ON \textit{q}-PSEUDOCONVEX OPEN SETS IN A COMPLEX SPACE

By

Edoardo Ballico

In a series of (perhaps not widely known) papers T. Kiyosawa ([1], [2], [3], [4], [5]) introduced and developed the notion of Levi \textit{q}-convexity. Here we show how to use this notion to improve one of his results ([2] Th. 2) (for a different extension, see [7]). To state and prove our results, we recall few definitions.

Let \(M \) be a complex manifold of dimension \(n \); a real \(C^2 \) function \(u \) on \(M \) is said to be \(q \)-convex at a point \(P \) of \(M \) if the hermitian from \(L(u)(P)=\sum_{i,j}(\frac{\partial^2 u}{\partial z_i \partial \bar{z}_j})_P \times (P)a_i a_j, z_1, \ldots, z_n \) local coordinates around \(P \), has at least \(n-q+1 \) strictly positive eigenvalues; we say that \(u \) is Levi \(q \)-convex at \(P \) if either \((du)_P=0 \) and \(u \) is \(q \)-convex at \(P \) or \((du)_P\neq0 \) and the restriction of \(L(u)(P) \) to the hyperplane \(\left\{ \sum_{i} \left(\frac{\partial u}{\partial z_i} \right)(P) a_i = 0 \right\} \) has at least \(n-q \) strictly positive eigenvalues. Let \(X \) be a complex space, \(A \in X \), and \(f: X \rightarrow \mathbb{R} \) a \(C^2 \) function; we say that \(f \) is \(q \)-convex (or Levi \(q \)-convex) at \(A \) if there is a neighborhood \(V \) of \(A \) in \(X \), a closed embedding \(\varphi: V \rightarrow U \) with \(U \) open subset of an euclidean space, a \(C^2 \) function \(u \) on \(U \) such that \(f| V = u \circ \varphi \) and \(u \) is \(q \)-convex (or respectively Levi \(q \)-convex) at \(P = \varphi(A) \). It is well-known that a \(q \) convex function is Levi \(q \) convex and that both notions do not depend upon the choice of charts and local coordinates; for any fixed choice of charts and local coordinates we will call \(L(u)(P) \) the Levi form of \(u \) at \(P \) and of \(f \) at \(A \).

An open subset \(D \) of a complex space \(X \) is said to have regular Levi \(q \)-convex boundary if we can take a covering \(\{V_i\} \) of a neighbourhood of the boundary \(bD \) of \(D \) with closed embeddings \(\varphi_i: V_i \rightarrow U_i \) and \(U_i \) open in an euclidean space and \(C^2 \) functions \(f_i \) on \(U_i \), with \(V_i \cap D = \{ x \in V_i : f_i \circ \varphi_i(x) < 0 \} \) and such that if \(x \in V_i \cap V_j \), there is a neighborhood \(A \) of \(x \) in \(V_i \cap V_j \) such that on \(A = f_i(f_j \circ \varphi_i) \circ A \) with \(f_{ij} > 0, f_{ij} \in \mathbb{C}^2 \) on \(A \). The last condition is always satisfied for a domain \(D \) defined locally by Levi \(q \)-convex functions \(s_i \) if the set of points of \(bD \) at which either \(dS \) vanishes or \(X \) is singular is discrete.

A complex space \(X \) is called \(q \)-complete if it has a \(C^2 \) \(q \)-convex exhausting function \(f \); if \(f \) is both \(q \)-convex and weakly plurisubharmonic, \(X \) is called very

Received November 9, 1985.
strongly q-convex (in the sense of T. Ohsawa [6]).

Now we can state our results.

Theorem. Let D be a regular Levi q-convex open subset of a complex space X. Then there exist a neighbourhood V of the boundary bD and a q-convex real function t such that $D \cap V = \{x \in V : t(x) < 0\}$.

Corollary. Let X be a very strongly q-convex space and D an open subset of X with regular Levi q-convex boundary. Then D is q-complete.

Compare the corollary with the main result in [7].

Proof of the theorem. Note that the proof of [2] Theorem 2 goes on verbatim even if D is not relatively compact in X. The quoted result gives a neighbourhood W of bD and a Levi q-convex function g in W such that $D \cap W = \{x \in W : g(x) < 0\}$. Consider a strictly positive real function v on W. Set $t = ge^{vq}$. Since g vanishes on bD, the Levi form of t at a point y in bD is proportional to the Levi form at y of e^{vq}, with $c = g(y)$. Hence if $g(y)$ is sufficiently high, t is q-convex at $y \in bD$ ([3] Prop. 2 or [5] Lemma 2); how big must be $g(y)$ depend only from the eigenvalues of the Levi form of g at y; hence the same constant works also in a neighbourhood of y. Let $\{V_n\}$, $\{U_n\}$ be locally finite coverings of W with V_n relatively compact in U_n, $\{U_n\}$ fine enough (in particular with local charts on which g may be find constants $c_n > 0$ such that if $u < c_n$ on V_n, $t = ge^{vq}$ is q-convex at every point of bD, hence in a neighbourhood V of bD. Q.E.D.

Proof of the corollary. By the theorem we may find an open neighbourhood V of bD and a real C^2 q-convex function f on V such that $V \cap D = \{x \in V : f(x) < 0\}$. Let W be an open neighbourhood of bD with closure contained in V. Note that the function $s := -f^{-1}$ is q-convex on $V \cap D$ and goes to infinity near bD. Let u be a real non-negative C^2 function on U with support containd in $V \cap D$, $u = 1$ in $W \cap D$. We may consider us as a function on D setting $(us)(x) = 0$ if $x \notin V$. Take an exhaustive, positive, q-convex function h on X. Take an increasing sequence $\{K_n\}$ or compact subset of X, with union X and a sequence $\{c_n\}$ of strictly positive real numbers. Take a C^2 function $b : R \to R$ with $b(t) = 0$ for $t \leq -1$, $b(t) \geq c_j$ for $j \leq t \leq j + 1$ and $b'(t) > 0$ for $t > -1$. Set $g(t) = \int_{-\infty}^{t} b(x) dx$

and set $F = g \circ h$. For every $P \in X$ and any choice of local coordinates, we have $L(F)(P) \geq b(h(P))L(g)(P)$. Hence we may choose the constants c_j with $c \geq j$ and such that $F + s$ is q-convex on $(D \setminus W) \cap K_j$ for every j. Since F is plurisubharmonic, $F + s$ is q-convex on D. If $\{x_n\}$ is a sequence in D without accumula-
On q-pseudoconvex Open Sets in A Complex Space

On points in X, then $(F(x_n))$ and $\{F(x_n)+s(x_n)\}$ are unbounded on $\{x_n\}$. The function s is unbounded on every sequence of points in D converging to a point in bD, hence $F+s$ is an exhaustion function on D. Q. E. D.

References

Scuola Normale Superiore
56100 Pisa
Italy