ON SPAN AND INVERSE LIMITS

By

Kazuhiro Kawamura

1. Introduction.

A compact metric space is called a compactum and a connected compactum is called a continuum. All maps in this paper are continuous. Let \(f : X \to Y \) be a map between continua. Ingram [2] and Lelek [11] defined the span, semispan, surjective span, and surjective semispan of \(f \) by the following formulas (the map \(p_i : X \times X \to X \) denotes the projection to the \(i \)-th factor, \(i = 1, 2 \)).

\[
\tau = \sigma, \sigma_*, \sigma^*_e.
\]

\[
\tau(f) = \sup \left\{ c \geq 0 \mid \begin{array}{l}
\text{there exists a continuum } Z \subseteq X \times X \text{ such that } Z \text{ satisfies the condition } \tau \\
\text{and } d(f(x), f(y)) \geq c \text{ for each } (x, y) \in Z
\end{array} \right\},
\]

where the condition \(\tau \) is:

\[
p_i(Z) = p_3(Z) \text{ if } \tau = \sigma, \quad p_i(Z) \supset p_3(Z) \text{ if } \tau = \sigma_*, \quad p_i(Z) = X \text{ if } \tau = \sigma^*_e.
\]

The span of a continuum \(X \) is defined by \(\sigma(id_X) \). The other cases are similar. In the same way, we can define the symmetric span of \(f \) by the formula

\[
s(f) = \sup \begin{cases}
\{ c \geq 0 \mid \begin{array}{l}
\text{there exists a continuum } Z \subseteq X \times X \text{ such that } Z \text{ is symmetric (i.e. } (x, y) \in Z \iff (y, x) \in Z) \\
\text{and } d(f(x), f(y)) \geq c \text{ for each } (x, y) \in Z
\end{array} \} \end{cases}.
\]

It is a mapping version of symmetric span of a continuum due to J. F. Davis [1].

Let \(X = \lim(X_n, p_{n,n+1}) \) be a continuum, where \(p_{n,n+1} : X_{n+1} \to X_n \). Ingram [2] and [4] showed that \(\sigma(X) = 0 \) if and only if there exists a cofinal subsequence \((n_i)_{i \in \omega}\) such that \(\lim_j \sigma(p_{n_i,n_j}) = 0 \) for each \(i \geq 1 \). In section 2 of this paper, we will prove a mapping version of this theorem. H. Cook proved essentially that the symmetric span of the dyadic solenoid is zero ([1], p. 134), while its span is positive. The author wishes to thank to the referee for pointing out this fact. In section 3, we generalize this to the poly-adic solenoid. Let \(f \) and \(g : X \to Y \) be maps. \(d(f, g) \) denotes \(\sup \{ d(f(x), g(x)) \mid x \in X \} \).

Received March 12, 1987.
2. Span and a limit of maps.

Let \(X = \lim (X_n, p_{n, n+1}) \) and \(Y = \lim (Y_n, q_{n, n+1}) \) be compacta, where all \(X_n \) and \(Y_n \) are polyhedra and both of \(p_{n, n+1} : X_{n+1} \to X_n \) and \(q_{n, n+1} : Y_{n+1} \to Y_n \) are surjective for each \(n \geq 0 \). The maps \(p_n : X \to X_n \) and \(q_n : Y \to Y_n \) denote the projection maps. Under these notations, Mioduszewski showed the following [15].

Theorem 1. 1) For every sequence \((\varepsilon_n) \) of positive numbers with \(\lim \varepsilon_n = 0 \), there exist cofinal increasing subsequences \((m_k) \) and \((n_k) \) and maps \(f_k : X_{m_k} \to Y_{n_k} \) such that diagrams (A) and (B) are \(\varepsilon_k \)-commutative for each \(s \leq k \leq l \).

\[
\begin{array}{cccc}
X_{m_k} & \leftrightarrow & X & \leftrightarrow & X_{m_l} \\
\downarrow f_k & & \downarrow f & & \downarrow f_l \\
Y_{n_s} & \leftrightarrow & Y_{n_k} & \leftrightarrow & Y_{n_l}
\end{array}
\quad
\begin{array}{cccc}
X_{m_k} & \leftrightarrow & Y_{n_k} & \leftrightarrow & Y_{m_l} \\
\downarrow f_k & & \downarrow f_l & & \\
Y_{n_s} & \leftrightarrow & Y_{n_l}
\end{array}
\]

(A) \quad (B)

2) Conversely, if we are given diagram (B), then we can find a map \(f : X \to Y \) which satisfies diagram (A) for each \(k \). If all \(f_k \)'s are surjective, \(f \) can be constructed so as to be surjective.

Notice that the map \(f \) is defined by \(q_{n_k} f = \lim k p_{n_k} f_k p_{m_k} \).

We say that \(f \) is weakly induced by the sequence \((f_k) \). This terminology is due to Oversteegen and Tymchatyn [13].

Theorem 2. Let \(f : X \to Y \) be a map between continua which is weakly induced by a sequence \((f_k : X_{m_k} \to Y_{n_k}) \). Then, \(\tau(f) = 0 \) if and only if there exists a cofinal subsequence \((n_k) \) of \((n_k) \) such that \(\lim_j \tau(q_{n_k} f_k p_{m_j}) = 0 \) for each \(i \). Where, \(\tau = \sigma, \sigma^*, \sigma_0, \sigma^*_0, \) and \(s \).

The basic idea of the proof is in [2] and [3]. But we need some preparations. Throughout this section, \(\tau \) denotes \(\sigma, \sigma_0, \sigma^*, \sigma^*_0, \) and \(s \) unless otherwise stated.

Proposition 3. Let \(f : X \to Y \) and \(g : Y \to Z \) be maps.
1) \(\tau(gf) \leq \tau(g) \). 2) If \(\tau(f) = 0 \), then \(\tau(gf) = 0 \).

Proposition 4. Let \((f_n : X \to Y) \) be a sequence of maps which converges uniformly to a map \(f : X \to Y \). Then \(\tau(f) = \lim_n \tau(f_n) \).

The proof of the above two propositions are easy and will be omitted.
Proposition 5. 1) Let X_n's and X be continua in a metric space M and let Y_n's and Y be continua in a metric space N. Suppose that $f : X \to Y$, $f_n : X_n \to Y_n$, $p_n : X \to X_n$, and $q_n : Y \to Y_n$ satisfy the following conditions.

a) $\lim X_n = X$, $\lim Y_n = Y$. Both of $X \cup \bigcup_{n=1}^{\infty} X_n$ and $Y \cup \bigcup_{n=1}^{\infty} Y_n$ are compact.

b) Both of the maps p_n and q_n are $1/2^n$-translation (that is, $d(x, p_n(x)) < 1/2^n$ for each $x \in X$ etc.).

c) There exists a decreasing sequence of positive numbers ε_n's with $\lim \varepsilon_n = 0$, such that $d(q_n f, f_n p_n) < \varepsilon_n$.

d) Define $F : X \cup \bigcup_{n \geq 1} X_n \to Y \cup \bigcup_{n \geq 1} Y_n$ by $F\arrowvert X = f$, $F\arrowvert X_n = f_n$. Then F is well-defined and continuous.

Then $\tau(f) = \lim \tau(f_n)$.

2) We can replace condition d) by

e) Each p_n is surjective.

Reasoning the same way as in [10, 3.1] and [5, 2.1], we can show two inequalities: $\limsup \tau(f_n) \leq \tau(f) \leq \liminf \tau(f_n)$, which imply the conclusion.

Proof of Theorem 2. To simplify the notations, a cofinal subsequence of (n_i) is also denoted by (n_i). First we assume that $\tau(f) = 0$. Take any subsequence (n_i) and an integer $j > 0$. It suffices to prove that $\lim_i \tau(q_{n_i, j}, f_i) = 0$. Let A be a compactum satisfying the following conditions.

1) $A = X \cup \bigcup_{m} X_m$, where X and X_m are homeomorphic to X and X_m respectively. $X \cap X_m = \emptyset = X_m \cap X_m$ for each $m \neq l$.

2) Let $h : X \to X$ and $h_k : X_m \to X_m$ be homeomorphisms. There exists an ε_k-translation $\bar{p}_m : X \to X_m$ satisfying $h_k p_m = \bar{p}_m h$.

3) $\lim X_m = X$.

That such space A exists is well known. As each bonding map is surjective, we can take each \bar{p}_m to be surjective. Consider the following diagram.

Where, $a = q_{n_j} f h^{-1}$ and $b_i = q_{n_i, n_j} f_i h_i^{-1}$. Then,
4)
\[d(a, b) = d(q_{n_j} f h^{-1}, q_{n_j} n_j f h^{-1} h \cdot p_{n_i} h^{-1}) \]
\[= d(q_{n_j} n_j f i, q_{n_j} n_j f i p_{n_i} < \varepsilon_i \]

by the \(\varepsilon_i \)-commutativity of \(A \). It is easy to see that \(\tau(a) = \tau(q_{n_j} f) \) and \(\tau(b) = \tau(q_{n_j} n_j f i) \). Applying Proposition 3.2, Proposition 5 and by condition 4), we have

\[\lim_{i} \tau(q_{n_j} n_j f i) = \lim_{i} \tau(b) = \tau(a) = \tau(q_{n_j} f) = 0. \]

Next we assume that a cofinal subsequence satisfies the hypothesis. By Proposition 4 and Proposition 3.1,

\[\tau(q_{n_j} f) = \lim_{i} \tau(q_{n_j} n_j f i p_{n_i} \varepsilon_i) \]
\[\leq \lim_{i} \tau(q_{n_j} n_j f i) = 0. \]

To show that \(\tau(f) = 0 \), we take any continuum \(Z \) in \(X \times X \) satisfying condition \(\tau \). There exists a point \((x^i, y^i) \in Z \) such that \(q_{n_j} f(x^i) = q_{n_j} f(y^i) \), because \(\tau(q_{n_j} f) = 0 \) for each \(j \). We can assume that \((x^i, y^i) \to (x, y) \) as \(j \to \infty \). If \(j < i \),

\[q_{n_j} f(x^i) = q_{n_j} n_j q_{n_i} f(x^i) \]
\[= q_{n_j} n_j q_{n_j} f(y^i) = q_{n_j} f(y^i). \]

Tending \(i \) to infinity, we have

\[q_{n_j} f(x) = q_{n_j} f(y) \quad \text{for each } j \text{ and hence } f(x) = f(y). \]

This completes the proof.

Theorem 6. Suppose that \(X, Y, f \) and \(f_n \) satisfy the hypothesis of Theorem 2. If there exists a cofinal subsequence \((n_i) \) such that \(\lim_{i} \tau(f_n p_{n_i} n_j) = 0 \), then \(\tau(f) = 0 \).

Proof. For each \(s < i \), \(\tau(q_{n_i} n_j f_n p_{n_i} n_j) = 0 \), because by Proposition 3,

\[\tau(f_n p_{n_i} n_j) = \lim_{j} \tau(f_n p_{n_i} n_j p_{n_j}) \]
\[\leq \lim_{j} \tau(f_n p_{n_i} n_j) = 0. \]

Using the \(\varepsilon_j \)-commutativity of the diagram \(A \) and \(B \), we have \(\tau(q_{n_i} f) \leq \tau(q_{n_i} n_j f j p_{n_j}) + 2\varepsilon_j = 2\varepsilon_j \) for each \(j > i \). Therefore \(\tau(q_{n_i} f) = 0 \) for each \(i \) and \(\tau(f) = 0 \).

Corollary 7 [8 and 10]. Let \(X = \lim(X_n, p_{n_n}) \) be a continuum represented as the inverse limit of continua and onto bonding maps. Then the followings are equivalent.

1) \(\tau(X) = 0 \).

2) There exists a cofinal subsequence \((n_i) \) such that \(\lim_{j} \tau(p_{n_i n_j}) = 0 \) for each \(i \).
3) For each \(n \), \(\tau(p_n)=0 \).

In Theorem 2 and 6, no conditions on \(p_n \)'s and \(q_n \)'s, on \(X_n \)'s and \(Y_n \)'s are required. If we add some conditions, the followings are obtained.

Proposition 8. Suppose \(X, Y, f, f_n, p_n \) and \(q_n \) satisfy the hypothesis of Theorem 2. Moreover assume that:

1) All \(p_n \)'s are monotone, or
2) \(X \) is tree-like and each \(X_n \) is a finite tree. Each \(p_n \) is an open onto map.

\(\tau=\sigma, \sigma_0, \) and \(s \).

If \(\tau(f) = 0 \), then \(\lim_n \tau(f_n) = 0 \).

Proof. 1) For each \(n \geq 0 \) and for each continuum \(Z \subseteq X_n \times X_n \) satisfying \(\tau \), \((p_n \times p_n)^{-1}(Z) \) is a continuum in \(X \times X \) satisfying \(\tau \). There exists a \((x, y) \in (p_n \times p_n)^{-1}(Z) \) such that \(f(x) = f(y) \). Then

\[
\begin{align*}
d(f_n p_n(x), f_n p_n(y)) & \leq d(f_n p_n(x), q_n f(x)) + d(q_n f(y), f_n p_n(y)) \\
& \leq 2\varepsilon_n.
\end{align*}
\]

Hence \(\tau(f_n) \leq 2\varepsilon_n \) and this completes the proof.

2) We need the following theorem for the proof.

Theorem 9 [14, p. 189]. Let \(X \) and \(Y \) be compacta and \(f: X \rightarrow Y \) be a light open map from \(X \) onto \(Y \). For each dendrite \(D \) in \(Y \), there exists a dendrite \(D_1 \) in \(X \) such that \(f(D_1) = D \) and \(f \upharpoonright D_1 \) is a homeomorphism on \(D \).

Using this Theorem, 2) is shown as follows.

Let \(n \) be a positive integer. There exists a continuum \(W_n \) and maps \(r_n: X \rightarrow W_n, s_n: W_n \rightarrow X_n \) such that \(r_n \) is monotone and \(s_n \) is light open and \(s_n r_n = p_n \).

As \(X_n \) is a tree, there exists a dendrite \(T_n \) in \(W_n \) such that \(s_n(T_n) = X_n \) and \(s_n \upharpoonright T_n \) is a homeomorphism by Theorem 9. For each continuum \(Z \subseteq X_n \times X_n \) satisfying the condition \(\tau \) (\(\tau=\sigma, \sigma_0, \) and \(s \)), the set \((s_n \circ (r_n \upharpoonright r_n^{-1}(T_n)) \times s_n \circ (r_n \upharpoonright r_n^{-1}(T_n))^{-1}(Z) \) is a continuum in \(X \times X \) which also satisfies the condition \(\tau \).

Arguing the same way as in 1), we obtain the conclusion.

An easy example shows that the converse of Proposition 8 does not hold. But by Theorem 6 and Proposition 3, we can prove:

If \(\tau(f_n) = 0 \) for each \(n \), then \(\tau(f) = 0 \).

Monotone maps preserve span zero ([3], theorem 2). The author recently proved that open maps also preserve span zero [7]. Hence,
Corollary 10. Let \(X = \lim(X_n, p_{n+1}) \) be a continuum as the inverse limit of continua and onto bonding maps. Suppose that all \(p_{n+1} : X_{n+1} \rightarrow X_n \)'s are monotone or all \(p_{n+1} \)'s are open. Then \(\sigma(X) = 0 \) if and only if \(\sigma(X_n) = 0 \) for each \(n \).

3. Some examples.

In this section, we are concerned with circle-like continua.

Proposition 11. Let \(X = \lim(X_n, p_{n+1}) \), \(Y = \lim(Y_n, q_{n+1}) \) be circle-like continua and \(f : X \rightarrow Y \) be a map which is weakly-induced by a sequence of maps \((f_n : X_n \rightarrow Y_n) \). If all \(X_n \)'s and \(Y_n \)'s are simple closed curves and all \(q_{n+1} \) are essential, then the followings are equivalent.

a) \(\sigma(f) = 0 \).

b) There exists a subsequence \((n_j) \) such that \(f_{n_j} = 0 \) for each \(j \).

As was shown in [5, 2.2], a map \(f : X \rightarrow S^1 \) from a continuum \(X \) to the unit circle \(S^1 \) is essential if and only if \(\sigma(f) = \text{diam } S^1 > 0 \). Using this result, this proposition is easily proved. (See also [16]).

H. Cook has essentially proved that the symmetric span of the dyadic solenoid is zero ([1], p.134). Here we consider general \(p \)-adic solenoid. Let \(p = (p_1, p_2, \ldots) \) be a sequence of positive integers. The \(p \)-adic solenoid \(S_p \) is defined by the inverse limit of the unit circles \(X_n = S^1 = \{ z \in C | |z| = 1 \} \), whose bonding maps \(f_n : X_{n+1} \rightarrow X_n \) are defined by the formulas; \(f_n(z) = z^{p_n} \). We show the following result.

Proposition 12. Let \(S_p \) be the \(p \)-adic solenoid, \(p = (p_1, p_2, \ldots) \). Then \(s(S_p) > 0 \) if and only if there exists a positive integer \(N \) such that for each \(n > N \), \(p_n \) is odd.

First we calculate the symmetric span of maps between the unit circles.

Lemma 13. Let \(f : S^1 \rightarrow S^1 \) be the map between the unit circles defined by \(f(z) = z^n \), where \(n \) is a positive integer. Then \(s(f) = 0 \) or \(\text{diam } S^1 \) (\(= 2 \)). Also, \(s(f) = 0 \) if and only if \(n \) is even.

Proof. \(S^1 \times S^1 \) is obtained from the rectangle \([0, 2\pi] \times [0, 2\pi] \) by identifying \((x, 0)\) and \((x, 2\pi)\), \((0, y)\) and \((2\pi, y)\) \((0 \leq x, y \leq 2\pi)\). Let \(F = \{(x, y) \in S^1 \times S^1 | f(x) = f(y)\} \). Then \(F \) contains diagonal set. Let

\[
A_i = [2\pi \cdot (i-1)/n, 2\pi \cdot i/n] \times 0,
\]

\[
B_i = 0 \times [2\pi \cdot (i-1)/n, 2\pi \cdot i/n],
\]
On span and inverse limits

\[C_i = [2\pi \cdot (i-1)/n, 2\pi \cdot i/n] \times 2\pi, \]
\[D_i = 2\pi \times [2\pi \cdot (i-1)/n, 2\pi \cdot i/n], \quad i=1, \ldots, n. \]

\(A_i \) and \(C_i \), \(B_i \) and \(D_i \) are identified in \(S^1 \times S^1 \) respectively. Let \(X_i \) be the tetragon bounded by \(F \) and \(A_i \) and \(D_{n+i} \) in \([0, 2\pi] \times [0, 2\pi]\), and \(\tilde{X}_i \) be the set in \(S^1 \times S^1 \) obtained from \(X_i \) by the identification. Notice that \(s(f) > 0 \) if and only if there exists a continuum \(Z \) in \(S^1 \times S^1 \) such that \(Z \) is symmetric and \(Z \cap F = \emptyset \).

First we assume that \(n \) is odd. Then \((\pi, 0) = (\pi, 2\pi)\) in \(S^1 \times S^1 \) and \((0, \pi) = (2\pi, \pi)\) in \(S^1 \times S^1 \) do not belong to \(F \). So we can join \((\pi, 0)\) and \((0, \pi)\) by the symmetric arc \(A = \{(x, y) \in S^1 \times S^1 \mid \arg x - \arg y = \pi\} \). It is easy to see that \(d(f(x), f(y)) = \text{diam } S^1 = 2 \) for each \((x, y) \in A\). Hence \(s(f) = 2 \).

Next we assume that \(n \) is even. Suppose that \(s(f) > 0 \). Then by the above remark, there exists a continuum \(Z \) in \(S^1 \times S^1 \) such that \(Z \) is symmetric and \(Z \cap F = \emptyset \). For each \(i = 1, \ldots, n \), let \(Z_i = Z \cap \tilde{X}_i \). Then \(Z_i = Z \cap \tilde{X}_i \). Let \(j \) be the first integer such that \(Z_j \neq \emptyset \).

We claim that \(Z_j \cap Z_j^1 = \emptyset \). If \(j = 1 \), \(\tilde{X}_j \cap \tilde{X}_j^1 \subset (\text{diagonal}) \subset F \). Since \(Z \cap F = \emptyset \), \(Z \cap Z_j^1 = \emptyset \). Assume \(j > 1 \). As \(n \) is even, \(i \neq n+1-i \) for each integer. Hence \(B_i \cap D_{n+i} \subset F \), \(A_i \cap C_{n+i} \subset F \), and we have \(\tilde{X}_j \cap \tilde{X}_j^1 \subset F \). As \(Z \cap F = \emptyset \), we have the claim.

As \(Z \) is connected, \(Z_j \cup Z_j^1 \neq Z \). If \(Z \) does not intersect \(\text{Int}_{S^1 \times S^1} (\tilde{X}_{n+i}^1) \), then \(Z_j \cup Z_j^1 \) is a clopen set in \(Z \), because \(\tilde{X}_{n+i}^1 \) is the only one of the \(\tilde{X}_i \)'s which meets \(\tilde{X}_j \) in \(S^1 \times S^1 - F \). So \(Z \cap \text{Int}_{S^1 \times S^1} \tilde{X}_{n+i}^1 \neq \emptyset \). By the similar argument, we see that \(\tilde{X}_j \cup \tilde{X}_{n+i} \) does not intersect any other \(\tilde{X}_i \)s and \(\tilde{X}_i^1 \)s in \(S^1 \times S^1 - F \) and \(\tilde{X}_j \neq \tilde{X}_{n+i} \). Therefore \(Z \cap \text{Int}_{S^1 \times S^1} \tilde{X}_{n+i}^1 \) is a clopen proper subset of \(Z \). This is a contradiction which completes the proof.

Proof of Proposition 12.

First we assume \(s(S_p) > 0 \). If there exists a cofinal subsequence \((n_i)\) such that \(p_{n_i} \) is even, \(s(f_{n+1} n_{i+1}) = 0 \) by Lemma 13. By Corollary 7, \(s(S_p) = 0 \), a contradiction.

Next suppose that there exists a positive integer \(N \) satisfying the hypothesis. Then for each \(m > n > N \), \(s(f_n m) = 2 \). Therefore \(\lim_{m \to n} s(f_n m) > 0 \) and \(s(S_p) > 0 \), as desired.

This completes the proof.

References

Institute of Mathematics
University of Tsukuba
Ibaraki, 305 Japan