THE GENERALIZATIONS OF FIRST COUNTABLE SPACES

By

Zhu JIAN-PING

Abstract. In this paper we consider some generalizations of first countable spaces, called w_κ-spaces. When $\kappa=1$, ω_1, ω, the spaces are respectively Fréchet spaces, w-spaces in the sense of G. Gruenhage [5] and first countable spaces. We show that the w_κ-spaces are the images of metric spaces under certain kind of continuous maps, called w_κ-maps. For any cardinals $\kappa_1<\kappa_2$, we construct by forcing a model in which there is a countable space with character ω, which is a w_{κ_1}-space but not w_{κ_2}-space.

1. Introduction

Generalizations of first countable spaces have been one of the traditional topics in general topology. G. Gruenhage [5] defined the class of w-spaces by topological games. P.L. Sharma [9] gave out a very useful characterization of w-spaces. In this paper we introduce w_κ-spaces which establish an interesting relationship among Fréchet spaces, w-spaces and first countable spaces.

It is well-known that Fréchet spaces and first countable spaces are respectively the images of metric spaces under pseudo-open and almost open maps (see [7]). The author [10] proved that w-spaces are the images of metric spaces under w-maps. Theorem 3.2 in this paper unifies all of these results.

Assuming MA, F. Galvin [4] constructed a w-space which is not a c^*-space, i.e. a space X with countable tightness and every countable subspace of X is first countable. In this paper we show that for any cardinals $\kappa_1<\kappa_2$, it is consistent that there is a countable space with character ω, which is a w_{κ_1}-space but not w_{κ_2}-space.

2. Notations, Definitions and Basic Properties

All spaces considered are assumed to be Hausdorff and maps continuous onto. The notation $\{A_\alpha : \alpha < \kappa\}$ is not necessarily faithful. For the terminology

Received December 20, 1989. Revised June 18, 1990.
168 Zhu JIAN-PING

and basic facts about forcing see [6], for the weak versions of Martin’s axiom see [3]. We use \mathcal{G} to denote the least cardinality of a centered family \mathcal{G} of subsets of ω such that there is no $A \subseteq [\omega]^\omega$ such that $A \subseteq \mathcal{G}$ for any $B \in \mathcal{G}$.

α, β, \ldots denote ordinals and κ, λ, \ldots cardinals.

Definition 2.1. We call a map $f : X \to Y$ a w_κ-map, if for any $y \in Y$ and any open cover $\{U_\alpha : \alpha < \kappa\}$ of $f^{-1}(y)$, there exists an α such that $y \in \text{int}(f(U_\alpha))$. If a map is a w_κ-map for any κ, we call it a w_ω-map. From now on, κ is a nonzero cardinal or ω.

It is obvious that the class of w_κ-maps equals to the class of pseudo-open maps. We can easily construct for any $\kappa_1 < \kappa_2$ a map which is a w_{κ_2}-map but not w_{κ_1}-map.

Lemma 2.1. Let $f : X \to Y$, then the following are equivalent:

1. f is a w_ω-map;
2. If $\{A_\alpha : \alpha < \kappa\}$ is a family of subsets of Y, $y \in \cap \{\text{cl}(A_\alpha) : \alpha < \kappa\}$, then there exists an $x \in f^{-1}(y)$, $x \in \cap \{\text{cl}(f^{-1}(A_\alpha)) : \alpha < \kappa\}$.

Proof. (1)\Rightarrow(2) Suppose that there exists a family $\{A_\alpha : \alpha < \kappa\}$ of subsets of Y and $y \in \cap \{\text{cl}(A_\alpha) : \alpha < \kappa\}$ such that for any $x \in f^{-1}(y)$, $x \notin \cap \{\text{cl}(f^{-1}(A_\alpha)) : \alpha < \kappa\}$. Then if $x \in f^{-1}(y)$, there are an open neighbourhood U_x of x and an $\alpha_x < \kappa$ such that $U_x \cap f^{-1}(A_{\alpha_x}) = \emptyset$. Let $U_a = \cup \{U_x : x \in f^{-1}(y) \& \alpha_x = \alpha\}$ for any $\alpha < \kappa$. $\{U_\alpha : \alpha < \kappa\}$ is clearly an open cover of $f^{-1}(y)$. Since f is a w_κ-map, there is a U_a such that $y \in \text{int}(f(U_a))$. However, $U_a \cap f^{-1}(A_a) = \cup \{U_x \cap f^{-1}(A_\alpha) : x \in f^{-1}(y) \& \alpha_x = \alpha\} = \emptyset$. So $f(U_a) \cap A_a = \emptyset$, but $y \in \text{cl}(A_a)$. This is a contradiction.

(2)\Rightarrow(1) Suppose that f is not a w_ω-map, i.e. we have a $y_0 \in Y$ and a cover $\{U_\alpha : \alpha < \kappa\}$ of $f^{-1}(y_0)$ such that for any α, U_α is open and $y_0 \notin \text{int}(f(U_\alpha))$. Therefore, we have $y_0 \in \cap \{\text{cl}(Y - f(U_\alpha)) : \alpha < \kappa\}$. By (2), there exists an $x \in f^{-1}(y_0)$ such that $x \in \cap \{\text{cl}(f^{-1}(Y - f(U_\alpha))) : \alpha < \kappa\}$. However, since $\{U_\alpha : \alpha < \kappa\}$ is a cover of $f^{-1}(y_0)$, there is a U_α, $x \in U_\alpha$. Since $U_\alpha \cap f^{-1}(Y - f(U_\alpha)) = \emptyset$, $x \in \text{cl}(f^{-1}(Y - f(U_a)))$. This contradiction completes the proof.

Definition [7] 2.2. $f : X \to Y$ is called almost open, if for any $y \in Y$, there is an $x \in f^{-1}(y)$ such that for any neighbourhood U of x, $f(U)$ is a neighbourhood of y.

Theorem 2.1. Let $f : X \to Y$. The following are equivalent:

1. f is an almost open map;

The Generalizations of First Countable Spaces

169

(2) \(f \) is a \(w_{\mu_1} \)-map, where \(\mu_1 = \sup \{ L(f^{-1}(y)) : y \in Y \} \), \(L \) denotes the Lindelöf degree;

(3) \(f \) is a \(w_{\mu_1} \)-map, where \(\mu_2 = 2^{\nu_1} \).

The proof is routine by the definitions and Lemma 2.1.

3. Theorems on \(w_\kappa \)-spaces

DEFINITION 3.1. A space \(Y \) is called a \(w_\kappa \)-space, if for any family \(\{ A_\alpha : \alpha < \kappa \} \) of subsets of \(Y \) and \(y \in \cap \{ \text{cl}(A_\alpha) : \alpha < \kappa \} \), there exists a decreasing sequence \(\{ F_\alpha : n \in \omega \} \) of subsets of \(Y \) satisfying that \(F_n \cap A_\alpha \neq 0 \) for any \(n \) and \(\alpha \) and for any open neighbourhood \(U \) of \(y \) there is an \(n \) such that \(F_m \subseteq U \) for any \(m > n \), i.e., \(\{ F_\alpha : n \in \omega \} \) converges to \(y \). What a \(w_\omega \)-space means is obvious.

We can see easily from the definition that when \(\kappa \) is finite, \(w_\kappa \)-spaces are exactly Fréchet spaces. By the trick of repeatedly enumerating, if necessary, we can see from [9] that \(w_\omega \)-spaces are exactly the \(w \)-spaces in the sense of G. Gruenhage [5].

THEOREM 3.1. Let \(Y \) be a space. The following are equivalent:

1. \(Y \) is a first countable space;
2. \(Y \) is a \(w_\omega \)-space;
3. \(Y \) is a \(w_{\omega_1} \)-space.

PROOF. We need only to proof (3) \(\rightarrow \) (1). Take \(y \in Y \). We enumerate \(\{ A : y \in \text{cl}(A) \cap \text{Ac}Y \} \) as \(\{ A_\alpha : \alpha < 2^{\nu_1} \} \). Since \(Y \) is a \(w_{\omega_1} \)-space, there must be a decreasing sequence \(\{ F_\alpha : n \in \omega \} \) converging to \(y \) such that \(F_n \cap A_\alpha \neq 0 \) for any \(n \) and \(\alpha \). Let \(U_n = \text{int}(F_n) \). Then \(\{ U_n : n \in \omega \} \) is a neighbourhood base at \(y \). \(\square \)

We generalize A.V. Arhangel'skii's sheaf (see [8]) to any cardinals. We need it in the proof of Theorem 3.2.

DEFINITION 3.2. If \(\{ r_\alpha : \alpha < \lambda \} \) is a family of convergent sequences with a common limit point \(y \), we call it \(\kappa \)-sheaf with the vertex \(y \). Let \(r_\alpha = \{ y_n : n \in \omega \} \). If for any neighbourhood \(U \) of \(y \), there is an \(n_0 \) such that \(y_n \in U \) for any \(n > n_0 \) and \(\alpha \), we call it a uniform \(\kappa \)-sheaf. If for any \(\kappa \)-sheaf \(\{ r_\alpha : \alpha < \kappa \} \) in \(Y \) there is a uniform \(\kappa \)-sheaf \(\{ r'_\alpha : \alpha < \kappa \} \) such that \(r'_\alpha \) is a subsequence of \(r_\alpha \), we call \(Y \) a \(\kappa \)-sheafed space.
Proposition 3.1. A space Y is a w_κ-space if and only if Y is a Fréchet κ-sheafed space. Consequently, w_κ-spaces are almost countably productive for any $\kappa \geq \omega$.

The last part of Proposition 3.1 follows from the fact that w-spaces are almost countably productive [8].

Theorem 3.2. A space Y is a w_κ-space if and only if Y is an image of a metric space under a w_κ-map.

Proof. On the part of "only if" needs to be proven here, since w-spaces are preserved by w-maps by Lemma 2.1.

Let \(\{R_\eta : \eta \in \Lambda \} \) be an enumeration of all uniform κ-sheaves in Y. For any $\eta \in \Lambda$ we construct a metric space X_η as follows: Take κ disjoint countable infinite sets \(\{s_{\eta \alpha} : \alpha < \kappa \} \) and \(x_\eta \not\in \bigcup \{s_{\eta \alpha} : \alpha < \kappa \} \). Let \(X_\eta = \bigcup \{s_{\eta \alpha} : \alpha < \kappa \} \cup \{x_\eta \} \) and \(s_{\eta \alpha} = \{x_{2n}^\alpha : n \in \omega \} \). We define
\[
\begin{align*}
 d_\eta(x_{2m}^\alpha, x_{2n}^\beta) &= \begin{cases} 1/m + 1/n & \alpha \neq \beta \\ 1/m - 1/n & \alpha = \beta \end{cases} \\
 d_\eta(x_{2m}^\alpha, x_\eta) &= 1/m.
\end{align*}
\]

Then \((X_\eta, d_\eta) \) is a metric space. Let X be the topological sum of \(\{X_\eta : \eta \in \Lambda \} \) and \(f : X \to Y \) be the map which maps X_η onto $\bigcup R_\eta$ in a natural way. Now we want to show that f is a w_κ-map. Suppose \(\{A_\alpha : \alpha < \kappa \} \) is a family of subsets of Y and \(y \in \bigcap \text{cl}(A_\alpha) : \alpha < \kappa \). Since Y is Fréchet, there is an $\eta \in \Lambda$ such that \(r_\eta \subset A_\eta \), where \(R_\eta = \{r_\alpha : \alpha < \kappa \} \), and the vertex of R_η is y. It is easily seen from the definition of f that \(s_{\eta \alpha} \subset f^{-1}(A_\alpha) \) and \(x_\eta \in f^{-1}(y) \). Therefore, \(x_\eta \in \text{cl}(f^{-1}(A_\eta)) \). By Lemma 2.1, f is a w_κ-map. This completes the proof. \square

Theorem 3.3. Let Y be a space with countable tightness and character less than κ. Then Y is a w_κ-space. In particular, if Y is countable, Y is a w_κ-space for any $\kappa < \kappa$.

Proof. Let \(\mathcal{U} \) be a local base at $y \in Y$ with cardinality less than κ. Suppose that \(\{A_n : n \in \omega \} \) is a family of subsets of Y such that $y \in A_n$. Since Y has countable tightness, we can assume that A_n is countable. Let \(\bigcup \{A_n : n \in \omega \} = \{y_n : n \in \omega \} \). We define \(P = \{(I, S) : I \in [\omega]^{<\omega} \land S \in [\mathcal{U}]^{<\omega} \} \) and \((I', S') \leq (I, S) \) iff \(I' \supset I \), \(S' \supset S \) and \(I \setminus I' \subset \bigcap \{U : U \subset S \} \). It is easily seen that \((P, \leq) \) is a \(\sigma \)-centered poset. The conclusion follows from the standard density arguments. \square
The Generalizations of First Countable Spaces

Remark. It follows from Example 4.2 that it is consistent that $\omega_1 < \rho < 2^\omega$ and there is a countable space with character ω_1 which is not a w_p-space.

4. Examples of countable w_x-spaces with character ω_1

It follows from Theorem 3.1 that every countable w_{ω_1}-space is first countable. Therefore, we are only interested in the models of $2^\omega > \omega_1$ in this section. We will construct some models of set theory in which there exist our desired examples.

Example 4.1. A countable space which is Fréchet but not a w-space.

Let X be the quotient space of countably many copies of $\{0, 1/2, 1/3, \ldots\}$ with all limits adhering together. We adjoin ω_1 dominating reals to any model of $2^\omega > \omega_1$. Then in this model, X is a desired one.

Example 4.2. A countable space with character ω_1 which is a w_{ω_1}-space but not w_{ω_1}-space, where $\omega \leq \kappa_1, \kappa_2 < 2^\omega$.

We can assume that κ_2 is regular. We start with a model V of $MA + 2^\omega \geq \kappa_2$. Let $\mathcal{A} = \{A_\alpha : \alpha < \omega_1\}$ be a family of infinite subsets of ω and well-ordered by \subset^*. We define a finite supports iteration $\langle (P_\eta, Q_\eta) : \eta < \kappa_1 \rangle$ of ccc forcing in the following way:

In $V^{P_{\kappa_2}}$, we first take a ccc poset Q'_η so that in $V^{P_{\kappa_2} * Q'_\eta}$ we have $MA + 2^\omega > \kappa_2$.

Now we work in $V^{P_{\kappa_2} * Q'_\eta}$. We define a poset $Q''_\eta = \{(a, S) : a \in \omega, S \subset [\omega]^\omega\}$ is finite and for any $\alpha < \omega_1, \cup S \subset A_\alpha$ where $(a', S') \subseteq (a, S)$ iff $a' \supset a, S' \supset S$ and $(a' \setminus a) \cap B = 0$ for any $B \subseteq S$. Let $D_{\alpha, \eta} = \{(a, S) : \text{there exists an } m > n \text{ such that } m \in a \cap A_\alpha\}$ for any α and η. It is easily seen that $D_{\alpha, \eta}$ is dense in Q''_η. So if G''_η is a generic filter of Q''_η then $B_\eta = \cup \{a : \text{there exists an } S \text{ with } (a, S) \in G''_\eta\}$ satisfies that $B_\eta \cap A_\alpha$ is infinite for any $\alpha < \omega_1$. By a similar density argument, if $B \in [\omega]^\omega \cap V^{P_{\kappa_2} * Q'_\eta}$ satisfies $B \subset A_\alpha$ for any $\alpha < \omega_1$, then $B \cap B_\eta$ is finite. Let $Q_{\kappa_2} = Q'_\kappa * Q''_\kappa$.

Let G_{κ_2} be a generic filter of P_{κ_2} over V. From now on, we work in $V[G_{\kappa_2}]$.

For any $U \subset [\omega]^\omega$ and $|U| < \kappa_2$ there is an $\alpha < \kappa_2$ such that $U \in V[G_\alpha]$. So if U has the strong finite intersection property, there is a $W \in [\omega]^\omega$ such that $W \subset^* U$ for any $U \in \mathcal{U}$. Therefore, we have $\rho \geq \kappa_2$ in $V[G_{\kappa_2}]$.

On the other hand, since there is no $U \in [\omega]^\omega$ such that $U \subset^* A_\alpha$ and $U \cap B_\eta$ is infinite for any $\alpha < \omega_1$ and $\eta < \kappa_2$, we have $\rho \leq \kappa_2$ by Theorem 3.8 [2].

Now we begin to construct the countable space X with character ω_1 which
is a w_{κ_1}-space but not w_{κ_2}-space. Let $X=\omega$. We define the topology in the following way: If $x \neq 0$, x is isolated; The neighbourhood base at 0 is \{(A_n \setminus s) \cup \{0\} : \alpha < \omega, \text{ and } s \subseteq [\omega]^\omega\}. By Theorem 3.3, X is a w_{κ_1}-space since $p = \kappa_2$. However, we can take \{\overline{B'_i} : \eta < \kappa_2\} \subseteq [\omega]^\omega$ so that $B'_i \subseteq A_\alpha \cap B_\eta$ for any $\alpha < \omega$ and $\eta < \kappa_2$. It is obvious that B'_i is a convergent sequence. Suppose that X is a w_{κ_2}-space. Then there exist \{\overline{F_n} : n \subseteq \omega\} such that:

1. \overline{F_n} \subseteq [\omega]^\omega$ and \overline{F_n+1} \subseteq \overline{F_n}$ for any $n \subseteq \omega$;
2. For any $\alpha < \omega$, there is an n such that \overline{F_n} \subseteq A_\alpha$;
3. \overline{F_n} \cap B_\eta \setminus m \neq 0$ for any $n, m \subseteq \omega$ and $\eta < \kappa_2$.

Therefore, there is an n such that $\overline{F_n} \subseteq A_\alpha$ and $\overline{F_n} \cap B_\eta$ is infinite for any $\alpha < \omega$ and $\eta < \kappa_2$. This is impossible by our choice of \{\overline{B'_i} : \eta < \kappa_2\}.

Question 4.1. Is it consistent that every countable w-space is first countable? Moreover, is it consistent with $\neg \text{CH}$ that every countable Fréchet space with character less than 2^{ω_1} is first countable?

Remark. A. Dow and J. Steprans [2] have constructed a model in which every countable Fréchet α_1-space is first countable.

Acknowledgement. The results in this paper was obtained when I was the graduate student of Professor Jia-Lin, Fang for Master degree and the graduate student of Professor Bao-Ming, Pu and Professor Hao-Xuan, Zhou for Ph. D. degree. This paper was revised while I was a research student of Professor Y. Kodama at University of Tsukuba. I would like to express my gratitude to them for their directions.

References

The Generalizations of First Countable Spaces

Dept. Math., Sichuan Univ.,
Chengdu, China.
Current Address:
Inst. Math., Univ. Tsukuba,
Ibaraki 305, Japan.