X_\Delta(N)(Q) \) consist of the \(O \)-cusps, and \(X_\Delta(20)(Q) \) consists of the \(O \)-cusps and ramified cusps \(C_1 \) and \(C_2 \) lying over the cusp \(\left(\frac{1}{2} \right) \) \[10\], Lemma 1.2. Suppose that \(X_\Delta(N) \) has the hyperelliptic involution \(v \). Then \(v \) induces an involution \(w \) of \(X_\Delta(N) \) such that \(X_\Delta(N)/\langle w \rangle \cong P_4 \), and \(w \) commutes with the automorphisms of type \(w_4 \) cf. \[1\] § 4. Then \(w \) fixes \(O \), and \(\left(\frac{1}{2} \right) \) for \(N = 20 \). For \(N = 17 \) and \(19 \), there are not such involutions. The orbit of \(\{O, \left(\frac{1}{2} \right) \} \) under the subgroup \(\langle w_4, w \rangle \) is \(\{0, \infty, \left(\frac{1}{2} \right), \left(\frac{1}{4} \right), \left(\frac{1}{5} \right), \left(\frac{1}{10} \right) \} \), which consists of fixed points of \(w \).

This is a contradiction.

Case \(N = 21 \): The maximal subgroups of \((\mathbb{Z}/21\mathbb{Z})^* = (\mathbb{Z}/3\mathbb{Z})^* \times (\mathbb{Z}/7\mathbb{Z})^* \) are \(\Delta_1 = \langle \pm 1, (1, -1) \rangle \), \(\Delta_2 = \langle \pm 1, (1, 2) \rangle \), and \(g_\Delta(21) = 3 \), \(g_{\Delta_2}(21) = 1 \). Suppose that \(X_\Delta \) has the hyperelliptic involution \(v \) for \(\Delta = \Delta_1 \). Then \(v \) induces the involution \(w = w_4 \) or \(w_{21} \) \[1\] § 4, \[24\] table 5. Since \(w_{21}(O) = \infty \), \(w \neq w_{21} \) cf. Lemma 1.2, hence \(w = w_4 \). But then \(v \) does not commute with \(w_4 \).

Case \(N = 24 \): Since \(X_\Delta(24)(Q) = \{ \text{cusps} \} \) \[24\] table 1, and \(\Gamma_\Delta(24)/\pm 1 \) has no elliptic element, any \(Q \)-rational automorphism of \(X_\Delta(24) \) belongs to \(B_\Delta(24) \). The maximal subgroups of \((\mathbb{Z}/24\mathbb{Z})^* = (\mathbb{Z}/8\mathbb{Z})^* \times (\mathbb{Z}/3\mathbb{Z})^* \) are \(\Delta_1 = \langle \pm 1, (-1, 1) \rangle \), \(\Delta_2 = \langle \pm 1, (3, 1) \rangle \) and \(\Delta_3 = \langle \pm 1, (5, 1) \rangle \). For \(\Delta = \Delta_1 \) and \(\Delta_3 \), \(g_\Delta(24) = 3 \) and \(g_{\Delta_3}(24) = 1 \). Suppose \(X_\Delta \) has the hyperelliptic involution \(v \) for \(\Delta = \Delta_1 \) or \(\Delta_3 \). Since \(\left(\begin{smallmatrix} 1 & 1/2 \\ 0 & 1 \end{smallmatrix} \right) \mod \Gamma_\Delta(24) \) does not belong to \(\text{Aut} X_\Delta \), \(v \) induces the involution \(w = w_4 \) or \(w_{24} \) \[1\] § 4, \[24\] table 5. But \(w_4 \) and \(w_{24} \) are defined over \(Q(\sqrt{3}) \) for \(\Delta = \Delta_1 \). For \(\Delta = \Delta_3 \), \(w_{24} \) is defined over \(Q(\sqrt{-3}) \), hence \(w = w_4 \). Since \(X_\Delta(Q) \) consists of the \(O \)-cusps and ramified cusps \(C_1, C_3, C_5, C_4 \), \(w = w_4 \) must fix the \(O \)-cusps. This is a contradiction.

Case \(N = 27 \): For \(\Delta \neq \{ \pm 1 \} \), \(g_\Delta(27) = 1 \), and \(g_{\Delta_3}(27) = 3 \). Let \(\mathfrak{X} = \mathfrak{X}_i(27) \) be the normalization of the projective \(j \)-line in the function field of \(X_\Delta(27) \). Then
\#J'(F_5) \geq \#\{O\text{-cusps}\}=9, \text{ so that } X_i(27) \text{ is not hyperelliptic cf. } [18].

Case \(N=32\): \text{ For } \Delta'=\langle \pm 1, 1 \rangle, \ g_{\Delta'}(32)=5, \text{ and for } \Delta''=\langle \pm 1, 1+8 \rangle, \ g_{\Delta''}(32)=1. \text{ Let } J', J'' \text{ be the jacobian varieties of } X_{\Delta'}, \text{ and } X_{\Delta''} \text{ respectively. Then } J'=J''+A \text{ for an abelian variety } A/(Q) \text{ of dimension } 4. \text{ The involution [9] acts by } +1 \text{ on } J'', \text{ and by } -1 \text{ on } A. \text{ If } X_{\Delta'}, \text{ has the hyperelliptic involution } \nu, \text{ then } [9] \nu \text{ acts by } -1 \text{ on } J'', \text{ and } +1 \text{ on } A. \text{ But there is not such an involution. It is easily seen by Riemann-Hurwitz formula.}

Case \(N=36\): \text{ The maximal subgroups of } (\mathbb{Z}/36\mathbb{Z})^*=(\mathbb{Z}/4\mathbb{Z})^* \times (\mathbb{Z}/9\mathbb{Z})^* \text{ are } \Delta_1=\langle \pm 1, (1, 4) \rangle, \Delta_2=\langle \pm 1, (1, -1) \rangle, \text{ and } g_{\Delta_1}=3, g_{\Delta_2}=7. \text{ Suppose } X_h \text{ has the hyperelliptic involution } \nu. \text{ Then } \nu \text{ induces an involution } w \text{ of } X_i(36). \text{ At first, we discuss for } \Delta=\Delta_1. \text{ The set } X_{\Delta_1}(Q) \text{ consists of the } O\text{-cusps and ramified cusps } C_i, C_2 \text{ cf. } [24] \text{ table 1.2. Then } w \text{ fixes the set of } O\text{-cusps.}

The matrix \(\begin{pmatrix} 1 & 1/3 \\ 0 & 1 \end{pmatrix}\) represents an automorphism \(g \) of \(X_{\Delta_1}\), and the orbit of \(O\) under the subgroup \(\langle g, w, w^2 \rangle \) is \(S=\{0, \infty, (\pm 1, 3), (1, 4), (\pm 1, 12)\}\). \text{ Then } w \text{ must have more than } \#S=8 \text{ fixed points, which is a contradiction. Now consider the case for } \Delta=\Delta_2. \text{ The set } X_{\Delta_2}(Q) \text{ consists of the } O\text{-cusps and the cusps lying over the cusps } \left(\frac{1}{2}\right), \left(\frac{1}{4}\right), \text{ cf. Lemma 1.2. Then } \nu \text{ fixes a rational points on } X_{\Delta_2}, \text{ since } \#X_{\Delta_2}(Q)=9. \text{ The matrix } \begin{pmatrix} 1 & 1/2 \\ 0 & 1 \end{pmatrix} \text{ represents an automorphism } g \text{ of } X_{\Delta_2}, \text{ and the subgroup } \langle g, w, \gamma \rangle \text{ acts transitively on } X_{\Delta_2}(Q), \text{ where } \gamma \text{ is a generator of the covering group of } X_{\Delta_2} \to X_i(36). \text{ Thus } \nu \text{ fixes all the points belonging to } X_{\Delta_2}(Q) \text{ and } w_3(X_{\Delta_2}(Q)). \text{ This contradicts to } g_{\Delta_2}(36)=7.

Case \(N=49\): \text{ Let } \Delta_n \text{ be the maximal subgroups of } (\mathbb{Z}/49\mathbb{Z})^* \text{ of indices } n=3, 7. \text{ Let } X_\Delta \text{ be the normalization of the projective } j\text{-line } X_\Delta(1) \cong P_\delta \text{ in the function field of } X_\Delta. \text{ For } \Delta=\Delta_n, \text{ the cusps on } X_\Delta \text{ are all defined over } Q(\zeta), \text{ so that } \#X_\Delta(F_5) \geq 24. \text{ For } \Delta=\Delta_1, \#X_\Delta(F_5) \geq 7. \text{ Therefore } X_{\Delta_n} \text{ are not hyperelliptic cf. } [18].

Case (3) \(g_\delta(N)=0\): \text{ For } \Delta=\{\pm 1\}, \ X_\Delta=P_\delta. \text{ For } N=13, 16 \text{ and } 18, [5], [7] \text{ and } w_2[7] \text{ are the hyperelliptic involutions of } X_i(N), \text{ respectively. There remains the case for } N=25. \text{ Let } \Delta_n \text{ be the maximal subgroups of } (\mathbb{Z}/25\mathbb{Z})^* \text{ of index } n=2, 5. \text{ Then } g_{\Delta_2}(25)=0 \text{ and } g_{\Delta_5}(25)=4. \text{ We know that } X_{\Delta_2}(Q) \text{ consists of the } O\text{-cusps } [6]. \text{ Suppose that } X=X_{\Delta_2} \text{ has the hyperelliptic involution } \nu. \text{ Then } \nu \text{ fixes a } O\text{-cusp, hence } \nu \text{ fixes all the } O\text{-cusps. Then the divisor class } cl((O')-(O^*)) \text{ are of order } 2 \text{ for the } O\text{-cusps } O' \text{ and } O^*, \text{ } O' \neq O^*. \text{ But we know that the Mordell-Weil group of the jacobian variety of } X \text{ is isomorphic to}
§ 3. Automorphism groups of hyperelliptic curves $X_6(N)$

In this section, we determined the automorphism groups of hyperelliptic modular curves of type $X_6(N)$. For square free integers N, $\text{Aut } X_6(N)$ are determined [13], [19]. Hence it suffices to discuss for $X_6(16)$ and $X_6(18)$ cf. Theorem 2.1.

Theorem 3.1. The automorphisms of $X_6(16)$ and $X_6(18)$ are represented by 2×2 matrices.

Proof.

Case $N=18$: Let X be the minimal model of $X_6(18) (\mathbb{Z})$. The special fibre $X \otimes \mathbb{F}_p$ has two irreducible components Z, Z' which are isomorphic to \mathbb{P}^1 and intersect transversally at three supersingular points S_1, S_2 and S_3 [2]. Let $v=w_6[7]$ be the hyperelliptic involution of $X_6(18)$. Since the Jacobian variety $J_6(18)$ of $X_6(18)$ has stable reduction at the rational prime 2 [2], any endomorphism of $J_6(18)$ is defined over \mathbb{Q} [22] Lemma 1. Let G be the subgroup of $\text{Aut } X_6(18)$ consisting of automorphisms g which fix the irreducible component Z. Then we see that the representation of G into the permutation group S_3 of the set $\{S_1, S_2, S_3\}$ is faithful. Thus we see that $G=\langle w_6, [7] \rangle$. Further w_6 exchanges Z by Z'. Thus $\text{Aut } X_6(18)$ is generated by w_6, w_9 and [7].

Case $N=16$: The hyperelliptic involution $v=\tau^6$ for $\tau=[3]$. Put $X=X_6(16)$ and $Y=X/(\tau)$. Let C_1, C_2 (resp. C_3, C_4) be the cusps on X lying over the cusp $\left(\frac{1}{2}\right)$ (resp. $\left(\frac{1}{8}\right)$). Then C_i are the ramification points of the covering $X \rightarrow Y$. Let P_1, P_2 be the totally ramified cusps lying over $\left(\frac{1}{4}\right)$ and $\left(-\frac{1}{4}\right)$, respectively. Let S_6 be the set of the Weierstrass points of X: $S_6=\{P_1, P_2, C_1, C_2, C_3, C_4\}$, and let S_8 be the permutation group of the elements of S_6. Then $\langle \text{Aut } X \rangle/(\tau)$ becomes a subgroup of S_8.

Lemma 3.2. \(\{g \in \text{Aut } X \mid g \gamma g^{-1} = \gamma^{x_1}\} = \langle \gamma, w_{16} \rangle\).

Proof. We can take a local parameter x along the cusp ∞ of $X_6(16)$ such that the modular invariant $j=F(x)/G(x)$ for $F(x)=x^8+2^4x^7+7.2^4x^6+7.2^4x^5+69.2^4x^4+13.2^4x^3+11.2^4x^2+2^3x+1$ and $G(x)=x(x+4)(x^8+4x+8)(x+2)^4$ [3] Kapitel IV. Further the values $x=0, -2, -2+2\sqrt{-1}, -2-2\sqrt{-1}$ and -4
corresponds to the cusps \(\infty, \left(\frac{1}{2} \right), \left(\frac{1}{4} \right), \left(-\frac{1}{4} \right) \) and \(\left(\frac{1}{8} \right) \), respectively. If \(g \gamma g^{-1} = \gamma \), then \(g \) induces an automorphism of \(h \) of \(X_0(16) = P^1(x) \), and \(h^* \) sends the set \(\{-4, -2\} \) and \(\{-2 \pm 2\sqrt{-1}\} \) to themselves. If \(h^*(-4) = -2 \), then \(w_{16} h^* \) fixes both \(-4\) and \(-2\). Changing \(g \) by \(gw_{16} \), if necessary, we may assume that \(h^* \) fixes both \(-4\) and \(-2\). Let \(\delta \) be the automorphism of \(P^1(x) \) defined by \(\delta^*(x) = x^4/x + 2 \), then \(\delta^*(-2 + 2\sqrt{-1}) = 1 - \sqrt{-1}, \delta^*(-2 - 2\sqrt{-1}) = 1 + \sqrt{-1}, \) and \((\delta h \delta^{-1})^*(x) = ax \) for some \(a \in \mathbb{C} \). If \(a \neq 1 \), then \(a(1 + \sqrt{-1}) = 1 - \sqrt{-1} \), so that \(a = -\sqrt{-1} \). But then \(1 + \sqrt{-1} = (\delta h \delta^{-1})^*(1 - \sqrt{-1}) = (-\sqrt{-1})(1 - \sqrt{-1}) \). Therefore \(a = 1 \), i.e., \(h = id \) and \(g \) belongs to \(\langle \gamma \rangle \).

At first, we show that any 2-sylow subgroup \(H \) of \(G = \text{Aut} X \) containing \(\gamma \) and \(w_{16} \) is equal to the subgroup \(\langle w_{16}, \gamma \rangle \), which is a dihedral group with relation \(w_{16}^2 \gamma w_{16} = \gamma^{-1} \). If \(\#H \neq 8 \), then \(G \) has a subgroup \(K \) of order 16 containing \(\langle w_{16}, \gamma \rangle \). Then \(\langle \gamma \rangle \) is a normal subgroup of \(K \), since \(\langle \gamma \rangle \) is the unique cyclic subgroup of order 4 of \(\langle w_{16}, \gamma \rangle \). Then by Lemma 3.2, any \(g \in K \) belongs to \(\langle w_{16}, \gamma \rangle \). It is a contradiction. Now we show that \(G \) is a 2-group. The prime divisors of \(\#G \) are 2, 3 or 5. If \(g \in G \) is of order 5, then \(g \) fixes a Weierstrass point \(C \), which is defined over \(Q(\zeta_{15}) \). Let \(t \) be a local parameter along \(C \). Then \(g^*(t) = \zeta_t + a \theta t^2 + \cdots \) for a primitive 5-th root \(\zeta_t \) of unity, so that \(g \) is not defined over \(Q^\theta \). But we know that any endomorphism of the jacobian variety of \(X \) is defined over \(Q^\theta \) for any prime number \(p \neq 2 \) [2], [22] Lemma 1. Suppose that an automorphism \(g \in G \) is of order 3. By the same way as above, we see that \(g \) does not fix any Weierstrass point. Changing the induces of \(\{P_1\}, \{C_1, C_2\} \) and \(\{C_3, C_4\} \), if necessary, we may assume that \((1) \ g(P_1) = P_2 \) or \((2) \ g(P_2) = C_1 \).

Claim. \(g(P_1) \neq P_2 \).

We know that \(\gamma = C_1, C_2, C_3, C_4 \mod \langle v \rangle \). If \(g(P_1) = P_2 \), then \(g \gamma g \mod \langle v \rangle \) is of order 5, so that \(g(P_1) \neq P_2 \).

Put \(h = g \gamma g^{-1} \), which fixes the \(Q \)-rational cusp \(C_1 \). Let \(t \) be a local parameter along \(C_1 \). Then \(h^*(t) = \pm \sqrt{-1} t + \cdots \in Q(\sqrt{-1})[[t]] \), and \(h \) is defined over \(Q(\sqrt{-1}) \). For any \(\sigma \in \text{Gal}(\overline{Q}/Q) \), \(h^\sigma = h^{-1} \), so that \(g^\sigma g^{-1} \) belongs to \(\langle w_{16}, \gamma \rangle \) by Lemma 3.2. Since \(g^\sigma g^{-1} \) fixes the \(Q \)-rational cusp \(C_1 \), \(g^\sigma g^{-1} = v \). Then \((g^\sigma)^2 = g^2 \). Since \(g \) is of order 3, \(g^\sigma = g \), so that \(g \) is defined over \(Q \). But we know that \(\text{End}_Q J_1(16) \otimes Q = Q(\sqrt{-1}) \) [14], [20, 21], where \(\text{End}_Q \cdots \) is the subring consisting of the endomorphisms defined over \(Q \). Thus \(\text{Aut} X \) is a 2-group. \(\square \)
References

Hyperelliptic modular curves

N. Ishii
Dokkyo Secondary High School
1-8, Sekiguchi, Bunkyo-ku
Tokyo 112, Japan

F. Momose
Department of Mathematics
Chuo University
1-13-27 Kasuga, Bunkyo-ku
Tokyo 112, Japan