ARCWISE CONNECTEDNESS OF THE COMPLEMENT IN A HYPERSPACE

By
Hiroshi HOSOKAWA

Abstract. The hyperspace $C(X)$ of a continuum X is always arcwise connected. In [6], S. B. Nadler Jr. and J. Quinn show that if $C(X)-\{A_i\}$ is arcwise connected for each $i = 1, 2$, then $C(X)-\{A_1, A_2\}$ is also arcwise connected. Nadler raised questions in his book [5]: Is it still true with the two sets A_1 and A_2 replaced by n sets, n finite? What about countably many? What about a collection $\{A_\lambda : \lambda \in \Lambda\}$ which is a compact zero-dimensional subset of the hyperspace? In this paper we prove that if $\mathcal{A} \subset C(X)$ is a closed countable subset, \mathcal{U} is an arc component of an open set of $C(X)$ and $C(X)-\{A\}$ is arcwise connected for each $A \in \mathcal{A}$, then $\mathcal{U}-\mathcal{A}$ is arcwise connected.

Key words and phrases: continuum, hyperspace, order arc, Whitney map, arcwise connectedness, indecomposable continuum, decomposable continuum.

AMS subject classifications (1980): 54B20, 54C05.

1. Notation and Preliminary Lemmas

A continuum is a nonempty compact connected metric space. The letter X will always denote a nondegenerate continuum with a metric function d. Let Y be a subcontinuum of X and ε a positive number. The set $N(Y; \varepsilon)$ denotes the ε-neighborhood of Y in X, i.e., $N(Y; \varepsilon) = \{x \in X : d(x, y) < \varepsilon$ for some $y \in Y\}$ and Y_ε denotes the component of the closure of $N(Y; \varepsilon)$ containing Y. The hyperspace $C(X)$ of X is the space of all subcontinuum of X with the Hausdorff metric H_d defined by

$$H_d(A, B) = \inf\{\varepsilon > 0 : A \subset N(B; \varepsilon) \text{ and } B \subset N(A; \varepsilon)\}.$$

With this metric, $C(X)$ becomes a continuum. If Y is a subcontinuum of X, then
we consider $C(Y)$ as a subspace of $C(X)$. For two subsets \mathcal{A} and \mathcal{B} of $C(X)$, let $H_d(\mathcal{A}, \mathcal{B}) = \inf \{ H_d(A, B) : A \in \mathcal{A} \text{ and } B \in \mathcal{B} \}$. A map is a continuous function. Any map $\mu : C(X) \to [0, 1]$ satisfying

1. if $A \subseteq B$ and $A \neq B$, then $\mu(A) < \mu(B)$,
2. $\mu(\{x\}) = 0$ for each $x \in X$ and $\mu(X) = 1$

is called a Whitney map for $C(X)$. Such a map always exists (see [7]). An order arc is a map $\sigma : [a, b] \to C(X)$ such that if $a \leq t_0 < t_1 \leq b$, then $\sigma(t_0) \subset \sigma(t_1)$ and $\sigma(t_0) \neq \sigma(t_1)$. It is also called an order arc from $\sigma(a)$ to $\sigma(b)$.

If A, B are distinct elements of $C(X)$, then there is an order arc from A to B if and only if $A \subset B$ (see [1]).

We often use the following lemmas which are easy to prove hence we omit their proofs.

Lemma 1. Let Y be a proper subcontinuum of X. If there is a subcontinuum M of X such that $M \cap Y \neq \emptyset \neq M - Y$, then for any $\varepsilon > 0$ and $y \in M \cap Y$, there is a subcontinuum N of $M \cap Y$ such that $N \cap Y \neq \emptyset \neq N - Y$ and $y \in N$.

The diameter of a subset A of X is denoted by $\delta(A)$, i.e., $\delta(A) = \sup \{ d(x, y) : x, y \in A \}$.

Remark. If \mathcal{A} is a connected subset of $C(X)$ such that $Y \in \mathcal{A}$ and $\delta(\mathcal{A}) \leq \varepsilon$, then $\mathcal{A} \subset C(Y_\varepsilon)$.

Lemma 2. If a subset $\{A, B, C, D\} \subset C(X)$ satisfies $A \subset B \cap C \subset B \cup C \subset D$, then $H_d(B, C) \leq H_d(A, D)$. In particular, if σ is an order arc, then $\delta(\sigma([a, b])) = H_d(\sigma(a), \sigma(b))$.

Furthermore we need the following Krasinkiewiz-Nadler's Theorem (Theorem 3.1 of [2]).

Proposition 3. Let $\mu : C(X) \to [0, 1]$ be a Whitney map and $A_1, A_2 \in \mu^{-1}(t_0)$, where $t_0 \in [0, 1]$. Let K be a subcontinuum of $A_1 \cap A_2$. Then there is a map $\alpha : [0, 1] \to \mu^{-1}(t_0) \cap C(A_1 \cup A_2)$ such that $\alpha(0) = A_1$, $\alpha(1) = A_2$ and $K \subset \alpha(t)$ for all $t \in [0, 1]$. If $A_1 \neq A_2$, then α can be taken to be an embedding.

In fact Theorem 3.1 of [2] is much more general, and from its proof we obtain the following lemma.

Lemma 4. Let $\mu : C(X) \to [0, 1]$ be a Whitney map and let A, B, C be
subcontinua of X such that $A \cap B \supset C$. Then there is a map $\alpha : [0, 1] \rightarrow \mu^{-1}(\mu(A) \cap C(A \cup B))$ such that $\alpha(0) = A, \alpha(t) \supset C$ for each $t \in [0, 1]$, and if $\mu(A) \leq \mu(B)$ then $\alpha(1) \subset B$, and if $\mu(A) > \mu(B)$ then $\alpha(1) \supset B$.

In the same paper they proved (Theorem 3.5 in [2]) that:

Proposition 5. Let X be decomposable and $\mu : C(X) \rightarrow [0, 1]$ a Whitney map. Then there is $s_0 \in [0, 1]$ such that if $s \in [s_0, 1]$, then $\mu^{-1}(s)$ is arcwise connected.

The following proposition is Theorem 4.6 of [4].

Proposition 6. If Y is a non-degenerate proper subcontinuum of X, then the following two statements are equivalent:

1. $C(X) - \{Y\}$ is not arcwise connected.
2. There is a dense subset D of Y such that if M is a subcontinuum of X satisfying $M \cap D \neq \emptyset \neq M - Y$, then $M \supset Y$.

2. Bypass Lemma

Let $K, L \in C(X)$ and $\mathcal{A} \subset C(X)$. An arc from K to L in \mathcal{A} is a map $\alpha : [a, b] \rightarrow \mathcal{A}$ such that $\alpha(a) = K$ and $\alpha(b) = L$. If α is an embedding, then we call it an embedding arc. Following is a key lemma.

Lemma 7. Let Y be a non-degenerate proper subcontinuum of a continuum X such that $C(X) - \{Y\}$ is arcwise connected. Let $\alpha : [0, 1] \rightarrow C(X)$ be a map such that $\alpha(1) = Y$ and $\alpha(t) \in C(Y) - \{Y\}$ for each $t \in [0, 1]$. Then for a given $\varepsilon > 0$, there is a map $\beta : [0, 1] \rightarrow C(X) - \{Y\}$ such that $\alpha(0) = \beta(0)$, $H_\varepsilon(\alpha(t), \beta(t)) < \varepsilon$ for each $t \in [0, 1]$ and $\beta(1) - Y \neq \emptyset$.

Proof. First suppose that Y is indecomposable. Put $\varepsilon_1 = \varepsilon / 3$. Since α is continuous, there is $t_0 \in [0, 1)$ such that $\delta(\alpha((t_0, 1])) < \varepsilon_1$. Let λ be the composant of Y such that $\alpha(t_0) \subset \lambda$. By Lemma 1 and Proposition 6, there is a subcontinuum M of Y_{t_0} such that $M - Y \neq \emptyset \neq Y - M$ and $M \cap \lambda \neq \emptyset$. We may assume that $M \cap \alpha(t_0) \neq \emptyset$. (Because let λ' be a composant of Y different from λ. Since M is compact and $Y - M \neq \emptyset, \lambda' - M \neq \emptyset$. Thus we can replace M by $M \cup N$, where N is a continuum contained in λ such that $M \cap N \neq \emptyset \neq N \cap \alpha(t_0)$.) Let $\sigma : [t_0, 1] \rightarrow C(X)$ be an order arc from $\alpha(t_0)$ to $M \cup \alpha(t_0)$. Then
\[\delta(\sigma([t_0, 1])) = H_d(\alpha(t_0), M \cup \alpha(t_0)) \leq H_d(\alpha(t_0), Y) \]
\[\leq H_d(\alpha(t_0), Y) + H_d(Y, Y) < 2\varepsilon. \]

Define an arc \(\beta \) in \(C(X) \) by
\[
\beta(t) = \begin{cases}
\alpha(t) & \text{if } t \in [0, t_0], \\
\sigma(t) & \text{if } t \in (t_0, 1].
\end{cases}
\]

Clearly \(\beta \) is continuous and its image does not contain \(Y \). If \(t \in [0, t_0] \), then \(H_d(\alpha(t), \beta(t)) = 0 \). Suppose that \(t \in (t_0, 1] \). Then since \(\alpha(t_0) = \beta(t_0) \),
\[H_d(\alpha(t), \beta(t)) \leq H_d(\alpha(t), \alpha(t_0)) + H_d(\beta(t_0), \beta(t)) \]
\[\leq \delta(\alpha([t_0, 1])) + \delta(\sigma([t_0, 1])) < 3\varepsilon = \varepsilon. \]

For the second case, suppose that \(Y \) is decomposable. Put \(\varepsilon_1 = \varepsilon / 5 \) and let \(\mu \) be a Whitney map for \(C(X) \). By Proposition 5, there is \(s_0 < \mu(Y) \) such that if \(s \in [s_0, \mu(Y)] \), then \(\mu^{-1}(s) \cap C(Y) \) is arcwise connected. Moreover \(s_0 \) can be taken so that \(\delta(\mu^{-1}([s_0, 1]) \cap C(Y)) < \varepsilon_1 \). Since \(\alpha \) is continuous, there is \(t_0 \in [0, 1] \) such that \(\mu(\sigma([t_0, 1])) \subset [s_0, 1] \). For simplicity, put \(s_1 = \mu(\alpha(t_0)) \). By Proposition 6 and Lemma 1, there is a subcontinuum \(M \) of \(Y \), such that \(M \cap Y \neq \emptyset \) and \(M \cap Y \neq Y \). There are two cases.

(i) Suppose there is \(A \in \mu^{-1}(s_1) \cap C(Y) \) such that \(A \cap M \neq \emptyset \). Put \(t_1 = (t_0 + 1)/2 \) and let \(\sigma_1 : [t_0, t_1] \to \mu^{-1}(s_1) \cap C(Y) \) be an arc from \(\alpha(t_0) \) to \(A \) (such an arc exists since \(s_0 \leq s_1 < \mu(Y) \)) and \(\sigma_2 : [t_1, 1] \to C(X) \) an order arc from \(A \) to \(A \cup M \). Note that \(\delta(\sigma_2([t_1, 1])) < 2\varepsilon_1 \). Define an arc \(\beta \) in \(C(X) \) by
\[
\beta(t) = \begin{cases}
\alpha(t) & \text{if } t \in [0, t_0], \\
\sigma_1(t) & \text{if } t \in (t_0, t_1], \\
\sigma_2(t) & \text{if } t \in (t_1, 1].
\end{cases}
\]

Clearly \(\beta \) is continuous and \(\beta(t) \neq Y \) for each \(t \in [0, 1] \). If \(t \in [0, t_0] \), then \(H_d(\alpha(t), \beta(t)) = 0 \). Suppose \(t \in [t_0, t_1] \). Then since \(\beta([t_0, t]) \subset \mu^{-1}(s_1) \cap C(Y) \),
\[H_d(\alpha(t), \beta(t)) \leq H_d(\alpha(t), \alpha(t_0)) + H_d(\beta(t_0), \beta(t)) \]
\[\leq \delta(\alpha([t_0, 1])) + \delta(\mu^{-1}(s_1) \cap C(Y)) < 2\varepsilon_1 < \varepsilon. \]

Finally suppose \(t \in [t_1, 1] \). Then
\[H_d(\alpha(t), \beta(t)) \leq H_d(\alpha(t), \alpha(t_1)) + H_d(\alpha(t_1), \beta(t)) + H_d(\beta(t), \beta(t)) \]
\[+ \delta(\alpha([t_1, 1])) + \delta(\sigma_2([t_1, 1])) < \varepsilon_1 + 2\varepsilon_1 + 2\varepsilon_1 + 5\varepsilon_1 = 5\varepsilon_1 = \varepsilon. \]

(ii) Suppose that for each \(A \in \mu^{-1}(s_1) \cap C(Y) \), \(A \cap M \neq \emptyset \) implies \(Y \subset A \cup M \).
In this case, each element of \(\mu^{-1}(s_1) \cap C(Y) \) intersects \(M \). In particular,
Arcwise connectedness of the complement in a hyperspace

\(\alpha(t_0) \cap M \neq \phi \). Considering an order arc from \(M \) to \(M \cup Y \), we can enlarge \(M \) and hence we can assume \(\mu(M) > s_i \). By Lemma 4, there is a map \(\sigma_i : [t_0, t_1] \to \mu^{-1}(s_i) \cap C(Y \cup M) \) from \(\alpha(t_0) \) to \(\sigma_i(t_i) \subset M \), where \(t_1 = (t_0 + 1)/2 \).

Let \(\sigma_2 : [t_1, 1] \to C(X) \) be an order arc from \(\sigma_i(t_i) \) to \(M \). Define an arc \(\beta \) in \(C(X) \) by

\[
\beta(t) = \begin{cases}
\alpha(t) & \text{if } t \in [0, t_0], \\
\sigma_i(t) & \text{if } t \in (t_0, t_1], \\
\sigma_2(t) & \text{if } t \in (t_1, 1].
\end{cases}
\]

As in case (i), \(\beta \) satisfies all the required conditions.

Now we prove the main lemma.

Bypass Lemma 8. Let \(Y \) be a subcontinuum of \(X \) such that \(C(X) - \{Y\} \) is arcwise connected and let \(\alpha : [0, 1] \to C(X) \) be an arc such that \(\alpha(t) = Y \) if and only if \(t = 1/2 \). Then for each \(\varepsilon > 0 \) and each \(a, b \), where \(0 \leq a < 1/2 < b \leq 1 \), there is a map \(\beta : [0, 1] \to C(X) - \{Y\} \) such that \(\alpha(t) = \beta(t) \) for all \(t \in [a, b] \) and \(H_d(\alpha(t), \beta(t)) < \varepsilon \) for all \(t \in [0, 1] \).

Proof. If \(Y = X \), then \(X \) is decomposable (by Theorem 11.4 and Corollary 11.8 of [5]). Let \(\mu \) be a Whitney map for \(C(X) \). By Proposition 5, there is \(s_0 \in [0, 1) \) such that \(\mu^{-1}(s) \) is arcwise connected for each \(s \in [s_0, 1] \). Moreover \(s_0 \) can be chosen so that \(\delta(\mu^{-1}[s_0, 1]) < \varepsilon/2 \). Since \(\alpha \) is continuous, there exist two numbers \(t_0, t_1 \) such that \(a \leq t_0 < 1/2 < t_1 \leq b \), \(\mu(\alpha(t_0)) = \mu(\alpha(t_1)) \in [s_0, 1] \) and \(\delta(\alpha([t_0, t_1])) < \varepsilon/2 \). Put \(\mu(\alpha(t_0)) = s_i \). Then since \(s_i \in [s_0, 1] \), there is a map \(\sigma : [t_0, t_1] \to C(Y) \) from \(\alpha(t_0) \) to \(\alpha(t_1) \). Define an arc \(\beta \) in \(C(X) - \{Y\} \) by

\[
\beta(t) = \begin{cases}
\alpha(t) & \text{if } t \in [0, t_0], \\
\sigma(t) & \text{if } t \in (t_0, t_1].
\end{cases}
\]

If \(t \in (t_0, t_1) \), then

\[
H_d(\alpha(t), \beta(t)) \leq H_d(\alpha(t), \alpha(t_0)) + H_d(\sigma(t_0), \sigma(t)) \\
\leq \delta(\alpha([t_0, t_1])) + \delta(\mu^{-1}(s_i)) < \varepsilon/2 + \varepsilon/2 = \varepsilon.
\]

Therefore \(\beta \) satisfies the required conditions.

Next suppose that \(Y \) is a proper subcontinuum of \(X \). Put \(\varepsilon_i = \varepsilon / 4 \). There exist two numbers \(t_0, t_1 \) such that \(a \leq t_0 < 1/2 < t_1 \leq b \) and \(\delta(\alpha([t_0, t_1])) < \varepsilon_i \). Note that \(\alpha([t_0, t_1]) \subset C(Y) \). If \(\alpha([t_0, 1/2]) \subset C(Y) \), then by Lemma 7, there is a map \(\sigma : [t_0, 1/2] \to C(Y) - \{Y\} \) such that \(\sigma(t_0) = \alpha(t_0), \sigma(1/2) \neq Y \neq \phi \) and \(H_d(\alpha(t), \sigma(t)) < \varepsilon_i \) for each \(t \in [t_0, 1/2] \). If \(\alpha([t_1, 1/2]) \subset C(Y) \neq \phi \), then put \(\sigma = \alpha[1/2, 1/2] \).

There is \(r \in (t_0, 1/2) \) such that \(\sigma(r) - Y \neq \phi \neq Y - \sigma(r) \). Let \(\tau : [r, 1/2] \to C(X) \) be
an order arc from $\sigma(r)$ to Y_t. Define $\beta_0 : [t_0, 1/2] \to C(X)$ by

$$\beta_0(t) = \begin{cases}
\sigma(t) & \text{if } t \in [t_0, r], \\
\tau(t) & \text{if } t \in (r, 1/2].
\end{cases}$$

It is easy to see that $H_d(\alpha(t), \beta_0(t)) < 4\varepsilon_1$ for each $t \in [t_0, 1/2]$.

As in the same way, we can find a map $\beta : \left[1/2, t_1\right] \to C(X)$ such that $\beta_1(1/2) = Y_t$, $\beta_1(t_1) = \alpha(t)$ and $H_d(\alpha(t), \beta_1(t)) < 4\varepsilon_1$ for each $t \in [1/2, t_1]$. Then the arc β defined by

$$\beta(t) = \begin{cases}
\alpha(t) & \text{if } t \in [0, t_0] \cup [t_1, 1], \\
\beta_0(t) & \text{if } t \in [t_0, 1/2], \\
\beta_1(t) & \text{if } t \in [1/2, t_1]
\end{cases}$$

satisfies the required conditions.

3. Arcwise Connectedness of the Complement

Let \mathcal{Y} be a closed subset of $C(X)$ such that $C(X) - \{Y\}$ is arcwise connected for each $Y \in \mathcal{Y}$. We will show that if \mathcal{Y} is a finite set, then its complement is also arcwise connected. Using this, we show that the same is fold if \mathcal{Y} is a closed countable set. If $\mathcal{A} \subset \mathcal{E}(X)$ and $\varepsilon > 0$, then we wright the ε-neighborhood of \mathcal{A} in $C(X)$ by $N(\mathcal{A}; \varepsilon)$.

THEOREM 9. Let \mathcal{Y} be a finite subset of $C(X)$ such that $C(X) - \{Y\}$ is arcwise connected for each $Y \in \mathcal{Y}$ and let $\alpha : [0, 1] \to C(X)$ be an arc from K to L, where $K, L \in C(X) - \mathcal{Y}$. Then for each $\varepsilon > 0$, there is a map $\beta : [0, 1] \to C(X) - \mathcal{Y}$ from K to L such that $\beta([0, 1]) \subset N(\alpha([0, 1]); \varepsilon)$.

PROOF. If $K = L$, then we can take β to be a constant map. Hence let us suppose $K \neq L$. There is an embedding $\alpha' : [0, 1] \to \alpha([0, 1])$ such that $\alpha(t) = \alpha'(t)$ for $t = 0, 1$. Therefore we can assume that α is an embedding arc and hence $\alpha^{-1}(\mathcal{Y})$ is a finite set. Let $\alpha^{-1}(\mathcal{Y}) = \{t_1, t_2, \ldots, t_n\}$, where $0 < t_i < t_{i+1} < 1$ for $i = 1, 2, \ldots, n - 1$.

(i) Suppose $n = 1$ and without loss of generality, assume $t_1 = 1/2$. Put $\alpha(1/2) = Y$. Then $\alpha([0, 1])$ and $\mathcal{Y}_1 = \mathcal{Y} - \{Y\}$ are closed and disjoint. Put $\delta = H_d(\alpha([0, 1]), \mathcal{Y}_1)$ and $\varepsilon_1 = \min(\varepsilon, \delta)$. Then $\varepsilon_1 > 0$. Applying Bypass Lemma, there is a map $\beta : [0, 1] \to C(X) - \{Y\}$ from K to L such that $H_d(\alpha(t), \beta(t)) < \varepsilon_1$. By the choice of ε_1, β satisfies the required conditions.

(ii) Suppose $k \geq 2$ and the Theorem holds for $n = k - 1$. Let $\alpha^{-1}(\mathcal{Y}) = \{t_1, t_2, \ldots, t_k\}$ where $0 < t_i < t_{i+1} < 1$ for $i = 1, 2, \ldots, k - 1$. Put $\delta = H_d(\alpha([t_0, 1]), \mathcal{Y} - \{\alpha(t_k)\})$ and
\[\varepsilon_i = \min \{ \varepsilon / 2, \delta \}, \quad \text{where} \quad t_0 = (t_{i-1} + t_i) / 2. \] Then partially applying Bypass Lemma, there is a map \(\beta : [0,1] \to C(X) \) such that \(\alpha|[0,t_0] = \beta|[0,t_0], \alpha(1) = \beta(1), \) \(H_\varepsilon(\alpha(t),\beta(t)) < \varepsilon, \) and \(\beta((0,1]) \) does not contain \(\alpha(t_1) \). Let \(\alpha_i \) be an embedding arc from \(K \) to \(L \) such that \(\alpha_i(0,1]) \subseteq \beta_i(0,1]) \). Then it is easy to see that the image of \(\alpha_i \) intersects at most \(n - 1 \) elements of \(\mathcal{Y} \). Therefore by the inductive hypothesis, there is an arc \(\beta \) from \(K \) to \(L \) in \(C(X) - \mathcal{Y} \) such that \(\beta((0,1]) \subseteq N(\alpha((0,1];\varepsilon/2)). \) Hence \(\beta \) is a required arc.

Corollary 10. Let \(\mathcal{F} \) be a closed subset of \(C(X) \) and let \(\mathcal{A} \) be an arc component of \(C(X) - \mathcal{F} \). If \(\mathcal{Y} \) is a finite subset of \(C(X) \) such that \(C(X) - \{ \mathcal{Y} \} \) is arcwise connected for each \(\mathcal{Y} \in \mathcal{Y} \), then \(\mathcal{A} - \mathcal{Y} \) is arcwise connected.

Proof. Let \(K, L \) be arbitrary elements of \(\mathcal{A} - \mathcal{Y} \). There is a map \(\alpha : [0,1] \to \mathcal{A} \) from \(K \) to \(L \). Put \(\varepsilon = (1/2)H_\varepsilon(\alpha([0,1]),\mathcal{F}). \) Then \(\varepsilon > 0 \) and hence by Theorem 9, there is a map \(\beta : [0,1] \to C(X) - \mathcal{Y} \) from \(K \) to \(L \) such that \(\beta([0,1]) \subseteq N(\alpha([0,1]);\varepsilon) \). By the definition of \(\varepsilon, N(\alpha([0,1]);\varepsilon) \cap \mathcal{F} = \emptyset. \) Therefore \(\beta \) is an arc in \(\mathcal{A} - \mathcal{Y} \) from \(K \) to \(L. \)

Let \(A' \) denote the derived set of the space \(A \). The derived set of \(A \) of order \(\lambda \) is defined by

\[A^{(\lambda)} = A', \quad A^{(\nu+1)} = (A^{(\nu)})' \quad \text{and} \quad A^{(\lambda)} = \bigcap_{\nu < \lambda} A^{(\nu)} \]

if \(\lambda \) is a limit ordinal (see [3]).

We say that a triple \(\{ \mathcal{F}, \mathcal{A}, \mathcal{Y} \} \) is **admissible** if \(\mathcal{F} \) is a closed subset of \(C(X), \mathcal{A} \) is an arc component of \(C(X) - \mathcal{F}, \mathcal{Y} \) is a closed countable subset of \(C(X) \) such that \(C(X) - \{ \mathcal{Y} \} \) is arcwise connected for each \(\mathcal{Y} \in \mathcal{Y}. \)

Theorem 11. If \(\{ \mathcal{F}, \mathcal{A}, \mathcal{Y} \} \) is admissible, then \(\mathcal{A} - \mathcal{Y} \) is arcwise connected.

Proof. First observe that the least ordinal \(\nu \) such that \(\mathcal{Y}^{(\nu)} = \emptyset \) (such an ordinal \(\nu \) exists since \(\mathcal{Y} \) does not contain perfect sets) is not a limit ordinal. Therefore there is the least ordinal \(\lambda \) such that \(\mathcal{Y}^{(\lambda)} = \emptyset. \) Denote such the ordinal \(\lambda \) by \(\Lambda(\mathcal{Y}). \) To prove the Theorem, we shall proceed by transfinite induction on \(\Lambda(\mathcal{Y}). \)

If \(\Lambda(\mathcal{Y}) = 0, \) then \(\mathcal{Y} \) is a finite set. Hence Theorem follows from Corollary 10.

Suppose that the Theorem holds for any admissible triple \(\{ \mathcal{F}, \mathcal{A}, \mathcal{Y} \} \) such that \(\Lambda(\mathcal{Y}) < \lambda \). Let \(\{ \mathcal{F}, \mathcal{A}, \mathcal{Y} \} \) be an admissible triple such that \(\Lambda(\mathcal{Y}) = \lambda \) and let \(K, L \) be arbitrary elements of \(\mathcal{A} - \mathcal{Y}. \) It is sufficient to show that there is an arc from \(K \) to \(L \) in \(\mathcal{A} - \mathcal{Y}. \) Since \(\mathcal{Y}^{(\lambda+1)} = \emptyset, \mathcal{Y}^{(\lambda)} \) is a finite set. Therefore by Corollary 10,
there is a map \(\alpha : [0,1] \to \mathcal{A} - \mathcal{Y}^{(\lambda)} \) from \(K \) to \(L \). Put \(\varepsilon = (1/2)H_j(\alpha([0,1])), \mathcal{Y} = \mathcal{Y} - N(\mathcal{Y}^{(\lambda)}; \varepsilon), \mathcal{F}_1 = \mathcal{F} \cup N(\mathcal{Y}^{(\lambda)}; \varepsilon) \), where \(N(\mathcal{Y}^{(\lambda)}; \varepsilon) \) is the closure of \(N(\mathcal{Y}^{(\lambda)}; \varepsilon) \) in \(C(X) \), and let \(\mathcal{A}_1 \) be the arc component of \(C(X) - \mathcal{F}_1 \) containing \(K \) (and hence \(L \)). Note that \(\mathcal{A}_1 \subset \mathcal{A} \). The triple \(\{ \mathcal{F}_1, \mathcal{A}_1, \mathcal{Y}_1 \} \) is admissible and \(\Lambda(\mathcal{Y}_1) < \lambda \). Hence by inductive hypothesis, there is an arc from \(K \) to \(L \) in \(\mathcal{A}_1 - \mathcal{Y}_1 \). Since \(\mathcal{A}_1 - \mathcal{Y}_1 \subset \mathcal{A} - \mathcal{Y} \) and \(K, L \) are arbitrary elements of \(\mathcal{A} - \mathcal{Y} \), \(\mathcal{A} - \mathcal{Y} \) is arcwise connected.

Corollary 12. If \(\mathcal{Y} \) is a countable closed subset of \(C(X) \) such that \(C(X) - \{Y\} \) is arcwise connected for each \(Y \in \mathcal{Y} \), then \(C(X) - \mathcal{Y} \) is arcwise connected.

References

Department of Mathematics, Tokyo Gakugei Univ.
Nukuikitamachi, koganei-shi, Tokyo, 184, Japan