0. Introduction

A compact connected metric space is called a continuum. Let X be a continuum and d be a metric of X. A. Lelek [6], [7] defined the span, semispan, surjective span and surjective semispan by the following formulas (the map π_i denotes the projection map from $X \times X$ onto the i-th factor).

$$
\tau = \sigma, \sigma_0, \sigma^*, \sigma_0^*.
$$

$$
\tau = \sup \left\{ \alpha \geq 0 \left| \begin{array}{l}
\text{there exists a continuum } Z \subseteq X \times X \text{ such that} \\
Z \text{ satisfies the condition } \tau \text{ and} \\
d(x, y) \geq \alpha \text{ for each } (x, y) \in Z
\end{array} \right. \right\}.
$$

Where the condition \(\tau \) is

$$
\pi_1(Z) = \pi_1(Z) \quad \text{if } \tau = \sigma
$$
$$
\pi_1(Z) \supseteq \pi_1(Z) \quad \text{if } \tau = \sigma_0
$$
$$
\pi_1(Z) = \pi_1(Z) = X \quad \text{if } \sigma = \sigma^*
$$
$$
\pi_1(Z) = X \quad \text{if } \tau = \sigma_0^*
$$

The property of having zero span (semispan, surjective span, surjective semispan resp.) does not depend on the choice of metrics of X.

A continuum is said to be arc-like if it is represented as the limit of an inverse sequence of arcs. It is known that each arc-like continuum has span zero. But it is not known whether the converse implication is true or not. A continuum X is said to be hereditarily indecomposable if each subcontinuum Y of X cannot be represented as the union of two proper subcontinua of Y. Hereditarily indecomposable arc-like continuum is topologically unique. It is called the pseudo-arc and denoted by P in this paper. It is known to be a homogeneous plane continuum and is also important in span theory. For example, each span zero continuum is a continuous image of the pseudo-arc ([11] and [2]).

Received July 26, 1989. Revised October 25, 1989.
The purpose of this paper is to study some roles of the pseudo-arc in span theory. The paper is divided into three parts. In section 1, a uniformization theorem of maps from the pseudo-arc onto span zero continua is proved. As an application, we obtain a method of constructing maps from the pseudo-arc onto span zero continua. In section 2 and 3, we study the (weak) confluency of product maps. Using these results, we have an equivalent condition that a map preserves the property of having zero span in terms of (weak) confluency of product maps (cf. [10]). In section 4, we prove fixed point theorems for span zero continua, which are generalizations of [13].

To obtain these results, we use some techniques of Oversteegen [10] and Oversteegen-Tymchatyn [11].

Notations and definitions

Throughout this paper, \(Q \) denoted the Hilbert cube with a fixed metric. Let \(f, g : X \to Y \) be maps and \(\varepsilon > 0 \). We say that \(f \) and \(g \) are \(\varepsilon \)-near (denoted by \(f \sim \varepsilon g \)) if \(\sup \{ d(f(x), g(x)) | x \in X \} < \varepsilon \). The map \(f \triangle g : X \to Y \times X \) is defined by \(f \triangle g (x) = (f(x), g(x)) \).

A collection \(\mathcal{W} = \{ W_1, \ldots, W_n \} \) is called a weak chain if \(W_i \cap W_{i+1} \neq \emptyset \) for each \(1 \leq i \leq n-1 \). Let \(\mathcal{U} = \{ U_1, \ldots, U_m \} \) be another weak chain and \(f : \{ 1, \ldots, m \} \to \{ 1, \ldots, n \} \) be a pattern (i.e. \(|f(i) - f(i+1)| \leq 1 \) for each \(i \)). Then \(\mathcal{U} \) is said to follow \(f \) in \(\mathcal{W} \) if \(U_i \subseteq W_{f(i)} \) for each \(1 \leq i \leq m \). A continuum \(W \) is called weakly chainable if there exists a sequence \((\mathcal{W}_n) \) of weak chain covers of \(W \) such that mesh \(\mathcal{W}_n \to 0 \) as \(n \to \infty \), and for each \(n \), \(\mathcal{W}_{n+1} \) follows a pattern in \(\mathcal{W}_n \).

A continuum is weakly chainable if and only if it is a continuous image of the pseudo-arc \([5]\).

Let \(f : X \to Y \) be an onto map between continua. The map \(f \) is called confluent (weakly confluent resp.) if for each subcontinuum \(K \) of \(Y \), each (some resp.) component \(C \) of \(f^{-1}(K) \) satisfies \(f(C) = K \).

1. Uniformizations

The following proposition is proved by the same way as [11] Theorem 1 and [12] Lemma 6. We give an outline of the proof (cf. [10] Lemma 2).

Proposition 1. Let \(X \subseteq Q \) be a continuum and suppose that \(\sigma X \subseteq c \) (\(c \geq 0 \)). Let \(Z \) be a subcontinuum of \(X \).

1) For each \(\varepsilon > 0 \), there exists a \(\delta > 0 \) such that for each pair of maps \(h, k : I \to Q \) satisfying \(d_H(h(I), Z), d_H(k(I), Z) < \delta \), there exist onto maps \(a, b : I \to I \) such
that \(h \circ a = k \circ b \).

2) Suppose that \(X \) is hereditarily indecomposable and \(z \in Z \). If the maps \(h, k : I \to \mathbb{Q} \) in 1) further satisfy \(d(h(0), z), d(k(0), z) < \delta \), then the maps \(a \) and \(b \) can be chosen so that \(a(0) = b(0) = 0 \).

Outline of proof. We give an outline of the case 2). Give any subcontinuum \(Z \) and any \(\varepsilon > 0 \). For each pair of maps \(h, k : I \to \mathbb{Q} \), we define

\[
N(h, k; \varepsilon) = \{(x, y) \in I \times I \mid d(h(x), k(y)) < \varepsilon \}.
\]

As in the proof of [11] Theorem 1 and [12] Lemma 6, we have

a) there exists an \(\varepsilon > 0 \) which satisfies the following condition:

Let \(h, k : I \to \mathbb{Q} \) be any pair of maps satisfying

\[
\begin{align*}
\delta &< d_H(I, Z) < 2\delta, \\
d_H(0, I, Z) < \delta &< d_H(I, Z) < 2\delta.
\end{align*}
\]

Then each continuum \(K \subset I \times I \) with \(K \cap I \times 0 \not\subset K \cap 0 \times I \) intersects \(N(h, k; \varepsilon) \).

This \(\delta \) is the required number. To prove this, we take maps \(h, k : I \to \mathbb{Q} \) as in the hypothesis. Then as in [12] Lemma 6 again,

b) there exists a component \(C(\varepsilon) \) of \(N(h, k; \varepsilon) \) such that each continuum \(K \subset I \times I \) satisfying \(K \cap I \times 0 \not\subset K \cap 0 \times I \) intersects \(C(\varepsilon) \).

Let \(p_t \) be the projection map from \(I \times I \) to the \(i \)-th factor. It is easy to see that \((0, 0) \in C(\varepsilon) \) and

\[
\begin{align*}
p_1(C(\varepsilon)) &\supseteq I \quad \text{or} \quad p_2(C(\varepsilon)) = I.
\end{align*}
\]

Assume that \(p_i(C(\varepsilon)) = I \). By the similar argument of [11] Theorem 1, we see that there exists a component \(D(\varepsilon) \) of \(N(h, k; \varepsilon) \) such that \(p_2(D(\varepsilon)) = I \). But clearly, \(C(\varepsilon) \cap D(\varepsilon) \not\subset \emptyset \) so, \(C(\varepsilon) = D(\varepsilon) \).

Take a graph \(G \subset C(\varepsilon) \) such that \((0, 0) \in G \) and \(p_i(G) = I \) \(i = 1, 2 \). Let \(f : I \to G \) be an onto map such that \(f(0) = (0, 0) \). Then \(a = p_1 \circ f \) and \(b = p_2 \circ f \) are the required.

Let \(X_i \) be continua and \(d_i \) be a metric of \(X_i \) \((i = 1, 2) \). In this paper, the metric of \(X_i \times X_i \) is defined by \(d((x_1, x_2), (y_1, y_2)) = \max_{i=1,2} d_i(x_i, y_i) \).

Using Proposition 1.1 and the same way as [10] Theorem 3, we can prove the following.

Proposition 1.2. Let \(X_i \) be continua in \(\mathbb{Q} \) such that \(\sigma_i X_i \leq c \) \((c \leq 0) \) \(i = 1, 2 \). Then each pair of onto maps \(f_i : Y_i \to X_i \) \((i = 1, 2) \) satisfies the following condition.
For each subcontinuum $K \subset X \times X$ satisfying $\pi_i^X(K) = X_i$ ($i = 1, 2$), there exists a continuum $L \subset Y_1 \times Y_2$ such that $\pi_i^L(L) = Y_i$, $i = 1, 2$ and $d_H(f_i \times f_2)(L), K) \leq c$, where, the map π_i^X denotes the projection $X_i \times X_2$ to the i-th factor etc.

REMARK. In the proof of [10] Theorem 3, the weak confluency of each factor of the product map is used. The map f_i in the above proposition need not be weakly confluent, but the same proof works in our situation.

Theorem 1.3. Let $X \subset Q$ be a continuum such that $\sigma^*_s X \leq c$ ($c \geq 0$).

1) For each pair of onto maps $f, g : Y \to X$, there exists a continuum Z and onto maps $\alpha, \beta : Z \to Y$ such that $f \circ \alpha = g \circ \beta$.

2) In particular, if $Y = P$, then for each $\epsilon > 0$, there exists a homeomorphism $h : P \to P$ such that $f = g \circ h$.

Proof. 1) Consider the map $f \times g : Y \times Y \to X \times X$ and the diagonal set ΔX of X. By Proposition 1.2, there exists a continuum $Z \subset Y \times Y$ such that $\pi_i(Z) = \pi_i(Z) = Y$ and $d_H(f \times g(Z), X) \leq c$. Let $\alpha = \pi_1 | Z$ and $\beta = \pi_2 | Z : Z \to Y$, then α and β are onto maps. For each $(x, y) \in Z$, there exists a point $(p, p) \in \Delta X$ such that $d(f(x), p), d(g(y), p) \leq c$. Hence $d(f(x), g(y)) \leq 2c$. This means $f \circ \alpha = g \circ \beta$.

2) Give any $\epsilon > 0$. There exists a $\delta > 0$ such that for each $x, y \in P$ with $d(x, y) < \delta$, $d(f(x), f(y)) < \epsilon/2$ and $d(g(x), g(y)) < \epsilon/2$.

Consider the continuum Z as in 1). By [14], there exists a homeomorphism $h : P \to P$ such that $d_H(G(h), Z) < \delta/2$, where $G(h) = \{x, h(x) | x \in P\}$, the graph of h.

For each $p \in P$, there exists a point $(x, y) \in Z$ such that $d(x, p), d(h(p), y) < \delta$. Since $f(x) = g(y)$, we have that

\[d(f(p), g \circ h(p)) \leq d(f(p), f(x)) + d(f(x), g(y)) + d(g(y), g \circ h(p)) < \epsilon/2 + 2c + \epsilon/2 < 2c + \epsilon.\]

This completes the proof.

As an application of Theorem 1.3, we obtain a characterization of span zero continua as follows.

Theorem 1.4. Let $X \subset Q$ be a tree-like continuum in Q. Then the following are equivalent.

1) $\sigma X = 0$.

2) For each subcontinuum Z of X and for each $\epsilon>0$, there exists a $\delta>0$ such that

for each pair of maps $f, g: P \to Q$ satisfying $f(P) \supseteq g(P)$ and

$\delta(f(P), Z) < \delta$, there exists a subcontinuum $P_1 \subseteq P$ and an (onto)
homeomorphism $h: P_1 \to P$ such that $g \circ h = f | P_1$.

We need the following lemma for the proof.

Lemma 1.5. Let $f: P \to X$ be a map from the pseudo-arc into a weakly chain-able continuum X. Then there exists an arc-like continuum $P^* \supseteq P$ and an extension $F: P^* \to X$ of f such that $F(P) = X$.

Proof. Take a point p of P and let $x = f(p)$. Take another pseudo-arc P' and an onto map $g: P' \to X$. Fix a point $p' \in g^{-1}(x)$ and let P^* be the one point union of P and P' identified at p and p'. Define $F: P^* \to X$ by $F|_P = f$ and $F|_{P'} = g$. For each $\epsilon > 0$, there exist a chain cover C (or resp.) of P (P' resp.) such that mesh C (mesh C' resp.) < ϵ and p (p' resp.) is contained in the first link of C (or resp.). Using this fact, it is easy to see that P^* is arc-like.

Proof of Theorem 1.4.

1) \to 2). Notice that $\sigma vX = 0$ by [2]. Fix any subcontinuum Z and give any $\epsilon > 0$. As $\sigma vZ = 0$, there exists a $\delta > 0$ such that

each continuum $K \subseteq Q$ with $\delta(K, Z) < \delta$, satisfies $\sigma vK < \epsilon / 4$.

To prove that this δ is the required number, take any pair of maps $f, g: P \to Q$ as in the hypothesis. Then $\sigma v(f(P)) < \epsilon / 4$ by the choice of δ. By Lemma 1.5, there exist an arc-like continuum $P^* \supseteq P$ and a surjective extension $G: P^* \to f(P)$ of g. Fix an onto map $k: P \to P^*$. Applying Theorem 1.3 to f and $G \circ k: P \to f(P)$, there exists a homeomorphism $h^*: P \to P$ such that $h = G \circ k \circ h^*$.

Since P^* is arc-like, it is in class W (i.e. each map onto P^* is weakly confluent). Hence there exists a continuum $P_1 \subseteq P$ such that $k \circ h^*(P_1) = P$. Define $h' = k \circ h^* | P_1: P_1 \to P$. Each onto map from P_1 onto P is a near-homeomorphism by [14]. A homeomorphism $h: P_1 \to P$ which is sufficiently close to h' satisfies the required condition.

2) \to 1). Suppose that $\sigma vX = c > 0$. There exist maps $\alpha, \beta: C \to X$ from a continuum C such that $\alpha(C) = \beta(C)$ and $d(\alpha(p), \beta(p)) \geq c$ for each $p \in C$. We assume that $C \subseteq Q$ and let $Z = \alpha(C) = \beta(C)$ and $0 < \epsilon < c / 4$. Take δ for ϵ as in 2). Let $X = \lim X_n$ be the inverse limit description of X by an inverse sequence of trees.
We may assume that \(X \cup \bigcup X_n \subset \mathcal{Q} \) and the projection map \(p_n : X \to X_n \) is \(1/2^n \)-translation in \(\mathcal{Q} \). Take sufficiently large \(n \), so that \(1/2^n < \delta \) and let \(T = p_n(Z) \). Since \(T \) is a tree, \(p_n \alpha \) and \(p_n \beta \) has extensions \(A, B : \mathcal{Q} \to T \) respectively. There exists an \(\eta > 0 \) such that

for each \(x, y \in \mathcal{Q} \) with \(d(x, y) < \eta \), \(d(A(x), A(y)) < \varepsilon/2 \)
and \(d(B(x), B(y)) < \varepsilon/2 \).

Let \(E \) be the set of all end points of \(T \). For each \(p \in E \), take \(x_p \in (p_n \alpha)^{-1}(p) \).
It is easy to find a pseudo-arc \(P \subset \mathcal{Q} \) such that \(d_H(P, C) < \eta \) and \(\{ x_p \mid p \in E \} \subset P \).
Then \(A(P) = T \).

Applying 2) to \(A|P \) and \(B|P : P \to T \), we can find a subcontinuum \(P_i \subset P \) and a homeomorphism \(h : P_i \to P \) such that \(B \circ h = A \circ P_i \). There exists a point \(p \in P_i \) such that \(h(p) = p \). As \(d_H(C, P) < \eta \), we can find a point \(x \in C \) such that \(d(p, x) < \eta \). But then,

\[
d(a(x), \beta(x)) = d(A(x), B(x)) \
\leq d(A(x), A(p)) + d(A(p), B \circ h(p)) + d(B(p), B(x)) \
< \varepsilon/2 + \varepsilon + \varepsilon/2 = 2\varepsilon < \varepsilon/2,
\]

which is a contradiction.

This completes the proof.

The following theorem gives a method of constructing maps from \(P \) onto span zero continua.

Theorem 1.6. Let \(X \) be a continuum which is the limit of an inverse sequence \((X_n, p_{n+1} : X_{n+1} \to X_n)\). If \(\sigma X = 0 \), then \(X \) has the following property.

For each sequence \((a_n : P \to X_n)\) of onto maps, there exists a subsequence \((m_n)\) and a sequence of homeomorphism \((h_n : P \to P)\) such that the following diagram is \(1/2^{k-1} \)-commutative.

\[
\begin{array}{ccc}
P & \xleftarrow{h_{ij}} & P \\
\downarrow{a_{i}} & & \downarrow{a_{j}} \\
X_{n_i} & \xleftarrow{p_{n_i}n_{i}} & X_{n_j} \\
\end{array}
\]

Where, \(h_{ij} \) denotes \(h_{i+1}\circ h_{i+1}\circ \cdots \circ h_{j-1} \), etc.

Hence an onto map \(a : P \to X \) is induced \([9]\).
Again, we can assume that $X \cup \cup X_n \subset \mathbb{Q}$ and the projection $p_n : X \rightarrow X_n$ is an $1/2^n$-translation in \mathbb{Q}. For the proof, we need the following lemma.

Lemma 1.7. Under the above notation, the following condition holds.
For each $i \geq 1$ and each $\epsilon > 0$, there exist an integer $N > 0$ and a $\delta > 0$ such that

for each $n \geq N$ and any points $x, y \in X_n$ with $d(x, y) < \delta$,

$d(p_{i_n}(x), p_{i_n}(y)) < \epsilon$.

Proof. Define $\pi : X \cup \cup X_n \rightarrow X_i$ by $\pi|X = p_i$ and $\pi|X_n = p_{i_n}$. Then π is continuous. Hence for each $\epsilon > 0$, there exists a $\delta > 0$ such that for any points $x, y \in X \cup \cup X_n$ with $d(x, y) < 3\delta$, $d(\pi(x), \pi(y)) < \epsilon/2$. Take sufficiently large N such that for each $n \geq N$, p_n is a δ-translation in \mathbb{Q}. It is easy to see that N and δ are the required numbers.

Proof of Theorem 1.6. Inductively we will construct the desired diagram. Since $\lim_{s_0} \sigma_s X_n = \sigma_0 X = 0$ by [8] (3.1), (3.2), [4] and [2], taking a subsequence if necessary, we may assume that $\sigma_s X_n < 1/2^n$.

$i = 1$; Let $a_{n_{i-1}} = a_1$, and $\delta_i = 1/2$. Choose an $\epsilon_1 > 0$ so that $2(\sigma_0 X_n) + \epsilon_1 < \delta_i$.

$i = 2$; Applying Lemma 1.5 to $i = 1$ and $\epsilon = 1/2^2$, we have an integer $N_1 > 0$ such that $\delta_i < 1/2^2$ and

for each $n \geq N_1$ and for each $x, y \in X_n$ with $d(x, y) < \delta_2$,

$d(p_{i_n}(x), p_{i_n}(y)) < 1/2^2$.

Take an $a_{n_{i-2}} > N_1$, N_2 such that $\sigma_s X_n < \delta_i/2$ and choose $\epsilon_i > 0$ such that $2(\sigma_0 X_n) + \epsilon_i < \delta_i$. Applying Theorem 1.3 to ϵ_i, $a_{n_{i-2}}$, and $p_{n_{i-2}} a_{n_{i-2}}$, then we have a homeomorphism $h_{i_2} : P \rightarrow P$ such that $a_{n_{i-2}} h_{i_2} = p_{n_{i-2}} a_{n_{i-2}}$.

$i = 3$; Applying Lemma 1.5 to $i = 1$ and $1/2^3$, take $N_1^3 > 0$ and $\delta_i^3 > 0$. Applying Lemma 1.5 again to n_2 and $1/2^3$, take $N_2^3 > 0$ and $\delta_i^3 > 0$.

Let $N_1 > \max(N_3, N_3^3)$ and $0 < \delta_i^3 < \min(\delta_i^3, \delta_3^3)$, and take $n_{i-3} > n_3$, N_3 such that $\sigma_s X_n < \delta_i^3/2$. Choose an $\epsilon_2 > 0$ such that $2(\sigma_0 X_n) + \epsilon_2 < \delta_3$. Apply Theorem 1.3 to ϵ_2, a_{n_3} and $p_{n_3} a_{n_3}$. Then, there exists a homeomorphism $h_{i_3} : P \rightarrow P$ such that $a_{n_3} h_{i_3} = p_{n_3} a_{n_3}$. Since $2(\sigma_0 X) + \epsilon_2 < \delta_3 < 1/2^3$, we have

$$a_{n_3} h_{i_3} = p_{n_3} a_{n_3}$$

and

$$p_{n_3} a_{n_3} h_{i_3} = p_{n_3} a_{n_3}.$$

Continuing these steps, we have a subsequence \((n_i)\) and a sequence of homeomorphisms \((h_{i+1}: P \to P)\) such that

\[
\text{for each } k \leq i \leq j, \quad p_{n_k} a_{n_i} a_{n_j} h_{i+1} = p_{n_k} p_{i} a_{n_i} a_{n_j}.
\]

This completes the proof.

2. (Weak) Confluency of product maps

Proposition 2.1 (cf. [10] Theorem 3) Let \(Y\) be a continuum such that \(\sigma Y = 0\).

1) For each map \(f: X \to Y\) and for each continuum \(Z\), \(f \times \text{id}_Z\) is weakly confluent.

2) In particular, if \(Y\) is hereditarily indecomposable, then \(f \times \text{id}_Z\) is confluent.

Proof. The proof uses the method of [10] Theorem 3. We prove only the case 2). Let \(X = \lim (X_n, p_{n+1}: X_{n+1} \to X_n)\), \(Y = \lim (Y_n, q_{n+1}: Y_{n+1} \to Y_n)\) and \(Z = \lim (Z_n, r_{n+1}: Z_{n+1} \to Z_n)\) be inverse limit descriptions of \(X\), \(Y\) and \(Z\) respectively. Taking a subsequence if necessary, we may assume that \(f\) is induced by the following diagram.

\[
\begin{array}{ccc}
X_m & \leftarrow & X_n & \leftarrow & X \\
\downarrow f_m & & \downarrow f_n & & \downarrow f \\
Y_m & \leftarrow & Y_n & \leftarrow & Y \\
\end{array}
\]

Where \(\varepsilon_n \to 0\) as \(n \to \infty\).

Further we assume that \(X \cup X_n\), \(Y \cup Y_n\) and \(Z \cup Z_n \subset Q\) and projection maps \(p_n: X \to X_n\), \(q_n: Y \to Y_n\) and \(r_n: Z \to Z_n\) are \(1/2^n\)-translations in \(Q\). The map \(F: X \cup X_n \to Y \cup Y_n\) defined by \(F|X = f\), \(F|X_n = f_n\) is continuous.

To prove that \(f \times \text{id}_Z\) is confluent, we take any continuum \(K \subset Y \times Z\) and choose a point \((x, z) \in (f \times \text{id}_Z)^{-1}(K)\). It suffices to construct a continuum \(C \subset X \times Z\) such that \(f \times \text{id}_Z(C) = K\) and \((x, z) \subset C\). By an induction, we take a suitable subsequence \((m_n)\) and a sequence \((C_n)\) of continua such that

a) \(C_n \subset X_{m_n} \times Z_{m_n}\)

b) \(d_H(f_{m_n} \times \text{id}_{Z_{m_n}}(C_n), K) < 1/n\).

c) \(d((x, z), C_n) < 1/n\).

Let \(\pi_Y\) and \(\pi_Z\) be the projection from \(Y \times Z\) to \(Y\) and \(Z\) respectively. Define \(K_Y = \pi_Y(K)\), \(K_Z = \pi_Z(K)\) and \((y, z) = f \times \text{id}_Z(x, z)\).
Let $m_0=0$ and $C_0=X \times Z$ and assume that m_{n-1} and C_{n-1} have been defined.

Since Y is hereditarily indecomposable and $\sigma Y=0$, by Proposition 1.1, there exists a $\delta >0$ such that $0<\delta<1/2n$ and

d) for each pair of maps h, $k : I \rightarrow Q$ which satisfy $d_H(h(I), K^y) < \delta$ and $d_H(k(I), K^y) < \delta$, there exist maps a, $b : I \rightarrow Q$ such that $h \ast a = k \ast b$ and $a(0)=b(0)=0$.

Since f is a confluent map, there exists a continuum C of X such that

e) $x \in C$ and $f(C)=K^y$.

We use the following notation;

f) $K_m=q_m \times r_m(K)$, $K_m^y=q_m(K^y)$, $K_m^z=r_m(K^z)$, $C_m^x=p_m(C)$, $C_m^z=K_m^z$.

Take sufficiently large m such that

g) $m> m_{n-1}$, $d_H(K_m, K)< \delta/3$, $d_H(f_m(C_m^x), K_m^y)< \delta/3$

and $\varepsilon_m< \delta/3$.

Now we define maps $\alpha_1 : I \rightarrow Y_m$, $\beta_1 : I \rightarrow X_m$, α_2, $\beta_2 : I \rightarrow Z_m$ as follows;

h) $d(\alpha_1(0), y)< \delta$ and $d_H(\alpha_1(I), K_m^y)< \delta/3$.

i) $d(\beta_1(0), x)<1/n$, $d(f_m \beta_1(0), y)< \delta$ and $d_H(f_m \beta_1(I), K_m^y)< \delta/3$.

j) $d(\alpha_2(0), z)< \delta$ and $d_H(\alpha_2(I), K_m^z)< \delta/3$.

k) The map $\alpha=\alpha_1 \Delta \alpha_2 : I \rightarrow Y_m \times Z_m$ satisfies $d_H(\alpha(I), K_m)<1/2n$.

l) $\beta_2 = \alpha_2$.

Then by h), i) and d), there exist maps a_1, $b_1 : I \rightarrow I$ such that $\alpha_1 \ast a_1 = f_m \beta_1 \ast b_1$

and $a_1(0)=b_1(0)=0$. Let $\omega=\beta_1 \ast b_1 \Delta \alpha_2 \ast a_1 : I \rightarrow X_m \times Z_m$. Then we have

m) $d(\omega(0), (x, z))<1/n$.

n) $d(f_m \times id_{Z_m}(\omega(t)), \alpha(a_i(t)))<1/n$.

Let $m_2=m$. As a_1 is an onto map, we see that $C_n=\omega(I)$ is the required continuum.
We may assume that C_n converges to a continuum $C \subset X \times Z$. Then $(x, z) \in C$ and $f \times \text{id}_Z(C) = K$.

Theorem 2.2. Let $f : Y \rightarrow Y$ be an onto map between continua. The following are equivalent respectively.

1) The map $f \times \text{id}_Z : X \times P \rightarrow Y \times P$ is weakly confluent (confluent resp.).

2) For each continuum Z with $\sigma Z = 0$ (for each hereditarily indecomposable continuum Z with $\sigma Z = 0$ resp.), $f \times \text{id}_Z : X \times Z \rightarrow Y \times Z$ is weakly confluent (confluent resp.).

3) There exists a hereditarily indecomposable continuum Z such that $f \times \text{id}_Z$ is weakly confluent (confluent resp.).

Proof. We prove the confluent case. Another case is similarly proved.

1)→2). Since Z is weakly chainable, there exists an onto map $\varphi : P \rightarrow Z$. Clearly,

$$f \times \varphi = (f \times \text{id}_Z) \times (\text{id}_X \times \varphi) = (\text{id}_Y \times \varphi) \times (f \times \text{id}_P).$$

By Theorem 2.1, $\text{id}_Y \times \varphi$ is confluent and by the assumption, $f \times \text{id}_P$ is confluent, so $f \times \varphi$ is confluent. Hence $f \times \text{id}_Z$ is confluent.

2)→1). These are trivial.

3)→1). By [1], there exists an onto map $\phi : Z \rightarrow P$. Then $f \times \phi = (f \times \text{id}_P) \times (\text{id}_X \times \phi) = (\text{id}_Y \times \phi) \times (f \times \text{id}_Z)$. The similar argument as above implies the conclusion.

3. The preservation of the property of having zero span

Lemma 3.1. Let $f : X \rightarrow Y$ be an irreducible map (i.e., no proper subcontinuum of X can be mapped onto Y). If $f \times \text{id}_P : X \times P \rightarrow Y \times P$ is weakly confluent, then
Span zero continua and the pseudo-arc

f has the following property:

(*) for each onto map $\alpha: P \rightarrow Y$, there exists a continuum $Z \subset X \times P$ such that $\pi_X(Z)=X$, $\pi_P(Z)=P$, and $f \cdot \pi_X|Z=\alpha \cdot \pi_P|Z$.

Where π_X and π_P are the projections from $X \times P$ to X and P respectively.

Proof. Let $H_a=\{(\alpha(p), p)| p \in P\}$. Then $\pi_P(H_a)=P$ and $\pi_Y(H_a)=Y$. Since $f \times id_P$ is weakly confluent, there exists a continuum $Z \subset X \times P$ such that $f \times id_P(Z)=H_a$. Then $f(\pi_Y(Z))=\pi_Y(H_a)=Y$, so by the irreducibility of f, $\pi_X(Z)=X$. It is easy to see that Z satisfies the other conditions which are required.

Theorem 3.2. Let $f: X \rightarrow Y$ be a map which satisfies the following conditions.

1) f satisfies $(*)$ 2) $f \times f: X \times X \rightarrow Y \times Y$ is weakly confluent. If $\sigma X=0$, then $\sigma Y=0$.

Proof. We first show that

a) for each pair of onto maps $\alpha, \beta: P \rightarrow Y$ from the pseudo-arc, there exists a point $p \in P$ such that $\alpha(p)=\beta(p)$.

To prove a), we apply the property $(*)$ to α and β respectively. There exist continua Z_α and Z_β such that $f \cdot \pi_X|Z_\alpha=\alpha \cdot \pi_P|Z_\alpha$ and $f \cdot \pi_X|Z_\beta=\beta \cdot \pi_P|Z_\beta$, where $\pi_X=\pi_X|Z_\alpha$ etc. By Theorem 1.3, there exist a continuum W and onto maps $f_\alpha: W \rightarrow Z_\alpha$ and $f_\beta: W \rightarrow Z_\beta$ such that $\pi_P \cdot f_\alpha=\pi_P \cdot f_\beta$. Since $\pi_X \cdot f_\alpha$ and $\pi_X \cdot f_\beta: W \rightarrow X$ are onto maps and $\sigma X=0$, there exists a point $w \in W$ such that $\pi_X \cdot f_\alpha(w)=\pi_X \cdot f_\beta(w)$. Then we can see that $\alpha \cdot \pi_P \cdot f_\alpha(w)=\beta \cdot \pi_P \cdot f_\beta(w)$. So $p=\pi_P \cdot f_\alpha(w)=\pi_P \cdot f_\beta(w)$ satisfies the conclusion of a).

![Diagram](https://via.placeholder.com/150)

Using a), it is easy to see that

b) for each pair of onto maps $\alpha, \beta: W \rightarrow Y$ from any weakly chainable continuum W onto X, there exists a point $w \in W$ such that $\alpha(w)=\beta(w)$.

Next we prove that

c) for each subcontinuum $Z \subset Y \times Y$, there exists a sequence (W_n) of weakly
chainable continua such that
\[W_n \subset Y \times Y, \ \text{Lim} \ W_n = Z \text{ and } p_i(W_n) = p_i(Z), \]
where \(p_i \) denotes projection from \(Y \times Y \) to the \(i \)-th factor.

To see this, we note that \(\sigma X = 0 \) and hence \(X \) is weakly chainable. Take an onto map \(\varphi : P \to X \), then \(\varphi \times \varphi : P \times P \to X \times X \) is weakly confluent ([10], Theorem 3). From this fact and condition 2), there exists a continuum \(C \subset P \times P \) so that \(f \varphi \times f \varphi(C) = Z \). Let \(P_i = \pi_{P'}(C) \ i = 1, 2 \), where each \(\pi_{P'} \) denotes projection from \(P \times P \) to the \(i \)-th factor. By [14], there exist a sequence of homeomorphism \((h_n : P_1 \to P_2)_{n \in \mathbb{N}} \) such that \(G(h_n)'s \), the graphs of \(h_n \)'s \((\subset P \times P) \), converges to \(C \). Define \(W_n \) by \(W_n = f \varphi \times f \varphi(G(h_n)) \), which is clearly weakly chainable. Moreover, \(W_n \to f \varphi \times f \varphi(C) = Z \), and for \(i = 1, 2 \),
\[p_i(W_n) = f \varphi(\pi_{P'}(G(h_n))) = f \varphi(P_i) = p_i(f \varphi \times f \varphi(C)) = p_i(Z). \]

This prove c).

Now we prove that \(\sigma^* Y = 0 \). Take any continuum \(Z \subset Y \times Y \) satisfying \(p_i(Z) = Y \ i = 1, 2 \). By c), there exists a sequence \((W_n) \) of weakly chainable continua such that \(p_i(W_n) = Y \) and \(W_n \to Z \). By b), \(W_n \cap \Delta Y \neq \emptyset \) for each \(n \). So we have \(Z \cap \Delta Y \neq \emptyset \). This completes the proof.

Using Theorem 3.2, we have

Theorem 3.3 (cf. [10] Theorem 7). Let \(f : X \to Y \) be an onto map between continua and suppose that \(\sigma X = 0 \).

1) The following are equivalent.
 a) \(\sigma Y = 0 \).
 b) For each subcontinuum \(K \) of \(X \).
\[(f \mid K) \times p : K \times P \to f(K) \times P \]
\[(f \mid K) \times id_Y : K \times Y \to f(K) \times Y \]
are weakly confluent.

2) Suppose that \(X \) is hereditarily indecomposable and \(f \) is confluent. Then the following are equivalent.
 a) \(\sigma Y = 0 \).
 b) \(f \times id_Y : X \times Y \to X \times Y \) is confluent.
 c) \(f \times f : X \times X \to Y \times Y \) is confluent.

Proof. 1) a) \(\to b) \). This follows for [10] Theorem 3.

b) \(\to a) \). Take any subcontinuum \(Z \) in \(Y \). There exists a continuum \(K \subset X \)
such that \(f|K: K \to Z \) is an irreducible map. By the assumption and Theorem 2.2, we see that \((f|K) \times id_X \) is, and hence \((f|K) \times (f|K) \) is weakly confluent. Hence by Theorem 3.2 and Lemma 3.1, we have \(\sigma^*Z = 0 \). So \(\sigma Y = 0 \).

2) a)\(\rightarrow \)b). This follows from [10] Theorem 3.

b)\(\rightarrow \)c). Since \(Y \) is hereditarily indecomposable (Notice that confluent maps preserve hereditary indecomposability), it follows that \(f \times id_X \) is confluent by Theorem 2.2. Then \(f \times f = (id_Y \times f)(f \times id_X) \) is confluent.

c)\(\rightarrow \)a). This follows from [10] Theorem 7.

4. Fixed points for multi-valued map on span zero continua

We prove some fixed point theorem for multi-valued map of span zero continua, which generalize some results of Rosen [14]. Also in this section, [10] Theorem 3 is used.

Let \(X \) be a continuum. The space of all nonempty compact subsets of \(X \) (the space of all nonempty subcontinua of \(X \) resp.) with the Hausdorff metric is denoted by \(2^X \) (\(C(X) \) resp.). Let \(f: X \to 2^Y \) be a (not necessarily continuous) function. The set \(G(f) = \bigcup_{x \in X} \{ \{ x \} \times f(x) \subset X \times Y \} \) is called the graph of \(f \). The image of \(f \), denoted by \(f(X) \), is defined by \(\bigcup_{x \in X} f(x) \). A function \(f \) is uppersemi- (lowersemi- resp.) continuous, abbreviated u.s.c. (l.s.c. resp.), if for each open set \(U \) of \(Y \), \(\{ x \in X \mid f(x) \subset U \} \) \(\{ x \in X \mid f(x) \cap U \neq \emptyset \} \) (resp.) is open. A function \(f: X \to 2^Y \) is continuous if and only if \(f \) is both upper- and lower-semi-continuous.

We say that \(f \) is onto if \(f(X) = X \).

Theorem 4.1 (cf. [13] Theorem 1). Let \(f, g: X \to 2^Y \) be u.s.c. functions. Suppose that

1) \(\sigma X = \sigma Y = 0 \)

2) \(G(f) \) and \(G(g) \) are connected and

3) \(f \) is onto.

The there exists a point \(x \in X \) such that \(f(x) \cap g(x) \neq \emptyset \).

Proof. Since \(X \) and \(Y \) are weakly chainable by 1), there exist irreducible onto maps \(a: P \to X \) and \(b: P \to Y \). By the uppersemicontinuity and 2), \(G(f) \), \(G(g) \subset X \times Y \) are continua. By [10] Theorem 3, there exist subcontinua \(K \) and \(L \) of \(P \times P \) such that \(a \times b(K) = G(f) \) and \(a \times b(L) = G(g) \). Let \(p_i \)'s (\(\pi_i \)'s resp.) denote the projection maps from \(P \times P \) \(X \times Y \) resp.) to the \(i \)-th factor, \(i = 1, 2 \). Then \(a(p_i(K)) = \pi_i(G(f)) = X \), and by the irreducibility of \(a \), \(p_i(K) = P \). Similarly, \(p_i(L) = P \), \(p_i(K) = P \).

Since \(P \) is arc-like, it is easy to see that \(K \cap L \neq \emptyset \), hence \(G(f) \cap G(g) \neq \emptyset \).
Take \((x, y)\in G(f)\cap G(g)\). The point \(x\) satisfies the conclusion.

Corollary 4.2. Let \(f, g : X\to 2^Y\) be u.s.c. functions and suppose that
1) \(\sigma X = \sigma Y = 0\)
2) \(f\) is onto and \(G(f)\) is connected, and
3) \(g\) is continuous.
Then there exists a point \(x\in X\) such that \(f(x)\cap g(x) \neq \emptyset\).

Proof. By [13] Lemma 1, there exists an u.s.c. function \(h : X\to 2^Y\) such that \(h(x)\subseteq g(x)\) for each \(x\in X\) and \(G(h)\) is connected.

Theorem 4.3 (cf. [13] Theorem 2). Let \(f, g : X\to C(Y)\) be u.s.c. functions. Suppose that
2) \(\sigma Y = 0\) and 2) \(f\) is onto.
Then there exists a point \(x\in X\) such that \(f(x)\cap g(x) \neq \emptyset\).

Proof. Define a subset \(G(f, g)\) of \(Y\times Y\) by \(\bigcup_{x\in X} f(x)\times g(x)\). Since \(f(x)\) and \(g(x)\) are continua for each \(x\in X\), and \(f\) and \(g\) are uppersemicontinuous, \(G(f, g)\) is a subcontinuum of \(Y\times Y\), and \(\pi_1(G(f, g)) = Y\) (\(\pi_1\) is the projection to the first factor). By [2], \(\sigma_{\emptyset} = 0\), so \(G(f, g)\cap \Delta Y \neq \emptyset\). This means the conclusion.

Let \(f : X\to 2^X\) be a function. A point \(x\in X\) is called a *fixed point* of \(f\) if \(x\in f(x)\).

Corollary 4.4. Let \(X\) be a continuum with \(\sigma X = 0\). Then \(X\) has the fixed point property for the following classes of multi-valued functions.
1) \(\{f : X\to 2^X | f\) is u.s.c. and \(G(f)\) is connected\}.
2) \(\{f : X\to 2^X | f\) is continuous\}.
3) \(\{f : X\to C(X) | f\) is u.s.c.\}.

References

Span zero continua and the pseudo-arc

214.

Institute of Mathematics
University of Tsukuba
Ibaraki 305, Japan